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ABSTRACT

Smart contracts have emerged as a transformative technology within the
blockchain ecosystem, facilitating the automated and trustless execution of
agreements. Their adoption spans diverse sectors such as education, agriculture,
healthcare, government, real estate, transportation, supply chain, and global ini-
tiatives like Central Bank Digital Currencies (CBDCs). However, the security of
smart contracts has become a significant concern, as vulnerabilities in their de-
sign and implementation can lead to severe consequences such as financial losses
and system failures. This systematic review consolidates findings from 78 se-
lected research articles, identifying key vulnerabilities affecting smart contracts
and categorizing them into a taxonomy encompassing code-level, environment-
dependent, and user-related vulnerabilities. It also examines the threats that
exploit these vulnerabilities and the most effective detection techniques. The
domain-based classification presented in this review aims to assist researchers,
software engineers, and developers in identifying and mitigating significant se-
curity flaws related to the design, implementation, and deployment of smart con-
tracts. A comprehensive understanding of these issues is essential for enhancing
the security and reliability of the blockchain ecosystem, ultimately fostering the
development of more secure and robust decentralized applications for end users.
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1. INTRODUCTION
Blockchain technology, known for its decentralized and transparent nature has transformed the way

transactions and agreements are conducted. It functions as a distributed ledger composed of interconnected
blocks, cryptographically linked together with each active node on the network maintaining a local copy of
all transactions [1] to ensure transparency and security. Originally developed to enhance financial transactions
within the Bitcoin network [2], blockchain has gained widespread attention and is now adopted across various
industries including supply chain management, record keeping, and identity management [3].

Central to many blockchain platforms are smart contracts, which are self-executing codes that au-
tomatically carry out tasks when specific predefined conditions are met [4], thereby eliminating the need for
intermediaries. Unlike traditional agreements that rely on trusted third parties and arbitration, blockchain-based
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smart contracts directly define the terms of agreements between parties. Nick Szabo introduced the concept
of smart contracts in the early 1990s [5], aiming to enable transactions and agreements without middlemen,
thereby reducing costs and enhancing transparency. By leveraging the immutability and decentralization of
blockchain, smart contracts provide a trusted and transparent way to fulfill contractual obligations, allowing
the automatic execution of agreed terms between untrusted parties.

Despite their potential, smart contracts have increasingly become targets for sophisticated cyber threats
that can compromise the integrity, availability, and confidentiality of entire blockchain platforms. This vulner-
ability arises from the inherent complexity of smart contracts, their unique programming paradigm, and the
immutable nature of blockchain transactions [6]. Exploiting vulnerabilities in smart contract code can lead to
unexpected outcomes, tarnishing the reputation and undermining trust in the blockchain platform. A notable
instance of such an exploit occurred in 2016 with the Decentralized Autonomous Organization (DAO), where
attackers took advantage of a vulnerability in the DAO’s contract, leading to the theft of 3.5 million Ethers,
valued at approximately 45 million USD at the time [7].

Researchers have proposed various methodologies for detecting vulnerabilities in smart contracts uti-
lizing symbolic and dynamic analysis as well as machine learning techniques. One of the earliest tools devel-
oped for this purpose is OYENTE [8], which utilizes static symbolic execution to reveal vulnerabilities in smart
contracts. OYENTE was tested on 19,366 Ethereum smart contracts and successfully detected vulnerabilities
in 8,833 of them, including the notorious DAO issue. This tool can identify vulnerabilities such as reentrancy,
transaction ordering dependency, timestamp dependence, and mishandled exceptions.

Another tool, Mythril [9], utilizes symbolic execution techniques to evaluate potential vulnerabilities
in smart contracts. When it detects undesirable conditions, it validates or dismisses them based on specific
assumptions. Similarly, Slither [10], designed to detect reentrancy vulnerabilities, utilizes static analysis tech-
nique by converting the solidity abstract syntax tree (AST) into an internal representation language called
SlithIR, which is then analyzed for vulnerabilities.

Securify [11], a dynamic analysis tool, detects flaws in Ethereum smart contracts by extracting seman-
tic information through symbolic execution on the contract’s dependency graph. It observes compliance and
violation patterns to verify specific properties. Likewise, sFuzz [7] combines a lightweight, adaptive strategy
with American fuzzy lop (AFL) fuzzing to detect up to nine types of smart contract vulnerabilities. Contract-
Fuzzer [12] generates fuzzing inputs based on the smart contract’s constructor arguments and its application
binary interface (ABI) to detect a range of vulnerabilities including gasless sends, block number dependency,
reentrancy, exception handling issues, frozen ether, and delegate call vulnerabilities.

Additionally, a machine learning-based vulnerability detection model [13] using K-nearest neighbors
(KNN) has been proposed, effectively identifying vulnerabilities such as access control, arithmetic errors, bad
randomness, denial of service, reentrancy, and unchecked low-level calls. Another approach [14], employing
heterogeneous graph transformers (HGTs) and node-level attention has shown success in detecting vulnera-
bilities at both coarse and fine-grained levels. Furthermore, a model called the serial-parallel convolutional
bidirectional gated recurrent network [15] was developed to preserve the spatial and temporal structure of
smart contracts while extracting features from the input sequence to detect vulnerabilities such as reentrancy,
timestamp dependency, and infinite loops.

