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1. INTRODUCTION

Semiconductor manufacturing involves the intricate process of fabricating electronic components
such as integrated circuits on semiconductor materials, employing precise techniques to etch, deposit, and
pattern materials at the nanoscale level. However, despite the many advantages of integrated circuits, defects
can occur during the manufacturing process, and these defects can have various impacts on the performance
and reliability of the semiconductor packages. Process variations can result in performance variations,
affecting factors such as speed, power consumption, and reliability, leading to inconsistencies in transistor
sizes, dopant concentrations, and other parameters [1], [2]. Particle contamination meanwhile, may cause
short circuits, increased leakage current, or other electrical anomalies, potentially leading to the package
failure. Another known issue is defective interconnections, particularly in the metal interconnect layers, such
as open circuits or shorts, can disrupt the flow of signals between components causing reduced functionality
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or complete failure of the integrated circuit. Stress-induced defects on the other hand may lead to the
development of cracks, voids, or other structural issues, impacting the overall reliability and lifespan of the
IC [3]. Techniques such as design for manufacturing (DFM), thorough testing at various stages, and
implementing redundancy in critical components are employed to improve yield and ensure the reliability of
integrated circuits.

When it comes to testing and examining integrated circuits (ICs), both destructive and non-
destructive inspection methods are employed. The choice between these methods depends on factors such as
the stage of production, the desired level of detail, and the impact on the integrity of the IC. This survey
focuses on the non-destructive testing (NDT) method that is used to examine the reliability as well as to
analyze any failure mechanisms within the device [4]. Similarly, examining equipment defects is a crucial
aspect of ensuring the reliability, safety, and performance of machinery and devices [5]. Die attachment and
die bonding are critical steps in manufacturing the ICs as they define the connection to the package and
provide electrical interconnection for power and signal transmission quality, alongside thermal management
via efficient heat dissipation from proper bonding applications [6]-[8]. The objective of this paper is to
provide a survey and/or review of research papers that have addressed the faults and defects of the die
attachment and die bonding detection methods used, for both devices and equipment.

2. OVERVIEW OF SEMICONDUCTOR MANUFACTURING PROCESS
2.1. Wafer fabrication steps in the front-end manufacturing process

Semiconductor wafers developed from silicon are typically comprise front-end and back-end
manufacturing processes. The front-end process begins with the production of silicon wafers. Wafer
fabrication involves a sequence of steps: starting with a polished wafer, layers are deposited using techniques
like chemical or physical vapor deposition (CVD/PVD), followed by photolithography to pattern the layers,
etching to remove unwanted material, ion implantation to alter conductivity, diffusion to homogenize doping,
chemical mechanical polishing to planarize surfaces, and finally testing to ensure functionality [9], [10].
These processes are repeated iteratively to build complex integrated circuits on silicon wafers. Figure 1
depicts wafer fabrication steps in the front-end manufacturing process.
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Figure 1. Wafer fabrication steps in front-end manufacturing process

2.2. Back-end manufacturing process for semiconductor production

In the back-end semiconductor manufacturing process, fabricated wafers undergo various critical
steps. Initially, electrical testing identifies faulty dies, which are then marked to prevent wasted packaging.
The wafer is mounted for mechanical support, then precisely diced into individual die units. Good dies are
bonded to substrates, and microscopic wires connect them to electrical terminals. Plastic molding encases the
components in epoxy resin for protection, followed by electrochemical plating for enhanced durability. Trim
and form steps shape the leads, and final testing ensures functionality. Laser marking adds identification
codes, and units are packed according to specifications for shipment. This comprehensive process ensures the
production of reliable semiconductor devices for integration into electronic products [11]. Figure 2 illustrates
the back-end manufacturing process for semiconductor production. Die bonding is a crucial step in
establishing a reliable electrical connection between the semiconductor die and substrate. It begins with die
preparation, where the die is tested, sorted, and equipped with bond pads, before the substrate is prepared,
and adhesive may be dispensed onto it. The die pickup process utilizes specialized tools like Vespel collets to
handle the semiconductor die, ensuring damage-free manipulation. Precision alignment systems align the
die's bond pads with the substrate's contact points before placement, before the die is gently lowered onto the
substrate. Once adhesive bonding is employed, curing processes via heat or UV light may follow to solidify
the adhesive. Overall, die bonding ensures both electrical and mechanical integrity in semiconductor
devices [12], [13]. The accuracy of this process are essential for the reliable and consistent performance of
electronic devices.
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Figure 2. Back-end manufacturing process for semiconductor production

