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 Defect detection plays a pivotal part in the manufacturing process of 
semiconductors. Defects can be rooted in the product on its own, as well as 

the tools used to process and make the product, particularly the equipment 
and machinery used. Defect detection is crucial in semiconductor 
manufacturing, where even minor flaws can compromise product 
performance. Defect detection in the backend process of semiconductor 
manufacturing, specifically in die attach and die bonding, is critical for 
ensuring product quality and reliability. Die attach involves securing 
semiconductor chips onto substrates, while die bonding involves connecting 
wires to the chip. Detecting defects during these processes is vital to prevent 
issues such as misalignment, inadequate bonding, or contamination, which 

can lead to malfunctioning chips or devices. Various techniques such as 
visual inspection, automated optical inspection (AOI), and X-ray imaging 
are utilized to identify defects like cracks, voids, or irregularities in bond 
formation. By employing rigorous defect detection measures, manufacturers 
can uphold stringent quality standards and produce reliable semiconductor 
devices for various applications. 
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1. INTRODUCTION 

Semiconductor manufacturing involves the intricate process of fabricating electronic components 

such as integrated circuits on semiconductor materials, employing precise techniques to etch, deposit, and 

pattern materials at the nanoscale level. However, despite the many advantages of integrated circuits, defects 

can occur during the manufacturing process, and these defects can have various impacts on the performance 

and reliability of the semiconductor packages. Process variations can result in performance variations, 
affecting factors such as speed, power consumption, and reliability, leading to inconsistencies in transistor 

sizes, dopant concentrations, and other parameters [1], [2]. Particle contamination meanwhile, may cause 

short circuits, increased leakage current, or other electrical anomalies, potentially leading to the package 

failure. Another known issue is defective interconnections, particularly in the metal interconnect layers, such 

as open circuits or shorts, can disrupt the flow of signals between components causing reduced functionality 
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or complete failure of the integrated circuit. Stress-induced defects on the other hand may lead to the 

development of cracks, voids, or other structural issues, impacting the overall reliability and lifespan of the 

IC [3]. Techniques such as design for manufacturing (DFM), thorough testing at various stages, and 

implementing redundancy in critical components are employed to improve yield and ensure the reliability of 

integrated circuits. 

When it comes to testing and examining integrated circuits (ICs), both destructive and non-
destructive inspection methods are employed. The choice between these methods depends on factors such as 

the stage of production, the desired level of detail, and the impact on the integrity of the IC. This survey 

focuses on the non-destructive testing (NDT) method that is used to examine the reliability as well as to 

analyze any failure mechanisms within the device [4]. Similarly, examining equipment defects is a crucial 

aspect of ensuring the reliability, safety, and performance of machinery and devices [5]. Die attachment and 

die bonding are critical steps in manufacturing the ICs as they define the connection to the package and 

provide electrical interconnection for power and signal transmission quality, alongside thermal management 

via efficient heat dissipation from proper bonding applications [6]–[8]. The objective of this paper is to 

provide a survey and/or review of research papers that have addressed the faults and defects of the die 

attachment and die bonding detection methods used, for both devices and equipment.  

 

 

2. OVERVIEW OF SEMICONDUCTOR MANUFACTURING PROCESS 

2.1.  Wafer fabrication steps in the front-end manufacturing process 
Semiconductor wafers developed from silicon are typically comprise front-end and back-end 

manufacturing processes. The front-end process begins with the production of silicon wafers. Wafer 

fabrication involves a sequence of steps: starting with a polished wafer, layers are deposited using techniques 

like chemical or physical vapor deposition (CVD/PVD), followed by photolithography to pattern the layers, 

etching to remove unwanted material, ion implantation to alter conductivity, diffusion to homogenize doping, 

chemical mechanical polishing to planarize surfaces, and finally testing to ensure functionality [9], [10]. 

These processes are repeated iteratively to build complex integrated circuits on silicon wafers. Figure 1 

depicts wafer fabrication steps in the front-end manufacturing process. 