Despite the growing attention to smart contract security, research on vulnerability identification, anal-
ysis, and mitigation remains fragmented. Many studies focus on isolated aspects of smart contract security,
leaving gaps in understanding how the different elements interact. Additionally, there is a lack of comprehen-
sive domain-based classification and a structured approach to categorizing evolving threats. This fragmented
understanding hampers the ability of researchers, developers, and policymakers to effectively communicate,
analyze, and address the multifaceted security challenges in the blockchain ecosystem.

This systematic review addresses these gaps by thoroughly examining existing literature and cate-
gorizing smart contract vulnerabilities into code-level, environment-dependent, and user-related domains. By
organizing smart contract threats into coherent categories and analyzing the associated attack vectors and de-
tection methods, the review offers valuable insights for researchers, developers, and the broader blockchain
community. It offers a comprehensive framework for understanding smart contract threats and stakeholder
roles, enabling the development of effective security strategies, informing regulations and standards that pro-
mote secure development practices and promoting trust in blockchain technology. It also serves as a foundation
for further research into specific smart contract vulnerabilities and corresponding mitigation strategies.
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2. METHOD
This study utilized a systematic review (SR) methodology to thoroughly examine the current threat

landscape of smart contracts. The review was conducted using the preferred reporting items for systematic
reviews and meta-analysis (PRISMA) guidelines [16], ensuring a transparent and replicable process. These
guidelines provide a structured framework that helps maintain consistency, transparency, and replicability in
conducting and reporting systematic reviews. By adhering to PRISMA, we focused on planning, executing,
and presenting systematic reviews with enhanced quality, reliability, and comparability. The systematic review
process in this study involved five key stages: planning, searching, filtering, selection, and eligibility assess-
ment. This approach is based on empirical data and theoretical analysis, which guarantees the quality and
comprehensiveness of the research.

2.1. Planning the review
This systematic review follows a structured methodology that thoroughly evaluates the existing re-

search on the topic. The process begins by identifying the need for the review and formulating research ques-
tions, which serve as guiding criteria for selecting and assessing all reference articles included in the review.
This study used four specific research questions to direct the systematic review process. A detailed description
of these questions is provided in Table 1.

Table 1. Research questions and objectives
Research questions Objectives

RQ1: What are the most common code-level
vulnerabilities found in smart contracts?

To identify the primary code-level vulnerabilities in smart contracts
offering a detailed analysis of their impact.

RQ2: What environment-dependent vulnerabilities
can impact the security of smart contracts?

To identify environment-dependent vulnerabilities in smart contracts
and assess their impact.

RQ3: What user-related vulnerabilities are linked
to smart contracts?

To explore user-related threats in smart contracts, emphasizing how user interactions
and behaviors can contribute to security breaches.

RQ4: What are the most effective techniques
for detecting vulnerabilities in smart contracts?

To examine and assess the effectiveness of various techniques and
approaches for detecting vulnerabilities in smart contracts, including their
strengths and limitations.

2.2. Database and search strategy
We thoroughly searched several electronic scholarly databases, including IEEE Xplore, Science Di-

rect, MDPI, Springer Link, ACM Digital Library, and Google Scholar. Additionally, we reviewed relevant
journals in the field, such as the Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
and the International Journal of Computers and Applications (IJCA). The search used a range of keywords,
including “smart contracts,” “vulnerabilities,” “attacks,” “blockchain,” “security,” “threats,” “defense mecha-
nisms,” “detection,” “mitigation strategies,” and “bugs,” as detailed in Figure 1. The search focused exclusively
on peer-reviewed journal articles, conference proceedings, and book chapters published in English from Jan-
uary 2016 to June 2024. This process yielded a total of 342 articles, with contributions from IEEE Xplore (79),
Science Direct (42), ACM Digital Library (67), Springer Link (31), MDPI (68), Google Scholar (50), IJEECS
(3), and IJCA (2).

Figure 1. Search strategy terms

2.3. Inclusion and exclusion criteria
We implemented a set of inclusion (IC) and exclusion (EC) criteria, outlined in Table 2, to ensure the

relevance and quality of the selected studies. Articles that did not meet these criteria were excluded from the
analysis as illustrated in Figure 2.
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Table 2. Inclusion and exclusion criteria
Inclusion criteria Exclusion criteria

Articles published from 2016 to 2024. Duplicate literature.
Studies that satisfy at least one of the specified search criteria. Studies that are not relevant to the topic.
Articles published in scholarly journals, conference
proceedings, or academic periodicals.

Non-peer-reviewed articles, including blog posts and
opinion pieces.

Studies offering empirical data or theoretical analysis. Research papers not written in English.

Figure 2. PRISMA flow diagram

2.4. Paper selection
The selection process involved three main stages: i) Removing duplicate articles and performing an

initial screening of titles and abstracts to eliminate studies that did not meet the specified criteria and keywords.
ii) Conducting a full-text review and thorough examination of the papers for final selection. iii) Assessing
the quality of the remaining papers and discard those that did not meet the inclusion criteria. The initial search
produced 342 articles. After eliminating duplicates and reviewing the titles and abstracts, 127 articles remained
for further evaluation. An additional 49 articles were excluded due to insufficient information, resulting in 78
articles for the systematic review.