3. OVERVIEW OF DETECTION MODALITIES IN SEMICONDUCTOR MANUFACTURING
PROCESS

In semiconductor manufacturing, various methods or techniques are used for sensing and
monitoring different aspects of the manufacturing process, which plays a crucial role in quality control,
process optimization, and ensuring the reliability of semiconductor devices. These steps in return introduces
production efficiency as well as production costs. Sensor modalities for metrology in semiconductor
manufacturing is highly interdependent.

Optical sensing in semiconductor manufacturing encompasses manual optical inspection and
automated optical inspection (AOI). While manual inspection relies on human visual assessment using basic
microscopes, AOI employs high-resolution imaging systems, advanced image processing software, and
precision mechanical platforms for rapid, accurate defect detection. Manual inspection is limited by low
optical resolution, slow speeds, subjective biases, and human fatigue, making it less effective than AOI [14].
AOI systems integrate specialized optics and lighting techniques to capture microscopic details and utilize
data analytics for process improvement, thus minimizing yield loss and optimizing manufacturing efficiency.

X-ray metrology delivers critical dimensional, structural and compositional information during both
front-end lithography and back-end assembly stages that remains inaccessible through conventional surface-
limited optical and electron microscopy for process monitoring, defect detection, quality control, specifically
probing tiny transistor gate geometries, measuring metal fill densities, inspecting die attachments,
characterizing diffusion depths, verifying IC interconnects, auditing flip chip bonds, and examining packaged
chips [15], [16]. Acoustical techniques are integral to semiconductor fabrication, offering non-invasive
subsurface inspection critical for quality control and defect reduction. Scanning acoustic microscopy (SAM)
employs ultrasonic waves to map buried interfaces, voids, and defects with micron-level resolution, rivaling
electron microscopy allowing precise imaging of material structures and defects in chips/packages, film
thickness measurement, delamination sensing, and transistor element imaging [17]. Surface acoustic wave
(SAW) systems use high-frequency Rayleigh waves to monitor device surfaces, providing in-situ metrology
for process and reliability monitoring [18]. Both techniques complement traditional optical and electron
microscopy, offering valuable insights into semiconductor manufacturing processes.

Infrared thermography is widely used in semiconductor fabrication facilities for visualizing and
quantifying thermal phenomena to optimize energy usage, prevent chip damage, and enhance processing
efficiency with real-time thermal imaging and analysis. This enables precise temperature measurement across
wafers, detection of hot spots, characterization of heating and cooling processes, and identification of defects
such as voids or delamination, ensuring thermal conduction and device reliability.

4. DETECTION METHODS FOR DIE BONDING & DIE ATTACH ON PACKAGES AND
EQUIPMENT

Die bonding and die attach processes within semiconductor manufacturing are pivotal stages
requiring meticulous quality control to uphold the reliability and performance of electronic devices. These
processes are susceptible to various defects that can manifest in both the semiconductor packages/products
and the equipment utilized in the manufacturing pipeline. This section delves into the common defects
associated with semiconductor packages/products and equipment, shedding light on advanced detection
methodologies.

4.1. Die attachment and die bonding package defects

Among the common defects are incomplete solder joints and solder bridging. Detection methods for
solder joint defects leverage high-resolution imaging coupled with image processing techniques, enabling the
identification of incomplete joints. Deep learning methods, such as convolutional neural networks (CNNs),
prove instrumental in classifying diverse solder defects. Detection involves the use of machine vision
systems equipped with alignment algorithms and pattern recognition to detect and quantify skew and offset
errors.
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The presence of chips or cracks in the die represents another prevalent defect. Detection methods
encompass imaging paired with CNNs or support vector machines (SVMs) for the classification of distinct
chip and crack patterns [19]-[22]. Defects like air pockets or incomplete epoxy filling, inaccurate placement
of the die on the substrate, variation in the thickness of the bond line and die fly-off or die detachment during
the bonding process constitutes common defects. Optical inspection, image analysis, or spectroscopy are used
to identify contaminants for foreign particles or dusts within the packages. Finally, overall package defects
affecting reliability can be mitigated via accelerated testing, thermal cycling, and various NDT methods.