 
 

 
 

Figure 1. Wafer fabrication steps in front-end manufacturing process 

 

 

2.2.  Back-end manufacturing process for semiconductor production 
In the back-end semiconductor manufacturing process, fabricated wafers undergo various critical 

steps. Initially, electrical testing identifies faulty dies, which are then marked to prevent wasted packaging. 

The wafer is mounted for mechanical support, then precisely diced into individual die units. Good dies are 
bonded to substrates, and microscopic wires connect them to electrical terminals. Plastic molding encases the 

components in epoxy resin for protection, followed by electrochemical plating for enhanced durability. Trim 

and form steps shape the leads, and final testing ensures functionality. Laser marking adds identification 

codes, and units are packed according to specifications for shipment. This comprehensive process ensures the 

production of reliable semiconductor devices for integration into electronic products [11]. Figure 2 illustrates 

the back-end manufacturing process for semiconductor production. Die bonding is a crucial step in 

establishing a reliable electrical connection between the semiconductor die and substrate. It begins with die 

preparation, where the die is tested, sorted, and equipped with bond pads, before the substrate is prepared, 

and adhesive may be dispensed onto it. The die pickup process utilizes specialized tools like Vespel collets to 

handle the semiconductor die, ensuring damage-free manipulation. Precision alignment systems align the 

die's bond pads with the substrate's contact points before placement, before the die is gently lowered onto the 
substrate. Once adhesive bonding is employed, curing processes via heat or UV light may follow to solidify 

the adhesive. Overall, die bonding ensures both electrical and mechanical integrity in semiconductor  

devices [12], [13]. The accuracy of this process are essential for the reliable and consistent performance of 

electronic devices. 
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Figure 2. Back-end manufacturing process for semiconductor production 
 

 

3. OVERVIEW OF DETECTION MODALITIES IN SEMICONDUCTOR MANUFACTURING 

PROCESS 

In semiconductor manufacturing, various methods or techniques are used for sensing and 

monitoring different aspects of the manufacturing process, which plays a crucial role in quality control, 

process optimization, and ensuring the reliability of semiconductor devices. These steps in return introduces 

production efficiency as well as production costs. Sensor modalities for metrology in semiconductor 

manufacturing is highly interdependent.  

Optical sensing in semiconductor manufacturing encompasses manual optical inspection and 

automated optical inspection (AOI). While manual inspection relies on human visual assessment using basic 

microscopes, AOI employs high-resolution imaging systems, advanced image processing software, and 

precision mechanical platforms for rapid, accurate defect detection. Manual inspection is limited by low 

optical resolution, slow speeds, subjective biases, and human fatigue, making it less effective than AOI [14]. 
AOI systems integrate specialized optics and lighting techniques to capture microscopic details and utilize 

data analytics for process improvement, thus minimizing yield loss and optimizing manufacturing efficiency.  

X-ray metrology delivers critical dimensional, structural and compositional information during both 

front-end lithography and back-end assembly stages that remains inaccessible through conventional surface-

limited optical and electron microscopy for process monitoring, defect detection, quality control, specifically 

probing tiny transistor gate geometries, measuring metal fill densities, inspecting die attachments, 

characterizing diffusion depths, verifying IC interconnects, auditing flip chip bonds, and examining packaged 

chips [15], [16]. Acoustical techniques are integral to semiconductor fabrication, offering non-invasive 

subsurface inspection critical for quality control and defect reduction. Scanning acoustic microscopy (SAM) 

employs ultrasonic waves to map buried interfaces, voids, and defects with micron-level resolution, rivaling 

electron microscopy allowing precise imaging of material structures and defects in chips/packages, film 
thickness measurement, delamination sensing, and transistor element imaging [17]. Surface acoustic wave 

(SAW) systems use high-frequency Rayleigh waves to monitor device surfaces, providing in-situ metrology 

for process and reliability monitoring [18]. Both techniques complement traditional optical and electron 

microscopy, offering valuable insights into semiconductor manufacturing processes. 