2.5. Eligibility
The selection results showed that 264 articles did not meet the inclusion criteria, leaving 78 articles

for the systematic review. These selected studies were thoroughly examined, and data were extracted using a
standardized form to ensure consistency. The extracted data included: (i) bibliographic details (author, title,
publication year, journal/conference), (ii) types of vulnerabilities identified, (iii) associated attack vectors and
exploitation techniques, (iv) detection methods and experimental setups, (v) proposed solutions and mitigation
strategies, and (vi) key findings. This data was synthesized to create a comprehensive conceptual framework
that categorizes smart contract vulnerabilities into three main domains: code vulnerabilities, execution envi-
ronment threats, and user-related threats.
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3. RESULTS AND DISCUSSION
This section consolidates the findings from the systematic review (SR) of 78 selected articles, pro-

viding a detailed analysis to address the research questions. The SR identified key vulnerabilities in smart
contracts and their underlying causes, categorizing these vulnerabilities and related attacks into three domains:
code-level, environment-dependent, and user-related. Additionally, the review examined the techniques used
to detect these vulnerabilities.

The proposed classification of vulnerabilities into code-level, environment-dependent, and user-related
domains extends the existing smart contract weakness classification registry (SWC). While the SWC offers a
comprehensive taxonomy based on technical characteristics and root causes, our new classification scheme
introduces a fresh perspective, emphasizing the diverse nature of the challenges and the various stakeholders
involved, such as developers, platform providers, and users. This new approach provides valuable insights that
can guide the development of targeted mitigation strategies and best practices tailored to each vulnerability cat-
egory. It also aids in prioritizing and allocating resources more effectively, focusing on the most critical types
of vulnerabilities. This SR identified thirteen (13) of the most common smart contract vulnerabilities, which
are discussed in detail as we address the research questions. Table 3 lists these prominent vulnerabilities,
categorized into the three domains based on the selected papers.

Table 3. Taxonomy of smart contract vulnerabilities
Domain Vulnerability type Known attacks

Code-level vulnerabilities

Reentrancy [6], [8], [12], [15], [17]-[40] DAO attack [22], [37], [38]
Integer overflow/underflow [5], [15], [17]-[19],

[23], [31]-[34], [41]-[47]
BEC contract attack [45], [46]

Poolz finance hack [47]
Mishandled exception [8], [13], [17]-[18], [26],

[31]-[32], [36], [40]-[41], [47]
King of the ether throne attack [8]

Freezing ether [12], [15], [18], [31], [48]-[50]
2017 Parity multisig wallet attack

[12], [15], [49], [50]
Uninitialized storage variables [6], [23] Parity multi-signature wallets [6]

Inconsistent access control [40]-[41], [51]-[53] data leakage [52]
Self-destruct [52] -

Short address [13], [40], [51] -

Environment-dependent
vulnerabilities

Timestamp dependency [5], [8], [12],[15], [17],
[19], [26], [28], [31]-[32],[38], [47], [54], [55]

-

External oracles dependency [29], [55], [56], [57] DeFi ’Flash Loan’ attack [55]

User-related vulnerabilities
tx.origin [25], [26], [31], [32], [36], [52] Social engineering and phishing attacks [26]

Transaction ordering [5], [8], [17], [18], [23],
[29], [47], [49], [55], [58], [59]

MEV crisis [55]

Denial of service[13], [52], [60] King Of Ether Throne threat [60]

3.1. RQ1: What are the most common code-level vulnerabilities found in smart contracts?
The literature review on code-level vulnerabilities in smart contracts reveals several significant issues

resulting from programming errors, logical flaws, or improper use of language features. The review identified
reentrancy, integer overflow/underflow, and mishandled exceptions as the most common code-level vulnerabil-
ities. Developers can mitigate these inherent vulnerabilities by embracing secure coding practices, performing
thorough testing, and following established security practices and guidelines. Implementing these strategies
enhances smart contracts’ security and reliability, reducing the likelihood of successful attacks.

3.1.1. Reentrancy
In this review, studies [17]–[40] have identified reentrancy vulnerabilities in smart contracts. These

vulnerabilities arise when a malicious contract calls another contract that lacks sufficient security checks be-
fore the initial execution is finished. Similarly, researchers in [6], [8], [12], and [15] have also investigated
reentrancy issues. Such vulnerabilities allow attackers to manipulate the contract’s state. In these scenarios,
the malicious contract may repeatedly call the original contract, resulting in unintended modifications to its
state. By employing a recursive callback within the main function, an attacker can create an infinite loop to
drain funds. A notable example of this vulnerability is the 2016 DAO attack [22], [37], [38], which led to the
unauthorized withdrawal of over 50 million USD in Ether [19], [26], [39]. To mitigate this risk, it is advised
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to use ‘send()’ or ‘transfer()’ for transfer operations and to update the internal state before executing low-level
calls [32], [40].

3.1.2. Integer overflow/underflow
In smart contract code, integers are usually defined as fixed-size or non-signed integer types [5]

thereby restricting the range of values that integer variables can hold. Integer overflow occurs when an integer
variable exceeds its maximum allowable value, causing it to wrap around and restart from the minimum value.
Conversely, integer underflow happens when an integer variable falls below its minimum allowable value, lead-
ing it to wrap around and assume the maximum value of the integer’s data type [41]. These vulnerabilities can
result in incorrect transfers, loss of funds, and other security issues.