4.2. Die attachment and die bonding equipment component defects

Die bonding tools are critical components in semiconductor manufacturing, but they can also be
sources of defects if not properly maintained. Common issues include improperly calibrated bond heads,
worn-out force sensors, contaminated microscopes, tilted workholders, clogged dispensers, and misaligned
bond arm motions, amage or misalignment in pick-up tools, wear and chipping in bond tools/heads,
misalignment and wear in workholders, and mechanical issues in bond arms. Calibration issues and lens
damage in scopes and sensors are also prevalent defects. These problems can trigger equipment alarms and
contribute to higher unscheduled downtime (UDT) and mean time between assists (MTBA). Environmental
factors like temperature, humidity, and vibration, coupled with preventive maintenance lapses, can also lead
to equipment issues over time, such as stage backlash and inconsistent vision and heating.

Detection of defects in die bonding tools involves various methods, including machine vision,
alignment algorithms, image processing, and wear monitoring using sensors. Detection methods range from
regular calibration checks and visual inspections to advanced techniques like SVM, CNN, artificial neural
networks (ANN), robust principal component analysis (RPCA), residual networks (ResNet), radial basis
function (RBF), fuzzy c-means (FCM), generalized regression neural network (GRNN), self-organizing maps
(SOM), linear discriminant analysis (LDA), learning vector quantization (LVQ), and you only look once
(YOLO). Each method offers specific advantages, catering to the complexity and requirements of the
detection task, ensuring the precision necessary for a robust semiconductor manufacturing process and
mitigating bonded product defects, ensuring quality, yield, and long-term reliability.

4.3. Assessment of papers based on backend processes

Table 1 (in appendix) presents an extensive overview of various detection methods utilized in the
back-end manufacturing processes along with their performance metrics as reported in different articles.
Delving into each entry, AQOI has been utilized widely throughout several processes to continuously monitor
and minimize package defects throughout the backend process [23]-[28]. Several research conducted
recently focuses on map detection in Pre-assembly process and testing, reporting accuracy and precision for
MLP and DNN, alongside broad learning system, achieving high DSPR comparison. The wafer mapping
defects performance metrics are also compared against various models and feature extraction techniques.
Haddad et al. [28] proposed method achieved high precision and recall values in AOI.