Infrared thermography is widely used in semiconductor fabrication facilities for visualizing and 

quantifying thermal phenomena to optimize energy usage, prevent chip damage, and enhance processing 

efficiency with real-time thermal imaging and analysis. This enables precise temperature measurement across 

wafers, detection of hot spots, characterization of heating and cooling processes, and identification of defects 

such as voids or delamination, ensuring thermal conduction and device reliability.  
 

 

4. DETECTION METHODS FOR DIE BONDING & DIE ATTACH ON PACKAGES AND 

EQUIPMENT 

Die bonding and die attach processes within semiconductor manufacturing are pivotal stages 

requiring meticulous quality control to uphold the reliability and performance of electronic devices. These 

processes are susceptible to various defects that can manifest in both the semiconductor packages/products 

and the equipment utilized in the manufacturing pipeline. This section delves into the common defects 

associated with semiconductor packages/products and equipment, shedding light on advanced detection 

methodologies. 
 

4.1.  Die attachment and die bonding package defects 

Among the common defects are incomplete solder joints and solder bridging. Detection methods for 

solder joint defects leverage high-resolution imaging coupled with image processing techniques, enabling the 

identification of incomplete joints. Deep learning methods, such as convolutional neural networks (CNNs), 

prove instrumental in classifying diverse solder defects. Detection involves the use of machine vision 

systems equipped with alignment algorithms and pattern recognition to detect and quantify skew and offset 
errors. 
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The presence of chips or cracks in the die represents another prevalent defect. Detection methods 

encompass imaging paired with CNNs or support vector machines (SVMs) for the classification of distinct 

chip and crack patterns [19]–[22]. Defects like air pockets or incomplete epoxy filling, inaccurate placement 

of the die on the substrate, variation in the thickness of the bond line and die fly-off or die detachment during 

the bonding process constitutes common defects. Optical inspection, image analysis, or spectroscopy are used 

to identify contaminants for foreign particles or dusts within the packages. Finally, overall package defects 
affecting reliability can be mitigated via accelerated testing, thermal cycling, and various NDT methods. 

 

4.2.  Die attachment and die bonding equipment component defects 

Die bonding tools are critical components in semiconductor manufacturing, but they can also be 

sources of defects if not properly maintained. Common issues include improperly calibrated bond heads, 

worn-out force sensors, contaminated microscopes, tilted workholders, clogged dispensers, and misaligned 

bond arm motions, amage or misalignment in pick-up tools, wear and chipping in bond tools/heads, 

misalignment and wear in workholders, and mechanical issues in bond arms. Calibration issues and lens 

damage in scopes and sensors are also prevalent defects. These problems can trigger equipment alarms and 

contribute to higher unscheduled downtime (UDT) and mean time between assists (MTBA). Environmental 

factors like temperature, humidity, and vibration, coupled with preventive maintenance lapses, can also lead 

to equipment issues over time, such as stage backlash and inconsistent vision and heating.  
Detection of defects in die bonding tools involves various methods, including machine vision, 

alignment algorithms, image processing, and wear monitoring using sensors. Detection methods range from 

regular calibration checks and visual inspections to advanced techniques like SVM, CNN, artificial neural 

networks (ANN), robust principal component analysis (RPCA), residual networks (ResNet), radial basis 

function (RBF), fuzzy c-means (FCM), generalized regression neural network (GRNN), self-organizing maps 

(SOM), linear discriminant analysis (LDA), learning vector quantization (LVQ), and you only look once 

(YOLO). Each method offers specific advantages, catering to the complexity and requirements of the 

detection task, ensuring the precision necessary for a robust semiconductor manufacturing process and 

mitigating bonded product defects, ensuring quality, yield, and long-term reliability. 

 

4.3.  Assessment of papers based on backend processes 
Table 1 (in appendix) presents an extensive overview of various detection methods utilized in the 

back-end manufacturing processes along with their performance metrics as reported in different articles. 