The review identified from studies [5], [15], [17]-[19], [23], [31]-[34], [41]-[47] that arithmetic op-
erations producing unexpected values due to exceeding or falling below the defined integer range can lead to
integer overflow/underflow vulnerabilities. A notable example is the Beauty Chain (BEC) contract attack [45],
[46] in April 2018, where an attacker exploited an integer overflow vulnerability to duplicate tokens endlessly,
leading to the instantaneous loss of over 900 million USD [17]. Additionally, Poolz Finance suffered a signifi-
cant arithmetic overflow hack due to a flaw in its pool creation method, involving manual summation of token
counts, resulting in a 6,650,000 USD loss [47]. Without a mechanism to detect integer overflow and under-
flow, attackers can potentially gain more tokens than they are entitled to. To address these risks, researchers
recommend using safe math libraries or built-in functions [31], [32] which are designed to detect and man-
age overflow or underflow conditions and provide mechanisms to reverse transactions if such conditions are
detected.

3.1.3. Mishandled exceptions
Studies [8], [13], [17], [18], [40], [41], [47] have identified mishandled exception vulnerabilities in

smart contracts. These vulnerabilities occur when the contract fails to properly handle exceptions or errors
during execution or from external function calls, potentially leading to unauthorized access to funds or other
resources. Mishandled errors are also identified as unchecked calls in literature [26], [31], [32], [36]. Smart
contracts can interact with one another through low-level functions such as delegatecall, send and call [17],
which do not automatically trigger exceptions when errors occur. Instead, these functions return a boolean
value indicating the success of the call. If the return values of these low-level calls are not adequately verified,
it can lead to ”fail-open” scenarios and other unintended consequences [13], [41]. Contracts with functions
like send, call, callcode, and delegatecall are particularly vulnerable to unchecked low-level call issues [26].
Notable examples of attacks exploiting mishandled exception vulnerabilities include the Parity multi-signature
wallet incident on Ethereum, which resulted in the loss of over 31,000,000 USD worth of Ether [40], and the
King Of The Ether Throne attack [8]. To mitigate these vulnerabilities, it is recommended to use higher-level
functions like transfer and send, which automatically revert on failure, rather than low-level functions like
call and delegatecall. Additionally, contracts should verify the return values of instructions to ensure proper
execution [17].

3.1.4. Freezing Ether
The freezing Ether vulnerability occurs when Ether becomes locked and inaccessible. Studies [12],

[15], [18], [31], [49], [50] have identified that this issue arises because smart contract developers often fail to
properly account for the Ether transfer function when designing their contracts. They frequently focus solely on
the receive function, which allows the contract to accept ether deposits, without ensuring that the contract can
also transfer it out. As a result, Ether received by the contract can become frozen and unusable. This issue is
particularly problematic for contracts that depend on external contracts (via delegatecall) for Ether transfers. If
these external contracts perform a suicide or selfdestruct operation, the calling contract loses its ability to send
Ether, leading to the freezing of all its Ether. A notable example of this vulnerability is the 2017 Parity multisig
wallet incident, where the self-destruction of the Parity wallet library contract resulted in over 280 million USD
worth of Ether being frozen and inaccessible [12], [15], [49], [50]. This vulnerability is specific to Ethereum-
based smart contracts. To mitigate this risk, it is advised that contracts designed to receive Ether should
include mechanisms for Ether withdrawal or transfer, using functions such as transfer, send, or call.value()
operations [31].

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 2, February 2025: 1209–1224



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1215

3.1.5. Uninitialized storage variables
Studies [6], [23] have highlighted that vulnerabilities related to uninitialized storage variables arise

when storage pointers are left uninitialized, resulting in unintended overwriting of storage variables. A notable
example is the Parity multi-signature wallet attack [6] in July 2017, which exploited a vulnerability associated
with uninitialized function access control in the smart contract library used by Parity multi-signature wallets.
This vulnerability allowed attackers to gain control of the wallet and steal over USD 150 million worth of
Ether. To mitigate such risks, it is essential to explicitly set default values for variables. This practice ensures
that variables have well-defined states before interacting with other variables, thereby preventing unexpected
behaviors.

3.1.6. Inconsistent access control
This issue often arises from the oversight or inexperience of contract developers in creating and imple-

menting access control mechanisms [41]. Improperly configured visibility settings in smart contracts can give
attackers easy direct access to a contract’s private values or internal logic [51]. If sensitive data or critical func-
tions are not appropriately marked as private or internal, they become vulnerable to exploitation by malicious
actors. Attackers might be able to directly interact with these exposed elements, allowing them to read private
data or bypass intended access controls. This can lead to poor permission management, permitting malicious
users to access or change sensitive information and functions. Such access control issues pose significant se-
curity risks, including loss of funds, contract tampering, and data leakage [52]. To prevent inconsistent access
control vulnerabilities, developers should clearly specify the visibility of all contract functions [40]. Use the
‘private’ keyword for internal logic and data that should remain inaccessible outside the contract, ‘internal’ for
functions and data that should only be accessible within the contract or its derived contracts and implement
access control modifiers such as ‘onlyOwner’ or custom access control checks to restrict access to sensitive
functions.

3.1.7. Self-destruct
The self-destruct vulnerability in smart contracts occurs when a contract includes a function that al-

lows it to be terminated. As noted by Liao et al. [52], if a contract has a selfdestruct function, an attacker who
gains control of the contract could call this function, leading to the contract’s unexpected termination. This can
result in the loss of funds or disruption of the contract’s intended operations. Often, contracts include critical
logic or perform calculations based on their balance within the fallback function. However, this logic can be
bypassed using the self-destruct function, which lets a user specify a beneficiary for any remaining Ether. Con-
sequently, a vulnerable contract can be exploited to transfer all funds to the attacker’s account while shutting
down the contract’s operations.