In [29]-[31], acoustic sensing inspection are utilized, particularly in SAM, with 1D-CNN utilized
for SAM image inspection, providing insights into porosity variation during bonding processes. SAM has
also proven to effectively precise in defects detection, achieving an accuracy of 97.14% [23]. Comparatively,
SAM is also proven to be effective compared to another radiology inspection in X-Ray and SEM for thermal
joint detection [31], with a study of X/gamma-ray spectroscopy carried out by [32] for electrical
characterization measurement, reporting detailed performance metrics for the spectrometer. Thermal-based
inspection has also been carried out by [31], [33], whereby compared to [31], a study emphasis on the on-line
thermal resistance during die-attach, highlighting the accuracy of SiC-TEG for evaluating thermal
characteristics. CNN have also been used to predict the electro-thermal conductivity (ETC) of sintered Ag.
Their model achieved high accuracy with an R2 value of 0.987 and a relative mean absolute error (RMAE) of
3.12% [1]. Solder joint defect detection has been extensively studied in recent years in [21], [25], [26], [34]-
[38]. Various methods and modellings have been tested, with one focuses on chip scale packages (CSP)
reliability, achieving validation metrics including RMSECV, MAECYV, and R2 for ball/substrate and ball/test
board solder joints. Solder joint defect detection has also been tested via Sequential NN, recurrent neural
network (RNN), and long short-term memory (LSTM) for solder joint detection, reporting low error norms
for different data pairs. ANN and RNN demonstrated stable optimization for the solder joint defect detection,
with YOLOv4 for detecting solder defects in SMT circuit elements with high accuracy and speed.
Alternatively, ConvNeXt-YOLOX for solder joint inspection, achieving the highest mAP among compared
methods. Tai et al [38]. employed YOLOV2 & ResNet-50 for solder joint defect recognition, reporting high
accuracy for different defect types. That said, YOLO are also utilized for solder defect detection in AOI,
achieving fast processing time per PCB image. ViBe and +Elasticnet have also been used for solder joint
inspection, highlighting significant improvements in error rates and accuracy. Solder joint inspection for AOI
using various methods and reported different performance metrics for each method.
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Wire bonding process can be further improved in manufacturing, by reducing its ball bonding and
wire bonding defects. SVM, logistic regression (LR), and CNN models are proven by [22] to be effective for
ball bonding inspection, achieving an 85% automated detection rate. DenseNet121, VGG19, ResNet50,
MobileNetv2, EfficientNetB0O V1 & V2 employed for wire bond defect detection, achieving high accuracy
across different models. A utilitarian method by [2] showcases CNN combined with computer-aided
manufacturing (CAM), YOLOV3, and YOLOv3-dense for inspecting various processes like die attach, wire
bond, molding, curing, punching, sorting, taping, and packing. The performance varied for different defect
types, with mAP ranging from 61.59% to 95.28%. Wafer level package (WLP) reliability and solder ball
reliability have also been tested via finite element method (FEM) and ANN.

Die defects detection has been analyzed in several works [2], [3], [5], [9], [39]. Generative
adversarial network (GAN), YOLOv3, and other models are employed for die defect detection, achieving
significant improvements in accuracy with model combinations. Die defect detection using auto ML,
meanwhile has achieved a recall rate of 42.6% with 90% accuracy. ResNet 101 & DLADC SEM, CNN and
GAN for defect detection has proven to results in accuracy for different subsets and training data sizes.
reporting high accuracy for both methods. Meanwhile, die defect classification the accuracy between
handcrafted features and proposed RCNN model have also been carried out with comparative studies being
made. By comparing the RNET, VoxXNET, and PointNet for scanning and inspecting die attach glue bonding,
reporting RNET outperforming others with a classification accuracy of 91.82%. Die attach glue volume
regression and dispensing defect identification via R%sNet, have also showcases desirable performance
metrics for various models based on scanning time and inference time study [30]. Surface treatment and final
test processes meanwhile uses several methods in optimizing the process defects, with surface treatment
process employing various CNN methods for performance metrics comparative approach [40], [41]. CNN and
DLADC methods for surface treatment reporting high accuracy. Gaussian mixture models, one hot encoder,
label encoder, F1-macro test are all explored by [42] yield classification for final test, employing various
models and preprocessing techniques, reporting F1-macro scores.

5. CONCLUSION

Defect detection is indispensable in semiconductor manufacturing to ensure product quality and
reliability. From the review, it's evident that defects can arise from various sources, including the product
itself and the equipment used in manufacturing processes. Detecting defects during backend processes like
die attach and die bonding is critical to prevent issues which can lead to malfunctioning chips or devices.
Various techniques such as visual inspection, AOI, and X-ray imaging are employed to identify defects, with
advancements in methods like CNNs proving to be highly effective as highlighted via plethora of studies
focusing on different aspects of defect detection, ranging from solder joint defects to wafer mapping defects,
and from wire bonding to die defects. Overall, the research showcased in the review emphasizes the
importance of rigorous defect detection measures in semiconductor manufacturing. By employing these
measures, manufacturers can uphold stringent quality standards and produce reliable semiconductor devices
for a wide range of applications. Moreover, the continual advancement of detection methods and
technologies underscores the industry's commitment to enhancing product quality and reliability in the ever-
evolving semiconductor landscape. With most studies carried out focuses on defect detection on device or
package, future work will involve further into developing a defect detection system on the semiconductor
equipment, particularly for the die bond process.
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APPENDIX