Delving into each entry, AOI has been utilized widely throughout several processes to continuously monitor 

and minimize package defects throughout the backend process [23]–[28]. Several research conducted 

recently focuses on map detection in Pre-assembly process and testing, reporting accuracy and precision for 

MLP and DNN, alongside broad learning system, achieving high DSPR comparison. The wafer mapping 

defects performance metrics are also compared against various models and feature extraction techniques. 

Haddad et al. [28] proposed method achieved high precision and recall values in AOI. 

In [29]–[31], acoustic sensing inspection are utilized, particularly in SAM, with 1D-CNN utilized 

for SAM image inspection, providing insights into porosity variation during bonding processes. SAM has 

also proven to effectively precise in defects detection, achieving an accuracy of 97.14% [23]. Comparatively, 
SAM is also proven to be effective compared to another radiology inspection in X-Ray and SEM for thermal 

joint detection [31], with a study of X/gamma-ray spectroscopy carried out by [32] for electrical 

characterization measurement, reporting detailed performance metrics for the spectrometer. Thermal-based 

inspection has also been carried out by [31], [33], whereby compared to [31], a study emphasis on the on-line 

thermal resistance during die-attach, highlighting the accuracy of SiC-TEG for evaluating thermal 

characteristics. CNN have also been used to predict the electro-thermal conductivity (ETC) of sintered Ag. 

Their model achieved high accuracy with an R2 value of 0.987 and a relative mean absolute error (RMAE) of 

3.12% [1]. Solder joint defect detection has been extensively studied in recent years in [21], [25], [26], [34]–

[38]. Various methods and modellings have been tested, with one focuses on chip scale packages (CSP) 

reliability, achieving validation metrics including RMSECV, MAECV, and R2 for ball/substrate and ball/test 

board solder joints. Solder joint defect detection has also been tested via Sequential NN, recurrent neural 

network (RNN), and long short-term memory (LSTM) for solder joint detection, reporting low error norms 
for different data pairs. ANN and RNN demonstrated stable optimization for the solder joint defect detection, 

with YOLOv4 for detecting solder defects in SMT circuit elements with high accuracy and speed. 

Alternatively, ConvNeXt-YOLOX for solder joint inspection, achieving the highest mAP among compared 

methods. Tai et al [38]. employed YOLOv2 & ResNet-50 for solder joint defect recognition, reporting high 

accuracy for different defect types. That said, YOLO are also utilized for solder defect detection in AOI, 

achieving fast processing time per PCB image. ViBe and +Elasticnet have also been used for solder joint 

inspection, highlighting significant improvements in error rates and accuracy. Solder joint inspection for AOI 

using various methods and reported different performance metrics for each method. 
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Wire bonding process can be further improved in manufacturing, by reducing its ball bonding and 

wire bonding defects. SVM, logistic regression (LR), and CNN models are proven by [22] to be effective for 

ball bonding inspection, achieving an 85% automated detection rate. DenseNet121, VGG19, ResNet50, 

MobileNetv2, EfficientNetB0 V1 & V2 employed for wire bond defect detection, achieving high accuracy 

across different models. A utilitarian method by [2] showcases CNN combined with computer-aided 

manufacturing (CAM), YOLOv3, and YOLOv3-dense for inspecting various processes like die attach, wire 

bond, molding, curing, punching, sorting, taping, and packing. The performance varied for different defect 
types, with mAP ranging from 61.59% to 95.28%. Wafer level package (WLP) reliability and solder ball 

reliability have also been tested via finite element method (FEM) and ANN. 