3.1.8. Short address
The short address vulnerability occurs when a contract receives fewer bytes of data than expected.

This issue arises because the Ethereum virtual machine (EVM) incorrectly accepts arguments with insufficient
padding [51]. When this happens, the EVM automatically fills the missing bytes with zeros, starting from the
highest byte of the subsequent parameter [13]. Since the deployed smart contract cannot prevent this automatic
padding, it may interpret these zeros as valid input data. This vulnerability results from the EVM’s failure
to validate address lengths. To mitigate this issue, smart contract developers should implement checks within
their contract code to verify the length of transaction input data [40].

3.2. RQ2: What environment-dependent vulnerabilities can impact the security of smart contracts?
Smart contracts as essential elements of blockchain-based systems, are inherently influenced by the

complexities of the blockchain environment. Therefore, environment-dependent vulnerabilities stem from the
interplay between smart contracts and the broader blockchain ecosystem and the distinctive features of the
underlying distributed ledger technology [53], [54]. Addressing these environment-dependent vulnerabilities
requires a thorough understanding of blockchain architecture, smart contract integration, and the development
of robust mechanisms to manage external dependencies effectively, thereby improving the security and relia-
bility of smart contract-based applications.

3.2.1. Timestamp dependency
Several studies [5], [8], [12], [15], [17], [19], [26], [28], [31], [32], [38], [47], [55] have highlighted

vulnerabilities related to smart contracts that depend on block timestamps for entropy or for executing critical
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operations. These vulnerabilities arise when smart contracts use precise block timestamps to make significant
control flow decisions [5]. This dependence on timestamps renders contracts vulnerable to manipulation by
attackers. In a decentralized blockchain network, miners can adjust block timestamps within a window of less
than 900 seconds [28], [32], potentially exploiting arbitrage opportunities or gaining unfair advantages [38].
This issue also contributed to the miner extractable value (MEV) crisis [55]. To address this vulnerability, it
is advisable to use block numbers instead of timestamps, as block numbers are resistant to manipulation by
malicious miners [31].

3.2.2. External oracles dependency
Research, including studies [29], [55]-[57] have emphasized the risks associated with smart contracts

relying on third-party data sources and oracles. Smart contracts frequently rely on oracles to supply essential
external data, such as pricing information, meteorological data, or market trends, to execute blockchain trans-
actions. However, ensuring accurate, consistent, and reliable data is more complex than it might seem. The
design of the Oracle system and its integration with the smart contract can make it vulnerable to manipulation
by adversaries who can exploit the data source for malicious purposes. A notable example of this vulnerability
was the 2020 DeFi ’Flash Loan’ attack, which resulted in the irreversible loss of approximately USD 100 mil-
lion due to such exploits [55]. To mitigate this risk, researchers have suggested using time-weighted average
prices when consulting price oracles on the Ethereum platform [29].

3.3. RQ3: What user-related vulnerabilities are linked to smart contracts?
One category of vulnerabilities in smart contracts arises from interactions between users and the con-

tract itself. These user-related vulnerabilities often result from factors such as limited security awareness among
users, insufficient user authentication mechanisms, poor key management practices, and the exploitation of hu-
man error. In 2022, over 1.9 billion USD was estimated to be lost due to breaches exploiting weaknesses in
smart contract logic and user errors [47]. To address these vulnerabilities, a user-centric approach is essential
including effective user education, creating secure user interfaces, and implementing robust key management
practices.

3.3.1. Transaction ordering
Studies [5], [8], [17], [18], [23], [29], [47], [49], [55], [58], [59] have reported vulnerabilities related

to transaction ordering, which depend on the sequence in which transactions are executed. In a blockchain
network, the order of transaction execution is determined by miners [5]. Some contracts require transactions to
follow a specific sequence. When multiple transactions are submitted simultaneously, the miner decides their
execution order [49]. The user whose transaction is processed first may receive a reward, so the miner’s chosen
transaction order influences the final state of the contract. Malicious miners could exploit this by prioritizing
their transactions or reordering the sequence [8], [17]. This issue contributed to the MEV crisis, where high gas
fees paid by bots exploiting these opportunities create substantial security risks at the consensus layer [55]. To
address this vulnerability, researchers suggest implementing a cryptographic commit-reveal scheme [59]. This
method involves obfuscating sensitive information within the transactions, such as gas prices or transaction
values. By concealing this information, it becomes more challenging for attackers to manipulate transaction
ordering and exploit the vulnerability.

3.3.2. Denial of service
DoS attacks pose a significant risk to the stability and reliability of smart contracts arising from various

causes. In a DoS attack, the attacker aims to inundate the smart contract with excessive requests or computa-
tionally demanding operations, effectively blocking the contract from serving legitimate users. This disruption
can impair the normal functioning of the smart contract, potentially causing its failure [13]. For example, an
attacker might cause certain operations to fail intentionally to execute a DoS attack [52]. If a function recur-
sively transfers Ethers to a list of users and one of these transactions fails, the entire operation may be reverted.
An attacker can exploit this by deliberately causing the failure to execute a denial-of-service attack. The King
Of Ether Throne incident [60] illustrates such an exploitation of this vulnerability.