Table 1. The detection methods used and performance in the back-end manufacturing processes

Article  Authors  Type of inspection Detection Performance
# methods used
[19] Duetal.  CNN performed CNN The RMAE and R2 were 3.12% and 0.987, re- spectively, and the
to predict the ETC RPE was within 10% for nearly 91% of model predicted results
of sintered Ag. with relative error: 5%
[20] Chen and Image capturing CNN + CAM, CNN+ YOLOvV3-
Tsai for die attach, YOLOV3, Model class CAM YOLOv3  dense
wire bond, YOLOv3-dense Defect-free 100.00% 90.91% 100.00%
molding, curing, Missing component 3.45%  100.00% 100.00%
punching, sorting, Incorrect placement 66.09%  100.00% 90.91%
taping and Inverse polarity 100.00% 72.73% 100.00%
packing Missing wire 100.00% 81.82% 100.00%
Defective surface 0.00% 36.36% 80.82%
mAP 61.59% 80.30% 95.28%
[21] Hamdani  CSP reliability for MCS The metamodel validation for a Kriging metamodels built based
etal. solder joint, crack on 180 samples are RMSECV = 3.3, MAECV = 2.42 and R?=0.9
on package (die for ball/substrate solder joint, and RMSECV = 1.79, MAECV =
attach/DA) 1.30 and R? = 0.89 for ball/test board solder joint.
[22] Chan et Ball bonding SVM, LR, CNN- Experimental results showed that 15 samples among all the 100
al. inspection FCN-4000, CNN- test samples were below the predefined threshold. Hence 85% of
Hough-4000 detections are automatically conducted by the proposed
framework due to 15 uncertain samples.
[30] Dimitriou Scanning and RNET, VoxNET, RNet outperforms VoxNet and PointNet with an average
etal. inspection of DA PointNet classification accuracy of 91.82% compared to 86.42% and
glue bonding 58.33%, respectively.
[29] Brand et SAM image 1D-CNN Porosity variation was obtained through adjusting the sinter
al. inspection for pressure between 5 MPa and 30 MPa. Porosity variation
bonding porosity. obtained through adjusting the sinter time between 5 s and
180 s. Noticeable contrast patterns appear between the
acoustic micrograph and the porosity map.
[23] Watanab SAM for defects CNN Accuracy 97.14%
eetal. (fused, damaged,
lift, no change) at
AOI
[34] Yuan and Solder joint Sequen-tial NN, Avg error norms (27 data pairs)
Lee detection / RNN, LSTM RNN 1.432x10*
reliability LSTM 1.357x104
Avg error norms (54 data pairs)
RNN 1.213x10*
LSTM 1.190x104
[35] Yuan et Solder joint ANN, RNN All the Al model learning results satisfy the accuracy requirement
al. reliability of 0.18% when the PCA gene is applied as the initial parameter.
[43] Chou et WLP reliability, FEM, ANN -
al. solder ball
reliability.
[24] Dai et al. Solder defect YOLO PCB layout porting of <0.34 s per PCB image (110 solder
detection in AOI joints)
[25] Caliskan  Solder joint defect YOLOv4 Detection of solder defects of SMT circuit elements in
and detection in AOI approximately 5K (4056x3040) images resolution can be
Gurkan achieved with 97% accuracy in around 4 seconds.
[36] Chen et Solder joint ViBe, +Elasticnet Methods Training Error Omission  Accuracy
al. inspection Samples Rate (%) Rate (%) (%)
ViBe-
Based 400(Q) 1.66 69.93% 93.33
Elastic 400(Q)+
net 40(V) 0.00 1.50% 99.91
[37] Liao et Solder joint ConvNeXt- ConvNeXt-YOLOX had the highest mAP of 97.21%, which
al. inspection YOLOX was 0.82% and 3.02% higher than that of YOLOX and
YOLOX-s
[38] Taietal.  Solder joint defect YOLOV2 & Defect Accuracy (%)
recognition ResNet-50 Good solder 88.56
Bridge solder 90.47
Missing solder 87.86
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Table 1. The detection methods used and performance in the back-end manufacturing processes (Continued)