Die defects detection has been analyzed in several works [2], [3], [5], [9], [39]. Generative 

adversarial network (GAN), YOLOv3, and other models are employed for die defect detection, achieving 

significant improvements in accuracy with model combinations. Die defect detection using auto ML, 

meanwhile has achieved a recall rate of 42.6% with 90% accuracy. ResNet 101 & DLADC SEM, CNN and 

GAN for defect detection has proven to results in accuracy for different subsets and training data sizes. 

reporting high accuracy for both methods. Meanwhile, die defect classification the accuracy between 

handcrafted features and proposed RCNN model have also been carried out with comparative studies being 

made. By comparing the RNET, VoxNET, and PointNet for scanning and inspecting die attach glue bonding, 

reporting RNET outperforming others with a classification accuracy of 91.82%. Die attach glue volume 

regression and dispensing defect identification via R2esNet, have also showcases desirable performance 
metrics for various models based on scanning time and inference time study [30]. Surface treatment and final 

test processes meanwhile uses several methods in optimizing the process defects, with surface treatment 

process employing various CNN methods for performance metrics comparative approach [40], [41]. CNN and 

DLADC methods for surface treatment reporting high accuracy. Gaussian mixture models, one hot encoder, 

label encoder, F1-macro test are all explored by [42] yield classification for final test, employing various 

models and preprocessing techniques, reporting F1-macro scores. 
 

 

5. CONCLUSION 
Defect detection is indispensable in semiconductor manufacturing to ensure product quality and 

reliability. From the review, it's evident that defects can arise from various sources, including the product 

itself and the equipment used in manufacturing processes. Detecting defects during backend processes like 

die attach and die bonding is critical to prevent issues which can lead to malfunctioning chips or devices. 

Various techniques such as visual inspection, AOI, and X-ray imaging are employed to identify defects, with 

advancements in methods like CNNs proving to be highly effective as highlighted via plethora of studies 

focusing on different aspects of defect detection, ranging from solder joint defects to wafer mapping defects, 

and from wire bonding to die defects. Overall, the research showcased in the review emphasizes the 

importance of rigorous defect detection measures in semiconductor manufacturing. By employing these 

measures, manufacturers can uphold stringent quality standards and produce reliable semiconductor devices 

for a wide range of applications. Moreover, the continual advancement of detection methods and 

technologies underscores the industry's commitment to enhancing product quality and reliability in the ever-
evolving semiconductor landscape. With most studies carried out focuses on defect detection on device or 

package, future work will involve further into developing a defect detection system on the semiconductor 

equipment, particularly for the die bond process. 
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APPENDIX 
 

Table 1. The detection methods used and performance in the back-end manufacturing processes 
Article 

# 

Authors Type of inspection Detection 

methods used 

Performance 

[19] Du et al. CNN performed 

to predict the ETC 

of sintered Ag. 

CNN The RMAE and R2 were 3.12% and 0.987, re- spectively, and the 

RPE was within 10% for nearly 91% of model predicted results 

with relative error: 5% 

[20] Chen and 

Tsai 

Image capturing 

for die attach, 

wire bond, 

molding, curing, 

punching, sorting, 

taping and 

packing 

CNN + CAM, 

YOLOv3, 

YOLOv3-dense 

Model class  

CNN+ 

CAM YOLOv3 

YOLOv3- 

dense 

Defect-free 100.00% 90.91% 100.00% 

Missing component 3.45% 100.00% 100.00% 

Incorrect placement 66.09% 100.00% 90.91% 

Inverse polarity 100.00% 72.73% 100.00% 

Missing wire 100.00% 81.82% 100.00% 

Defective surface 0.00% 36.36% 80.82% 

mAP 61.59% 80.30% 95.28% 
 

[21] Hamdani 

et al. 

CSP reliability for 

solder joint, crack 

on package (die 

attach/DA) 

MCS The metamodel validation for a Kriging metamodels built based 

on 180 samples are RMSECV = 3.3, MAECV = 2.42 and R2 = 0.9 

for ball/substrate solder joint, and RMSECV = 1.79, MAECV = 

1.30 and R2 = 0.89 for ball/test board solder joint.  

[22] Chan et 

al. 

Ball bonding 

inspection 

SVM, LR, CNN-

FCN-4000, CNN-

Hough-4000 

Experimental results showed that 15 samples among all the 100 

test samples were below the predefined threshold. Hence 85% of 

detections are automatically conducted by the proposed 

framework due to 15 uncertain samples.  