3.3.3. tx.origin
Vulnerabilities related to tx.origin have been highlighted in studies [25], [26], [31], [32], [36], [52].

The tx.origin variable in smart contracts represents the address of the original transaction initiator and is some-
times used to verify the legitimacy of a function caller for critical operations. However, this method is prob-
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lematic because tx.origin reflects the original transaction creator’s address even if another smart contract calls
the function. This can mislead the contract into believing the call comes from a legitimate user, which may
be from a malicious contract. Consequently, attackers can exploit this flaw to trick users into performing
actions on compromised contracts [32], making them vulnerable to social engineering attacks [26]. For ex-
ample, adversaries can employ phishing techniques using a malicious intermediary contract to deceive vic-
tims into executing critical functions. To address this vulnerability, ‘tx.origin’ should not be used for access
control and authorization. Instead, use ‘msg.sender’ which accurately identifies the immediate caller of the
function [31], [36].

3.4. RQ4: What are the most effective techniques for detecting vulnerabilities in smart contracts?
The security of smart contracts has emerged as a significant concern for developers and researcher,

prompting the investigation of various techniques to identify and detect vulnerabilities within these systems.
To address RQ4, a comprehensive review of empirical studies on smart contract vulnerability detection was
performed, analyzing 78 selected articles. The detection techniques identified were grouped as traditional
methods, machine learning-based methods and hybrid methods based on the technologies used. Table 4 outlines
the different detection techniques discussed in the literature.

3.4.1. Traditional methods
Traditional vulnerability detection techniques include static analysis, dynamic analysis, taint analysis,

fuzz testing, and formal verification. Our review identified several static analysis tools used for detecting smart
contract vulnerabilities such as Oyente [8], Silther [10], SmartCheck [31], Vandal [36], MSmart [42], Madmax
[44], MAIAN [61], Ethertrust [62], SmartScan [63], Ethainter [64], and AChecker [65]. Static symbolic execu-
tion tool identify potential bugs without executing the code. The first tool to use symbolic execution for smart
contract vulnerability detection is Oyente [8]. Other tools like Mythril [9], DefectChecker [25], Manticore [66]
and GasChecker [67] also utilize symbolic execution to detect contract vulnerabilities. Symbolic execution in-
volves replacing program variables with symbols and performing symbolic computations during code traversal,
generating path conditions for each execution path, which are crucial for verifying path feasibility and detecting
potential issues [68]. Osiris [6] combines symbolic execution with taint analysis to identify integer bugs, while
Sereum [24] uses taint analysis to uncover vulnerabilities.

Fuzzing techniques are employed by tools such as sFuzz [7], ContractFuzzer [12], ReGuard [37],
CONFUZZIUS [69], and HFContractFuzzer [70]. These tools detect anomalies by inputting large volumes
of randomly generated data into smart contracts and analyzing runtime behaviors to identify vulnerabilities.
ContractFuzzer [12] was the first tool to apply fuzzing techniques to smart contracts, examining the ABI spec-
ification to generate inputs and identify defects. The only formal verification tool identified in our review
is Securify [11]. Formal verification uses logical models and rigorous mathematical reasoning to verify the
correctness and security of smart contracts [32].

3.4.2. Machine learning-based methods
Our SR examined various studies that employed traditional machine learning and advanced deep learn-

ing techniques for detecting smart contract vulnerabilities. These methods have demonstrated effectiveness in
analyzing large datasets and uncovering patterns that traditional techniques may overlook. Several studies have
successfully applied machine learning and deep learning techniques to identify smart contract vulnerabilities
such as reentrancy, timestamp dependency, integer overflow/underflow and transaction ordering.

For example, studies [13], [17], [27], [39], [71], [72] have employed machine learning algorithms
to detect vulnerabilities. Specifically, study [13] applied KNN to identify smart contract bugs. In study [17],
researchers utilized five machine learning algorithms: eXtreme gradient boosting (XGBoost), KNN, random
forest (RF), support vector machine (SVM), and adaptive boosting (AdaBoost) to detect smart contract vul-
nerabilities. Study [27] developed a RF classifier to monitor blockchain transaction balances and metadata for
vulnerability identification. Study [39] used a neural network-based static analysis tool for detection of smart
contract vulnerabilities. Study [71] utilized four machine learning classifiers: RF, SVM, decision tree (DT),
and neural network (NN) to identify vulnerabilities in smart contracts, while study [72] employed unsupervised
learning algorithms such as K-means, agglomerative clustering, HDBSCAN, Spectral, and OneClass SVM to
analyze transaction behavior for vulnerability detection. Additionally, our review highlighted various studies
that focused on deep learning techniques. For instance, study [4] introduced SmartEmbed for detecting con-
tract code clones and bugs, while study [26] developed CodeNet, a CNN architecture for flaw detection in
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smart contracts. Study [38] proposed the use of graph neural networks (GNN) for vulnerability identification,
while study [49] presented ESCORT, a deep neural network framework for detecting flaws in smart contracts.
Furthermore, studies [73] and [74] introduced long short-term memory (LSTM) networks for transaction-based
vulnerability classification and detection. Study [75] proposed the use of multiple-objective detection neural
network (MODNN) for smart contract vulnerability detection.