Article Authors  Type of inspection Detection Performance
# methods used
[44] Evangeli Die attach glue R2esNet Scanning  Inference  Total
disetal. volume Model time time time
regression/dispens ec-R%esNet10 55.42 5559
ing defect ec-R%esNet18 63.72  63.89
identification ec-R%esNet34 80.84 81.11
ec-DenseNet 60.07  60.24
[32] Bodie et Electrical Radio-logy The detector and preamplifier were operated uncooled at temperatures
al. characterization (Xly-ray between 20 °C and 100 °C. The energy resolution (full width at half
measurement spectroscopy) maximum, FWHM) of the spectrometer was found to be 1.66 keV +

0.15 keV at 5.9 keV and 22.16 keV, and 1.83 keV + 0.15 keV at 59.5

keV when operated at 20 °C. At a temperature of 100 °C, the FWHM

were 2.69 + 0.25 keV, 2.65 keV+ 0.25 keV, and 3.30 keV + 0.30 keV,
at the same energies.

[27] Chen et Die defect for GAN, Testing  Testing coordinate
al. AOI equipment YOLOv3, Model AP (%)  prediction error
Faster RCNN,
shot multibox ~ YOLOvV3 81.39 1.6456x103
detector GAN + YOLOV3 (1.5
(SSD) fold increase) 88.12 2.9662 x10*
GAN + YOLOv3 (2 fold
increase) 88.72 X1.5851 x10+
CycleGAN + YOLOvV3
(1.5 fold increase) 33.14 6.488 x10*
[45] Fazil et Die defect Auto ML, Recall rate of maximum 42.6% means 42.6% of bad die able to be
al. detection control group predicted correctly with 90% accuracy.
[31] Rosman Thermal joint SAM SAM achieved 25.8% positive-classification (better) than X-Ray.
etal. detection SAM achieved 90.3% is success rate in comparison to scanning-
electron-microscopy (SEM).
[46] Phua and Defect detection ResNet 101 & Top-1 Top-3
Theng for surface DLADC Accuracy  Accuracy
treatment / plating SEM, CNN Model Dataset (%) (%)
process ResNet101 Validati_on 90.7 99.0
testing 915 98.5
Validation 89.7 96.1
DLADC testing 911 96.2
[47] Ayuniet  Wire bond defect.  DenseNet121, Model Accuracy (%)
al. detection VGG19, DenseNet121 98.0
ResNet50, VGG19 97.0
MobileNetv2, ResNet50 98.0
EfficientNetB MobileNet v2 96.0
Ovl &v2 EfficientNetB0 V1 96.0
EfficientNetB0 V2 98.0
[28] Haddad Defect detection RCNN, Haddad et al.proposed method was able to achieve a 98.2% precision
etal. for AOI background  and a 99.44% recall values.
subtraction
[42] Jiang et Yield Gaussian F1-macro scores
al. classification for mixture Input Pre-
. - 7-models average Top 3 average
final test models, one processing
hot encoder, No cat. input 0.700 0.761
label encoder, Label enc. 0.710 0.788
F1-macro test One hot enc. 0.736 0.788
[48] You et Die defect Region-based Proposed
al. classification CNN Detection Handcrafted features (RCNN)
(RCNN) Avg accuracy 94.0 % 88.5 %
[40] Wen et Defect Detection CNN Method Wen et al. FCN DeepLabv3
al. for surface Flops 4.041x10% 1.419x10° 2.089x10°
treatment Rate 2.41ps 5fps 4fps
[41] Doetal. Multiple Wafer CNN — -
Bin Classification HiSTA
Network
[49] Phua et Defect Detection CNN - CNN-based Model Accuracy (%)
al. for surface DLADC DLADC 93.69
treatment SSD with VGG16 94.17
SSD with ResNet50 91.52
[39] Nam et Die Defect Generative Subs SEM/  Training Accuracy [%]  Accuracy [%]
al. Detection Adversarial et# CAD# Data (random) (cluster)
Network 1 1344 7 85.83 97.58
(GAN) 2 5910 14 89.06 96.54
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