[30] Dimitriou 

et al. 

Scanning and 

inspection of DA 

glue bonding 

RNET, VoxNET, 

PointNet 

RNet outperforms VoxNet and PointNet with an average 

classification accuracy of 91.82% compared to 86.42% and 

58.33%, respectively.  

[29] Brand et 

al. 

SAM image 

inspection for 

bonding porosity. 

1D-CNN Porosity variation was obtained through adjusting the sinter 

pressure between 5 MPa and 30 MPa. Porosity variation 

obtained through adjusting the sinter time between 5 s and 

180 s. Noticeable contrast patterns appear between the 

acoustic micrograph and the porosity map. 

[23] Watanab

e et al. 

SAM for defects 

(fused, damaged, 

lift, no change) at 

AOI 

CNN Accuracy 97.14% 
 

[34] Yuan and 

Lee 

Solder joint 

detection / 

reliability 

Sequen-tial NN, 

RNN, LSTM 

Avg error norms (27 data pairs) 

RNN 1.432x10-4 

LSTM 1.357x10-4 

Avg error norms (54 data pairs) 

RNN 1.213x10-4 

LSTM 1.190x10-4 
 

[35] Yuan et 

al. 

Solder joint 

reliability 

ANN, RNN All the AI model learning results satisfy the accuracy requirement 

of 0.18% when the PCA gene is applied as the initial parameter.  

[43] Chou et 

al. 

WLP reliability, 

solder ball 

reliability. 

FEM, ANN - 

[24] Dai et al. Solder defect 

detection in AOI 

YOLO PCB layout porting of <0.34 s per PCB image (110 solder 

joints) 

[25] Caliskan 

and 

Gurkan 

Solder joint defect 

detection in AOI 

YOLOv4 Detection of solder defects of SMT circuit elements in 

approximately 5K (4056x3040) images resolution can be 

achieved with 97% accuracy in around 4 seconds. 

[36] Chen et 

al. 

Solder joint 

inspection 

ViBe, +Elasticnet 
Methods 

Training 

Samples 

Error 

Rate (%) 

Omission 

Rate (%) 

Accuracy 

(%) 

ViBe-

Based 400(Q) 1.66 69.93% 93.33 

Elastic 

net 

400(Q)+

40(U) 0.00 1.50% 99.91 
 

[37] Liao et 

al. 

Solder joint 

inspection 

ConvNeXt-

YOLOX 

ConvNeXt-YOLOX had the highest mAP of 97.21%, which 

was 0.82% and 3.02% higher than that of YOLOX and 

YOLOX-s 

[38] Tai et al. Solder joint defect 

recognition 

YOLOv2 & 

ResNet-50 

Defect Accuracy (%) 

Good solder 88.56 

Bridge solder 90.47 

Missing solder 87.86 
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Table 1. The detection methods used and performance in the back-end manufacturing processes (Continued) 
Article 

# 

Authors Type of inspection Detection 

methods used 

Performance 

[44] Evangeli

dis et al. 

Die attach glue 

volume 

regression/dispens

ing defect 

identification 

R2esNet 

Model 

Scanning 

time  

Inference 

time 

Total 

time 

ec-R2esNet10  

 

55.42 55.59 

ec-R2esNet18 

 

63.72 63.89 

ec-R2esNet34 

 

80.84 81.11 

ec-DenseNet 

 

60.07 60.24 
 

[32] Bodie et 

al. 

Electrical 

characterization 

measurement 

Radio-logy 

(X/-ray 

spectroscopy) 

The detector and preamplifier were operated uncooled at temperatures 

between 20 ◦C and 100 ◦C. The energy resolution (full width at half 

maximum, FWHM) of the spectrometer was found to be 1.66 keV ± 

0.15 keV at 5.9 keV and 22.16 keV, and 1.83 keV ± 0.15 keV at 59.5 

keV when operated at 20 ◦C. At a temperature of 100 ◦C, the FWHM 

were 2.69 ± 0.25 keV, 2.65 keV± 0.25 keV, and 3.30 keV ± 0.30 keV, 

at the same energies. 