3.4.3. Hybrid methods
Our review revealed that hybrid methods, which integrate traditional techniques with machine learning

or combine multiple machine learning and deep learning approaches, are designed to leverage the strengths of
each method to enhance vulnerability detection. Various studies have implemented these hybrid models for
detecting vulnerabilities in smart contracts. For instance, study [5] applied BiLSTM and other deep learning
techniques for smart contract vulnerability detection, while study [14] incorporated multiple methods for smart
contract vulnerability detection. Study [15] introduced the SPCBIG-EC for this purpose. Similarly, study [19]
combined CNN with a self-attention mechanism. Study [28] explored the use of GNNs in conjunction with
expert knowledge, and study [29] proposed GraphCodeBERT for smart contract bug detection. Study [32]
employed a bidirectional gated recurrent unit network (BiGRU) enhanced by an attention mechanism for smart
contract vulnerability detection. Study [41] also utilized BiLSTM and other deep learning techniques, while
study [48] proposed a method that merges deep learning with multimodal decision fusion for detecting contract
vulnerabilities. Further noteworthy approaches include study [51], which integrated machine learning with
fuzz testing, and study [76], which utilized a combination of recurrent neural networks (RNN) and CNN for
vulnerability detection. Study [77] introduced SCVDIE, a tool that employs neural networks and ensemble
learning to identify vulnerabilities in smart contracts.

Additionally, study [78] merged Siamese networks with a deep learning model, and study [79] devel-
oped a tool using neural networks and slice matrices for detecting smart contract vulnerabilities. Finally, study
[80] presented a hybrid model that combines various word embeddings (Word2Vec, FastText) with deep learn-
ing methods (LSTM, GRU, BiLSTM, CNN, BiGRU), while study [81] developed a reentrancy vulnerability
detection model using BiGRU and SVM.

3.5. Evaluation of detection techniques
Our systematic review assessed the strengths and limitations of various smart contract vulnerability

detection techniques. Although traditional methods can be effective, they have notable drawbacks. For exam-
ple, symbolic execution can achieve high accuracy by generating control flow graphs (CFGs) from the target
code [39]. However, this process is computationally intensive and time-consuming as it involves exploring all
possible states the code may transition through [17], [26], [49], [73]. Additionally, both symbolic execution
and fuzzing often incur significant execution overhead due to the need to run contracts symbolically. Formal
verification methods face limitations due to the lack of specifications for built-in functions [22].

Static analysis techniques have improved in detecting vulnerabilities in smart contracts, yet they often
exhibit relatively low accuracy rates [28]. These methods generally rely on expert-defined patterns which can
result in high false-positive and low false-negative rates due to potential errors in pattern formulation [5], [32],
[38]. As the number of smart contracts grows rapidly, it becomes increasingly impractical for experts to review
all contracts and create accurate patterns [28].

Machine learning-based techniques have overcome some challenges of traditional methods by learning
features directly from code, enabling versatile and efficient analysis. However, these methods mostly perform
binary classification, categorizing contracts as either vulnerable or safe. They often struggle to identify multiple
types of vulnerabilities, which limit their adaptability [49] . While deep learning methods are efficient and
accurate with rapid detection rates [26], they are constrained by their dependence on a single representation
of code. This approach can overlook important semantic and syntactic features, as it often treats code as text
sequences and neglects critical variables in the data flow [28]. Additionally, this single-network architecture
may lead to incomplete extraction of vital information. Furthermore, deep learning models are often viewed as
”black boxes,” which makes their predictions harder to interpret [73].

Hybrid methods present significant advantages by combining the strengths of various techniques,
leading to improved performance in detecting smart contract vulnerabilities compared to the traditional or
single deep learning models [15]. By integrating multiple algorithms, hybrid approaches effectively address
the weaknesses of individual methods, resulting in more accurate and robust detection. However, they require
considerable data, computational power, and resources for practical refinement and optimization.
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Overall, our findings indicate that while traditional, machine learning-based, and deep learning meth-
ods each possess unique strengths and limitations, hybrid methods offer a promising path for more compre-
hensive and effective vulnerability detection in smart contracts. By combining multiple techniques, we can
enhance accuracy and robustness, which is essential for addressing the increasing complexity and volume of
smart contracts.

Table 4. Smart contract vulnerability detection approaches
Detection technique Pros Cons Discussed tools

Traditional methods
Detect few known
vulnerabilities.

Static analysis relies on
expert-defined patterns
which are prone to errors,
low accuracy rates, poor
scalability, high false positive,
low false negative rates and
low level of automation.

Static analysis: Oyente [8],
Silther [10], SmartCheck [31]
Vandal [36], MSmart [42]
Madmax [44], MAIAN [61],
Ethertrust [62] SmartScan [63],
Ethainter [64], Acheker [65]

Symbolic execution and
fuzzing are typically time
consuming and introduces
execution overhead due to
the necessity of running
smart contracts symbolically.

Dynamic analysis: Mythril [9],
DefectChecker [25] Manticore [66],
GasChecker [67]

Formal verification methods
are constrained by the lack of
specifications for built-in
functions.

Taint analysis: Osiris [6], Sereum [24]
Formal verification: Securify [11]
Fuzzing techniques: sFuzz [7],
ContractFuzzer [12] ReGuard [37],
CONFUZZIUS [69]
HFContractFuzzer [70]

ML/DL methods

Detects more
vulnerabilities,
versatile, time
efficient analysis,
scalable, high accuracy.

Does not consider the
semantic information
and context of the
source code and
poor interpretability.

Machine learning: Xu et al. [13],
ContractWard [17] Dynamit [27],
Eth2Vec [39] Momeni et al. [71],
Agarwal et al. [72]
Deep learning: SmartEmbed [4],
CodeNet [26] DR-GCN [38],
ESCORT [49] Hu et al. [73],
AFS [74], MODNN [75]

Hybrid methods
Higher accuracy,
extensible.

Requires substantial data,
computational power, and
resources for practical
refinement and optimization

Shenyi [5], MANDO-HGT [14]
SPCBIG-EC [15], Sun and Gu [19]
Liu et al. [28], Peculiar [29], HAM [32]
Wang et al. [41], Russell et al. [76]
SCVDIE [77], SCVSN [78] BiGAS [81]

3.6. Interpretation of key findings
The review reveals the significant impact of code vulnerabilities on the security of smart contracts.

Issues such as reentrancy bugs, integer overflow/underflow and other coding flaws were found to be common
across various blockchain platforms, enabling attackers to exploit these vulnerabilities and potentially causing
severe financial and reputational harm. The analysis also highlights the importance of considering the exe-
cution environment of smart contracts, noting that threats from the blockchain infrastructure, external system
integration, and user-related factors can heavily influence overall security.

While previous research has focused on isolated aspects of smart contract threats or individual security
challenges, this review in contrast, provides a more integrated and holistic framework that captures the com-
plexity of security issues across multiple domains. For instance, study [82] examined vulnerabilities in smart
contracts without proposing specific countermeasures. Study [83] focused on techniques and tools for testing
smart contract vulnerabilities without exploring the vulnerabilities themselves. Researchers in [84] primarily
addressed tools for analyzing vulnerabilities in Ethereum smart contracts. Study [85] conducted a survey on
attacks and defenses on smart contracts but did not consider vulnerability detection tools. Additionally, study
[86] reviewed types of smart contract vulnerabilities, attacks, defense mechanisms and only on a single de-
tection tool. Furthermore, Durieux et al. [87] centered their analysis on evaluating and comparing automated
vulnerability assessment tools.
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The proposed classification scheme in this review enhances and refines existing taxonomies, offering
a more robust framework for researchers, developers, and policymakers to better identify, communicate, and
address emerging security challenges.

A major strength of this study is its thorough and systematic approach, which identified three primary
domains of smart contract vulnerabilities. The new taxonomy presented offers a clear and structured method for
understanding the varied nature of these challenges and the roles of different stakeholders, including developers,
platform providers, and users. This new perspective provides valuable insights that can guide the development
of targeted mitigation strategies and best practices tailored to specific vulnerability categories, enabling more
effective prioritization and resource allocation.

However, the review has some limitations. Most of the studies examined were centered on the
Ethereum blockchain, which, while prominent, may not fully represent the security challenges faced by other
blockchain platforms. Additionally, while the review addresses a broad range of security threats, it does not
sufficiently cover specific mitigation strategies or their effectiveness.

3.7. Implications and future research directions

The findings from this systematic review hold significant implications for developers, researchers,
and policymakers working in the blockchain and smart contract fields. The proposed classification taxonomy
provides a unified framework for communicating, analyzing and addressing the complex security challenges
within the blockchain ecosystem.

A major implication is the need for more comprehensive and integrated smart contract security frame-
works capable of tackling evolving threats across various domains. This includes developing robust and scal-
able detection methods suited to the complexity of real-world smart contracts. Furthermore, the review under-
scores the need to address user-related threats and human factors that impact blockchain application security,
an area relatively underexplored in current literature.

Future research should expand on this study by incorporating a wider range of blockchain platforms,
exploring specific mitigation strategies and best practices for identified smart contract vulnerabilities, and in-
vestigating emerging security challenges as blockchain technology advances. Collaborative efforts among
academia, industry, and regulatory bodies will be essential for advancing the development of secure and reli-
able blockchain ecosystems, thereby realizing the full potential of this transformative technology.

4. CONCLUSION
The systematic review conducted, presents a comprehensive analysis of the ever-evolving threat land-

scape of smart contracts, drawing from 78 carefully selected articles to provide new insights into the nature
and origins of smart contract vulnerabilities. Through the categorization of vulnerabilities into code-level,
environment-dependent, and user-related domains, the SWC has been expanded, offering a more nuanced per-
spective that accurately represents the diverse challenges faced by developers, platform providers, and users.
This review also includes an extensive evaluation of empirical studies on smart contract vulnerability detection
techniques, which have been classified into three main groups: traditional, machine learning-based, and hybrid.
Such classification, centered on the technologies employed, serves to underscore the strengths and limitations
of each approach, thereby providing a roadmap for advancing detection capabilities in the future.

The proposed classification scheme not only enhances the understanding of smart contract vulnera-
bilities but also serves as a foundation for developing more effective mitigation strategies. By focusing on
specific domains and the stakeholders involved, it enables better resource prioritization and more targeted ef-
forts to secure smart contracts. The identification of thirteen common vulnerabilities, as detailed in this review,
underscores the critical areas that demand attention to enhance smart contract security. When combined with
the insights gained from the analysis of detection techniques, this review offers valuable guidance for future
research and development activities, serving to inform the implementation of best practices, the refinement of
detection methods, and the establishment of policies aimed at strengthening the security of blockchain ecosys-
tems. As smart contract technology continues to advance, maintaining vigilance and proactivity in addressing
emerging vulnerabilities is essential to ensure the integrity and reliability of decentralized applications.
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