[27] Chen et 

al. 

Die defect for 

AOI equipment 

GAN, 

YOLOv3, 

Faster RCNN, 

shot multibox 

detector 

(SSD) 

Model 

Testing 

AP (%) 

Testing coordinate 

prediction error 

YOLOv3 81.39 1.6456x10-3 

GAN + YOLOv3 (1.5 

fold increase) 88.12 2.9662 x10-4 

GAN + YOLOv3 (2 fold 

increase) 88.72 X1.5851 x10-4 

CycleGAN + YOLOv3 

(1.5 fold increase) 33.14 6.488 x10-1 
 

[45] Fazil et 

al. 

Die defect 

detection 

Auto ML, 

control group 

Recall rate of maximum 42.6% means 42.6% of bad die able to be 

predicted correctly with 90% accuracy.  

[31] Rosman 

et al. 

Thermal joint 

detection 

SAM SAM achieved 25.8% positive-classification (better) than X-Ray. 

SAM achieved 90.3% is success rate in comparison to scanning-

electron-microscopy (SEM).  

[46] Phua and 

Theng 

Defect detection 

for surface 

treatment / plating 

process 

ResNet 101 & 

DLADC 

SEM, CNN Model Dataset 

Top-1 

Accuracy 

(%) 

Top-3 

Accuracy 

(%) 

ResNet101 
Validation 90.7 99.0 

testing 91.5 98.5 

DLADC 
Validation 89.7 96.1 

testing 91.1 96.2 
 

[47] Ayuni et 

al. 

Wire bond defect. 

detection 

DenseNet121, 

VGG19, 

ResNet50, 

MobileNetv2, 

EfficientNetB

0 v1 & v2 

Model Accuracy (%)  

DenseNet121 98.0 

VGG19 97.0 

ResNet50  98.0 

MobileNet v2 96.0 

EfficientNetB0 V1 96.0 

EfficientNetB0 V2 98.0 
 

[28] Haddad 

et al. 

Defect detection 

for AOI 

RCNN, 

background 

subtraction 

Haddad et al.proposed method was able to achieve a 98.2% precision 

and a 99.44% recall values. 

[42] Jiang et 

al. 

Yield 

classification for 

final test 

Gaussian 

mixture 

models, one 

hot encoder, 

label encoder, 

F1-macro test 

F1-macro scores 

Input Pre-

processing 
7-models average Top 3 average 

No cat. input 0.700 0.761 

Label enc. 0.710 0.788 

One hot enc. 0.736 0.788 
 

[48] You et 

al. 

Die defect 

classification 

Region-based 

CNN 

(RCNN) 

Detection 
Handcrafted features 

Proposed 

(RCNN) 

Avg accuracy 94.0 % 88.5 % 
 

[40] Wen et 

al. 

Defect Detection 

for surface 

treatment 

CNN Method Wen et al. FCN DeepLabv3 

Flops 4.041x1010 1.419x109 2.089x109 

Rate 2.4fps 5fps 4fps 
 

[41] Do et al. Multiple Wafer 

Bin Classification 

CNN – 

HiSTA 

Network 

- 

[49] Phua et 

al. 

Defect Detection 

for surface 

treatment 

CNN - 

DLADC 

CNN-based Model Accuracy (%) 

DLADC 93.69 

SSD with VGG16 94.17 

SSD with ResNet50 91.52 
 

[39] Nam et 

al. 

Die Defect 

Detection 

Generative 

Adversarial 

Network 

(GAN) 

Subs

et # 

SEM/ 

CAD # 

Training 

Data 

Accuracy [%] 

(random) 

Accuracy [%] 

(cluster) 

1 1344 7 85.83 97.58 

2 5910 14 89.06 96.54 
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