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 Brain-computer interfaces (BCIs) represent an innovative paradigm for 

device control and communication, relying solely on the analysis of brain 

activity. Steady-state visually evoked potentials (SSVEPs), characterized by 
neurophysiological responses synchronized with periodic visual stimuli, 

have gained prominence in BCI research due to their high information 

transfer rates (ITRs) and minimal user training requirements. However, the 

translation of SSVEP-based BCIs into practical applications faces challenges 
stemming from variations in user responses and stimuli. To address these 

issues, this study introduces a groundbreaking methodology known as the 

cross-subject multi-modal fusion technique (CMFT). CMFT revolutionizes 

template design by creating invariant templates resilient to user and stimulus 
differences, thereby enhancing SSVEP detection across diverse subjects and 

stimuli. The implications of this research extend to various fields, including 

assistive technologies, human-computer interaction, and cognitive 

neuroscience. CMFT presents a promising solution to make SSVEP-based 

BCIs more practical and widely applicable. The methodology involves 

intricate steps, including spatial filters, data pre-processing, and template 

generation, ensuring precise SSVEP detection. Through CMFT, this study 

contributes to advancing the effectiveness and versatility of SSVEP-based 
BCIs, fostering improved accessibility and interaction in a range of domains. 

Keywords: 

Brain-computer interface  

Cross-subject multi-modal 

fusion technique 

Electroencephalogram 

Information transfer rates  

Steady-state visually evoked 

potentials 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Kalenahally R. Swetha 

Department of Computer Science and Engineering, BGSIT, Adichunchanagiri University 

Mandya, India 

Email: swethakr_12@rediffmail.com 

 

 

1. INTRODUCTION 

Brain-computer interfaces (BCIs) offer a novel method of controlling equipment simply through the 

study of an individual's brain activity, which is accomplished by merging hardware and software components 

for successful communication [1]. Electroencephalogram (EEG)-based BCIs, particularly those that use 

steady-state visually evoked potentials (SSVEPs), have gained popularity in BCI research due to their non-

intrusive nature, portability, and ease of setup [2]. This work digs into the improvements in SSVEP-based 

BCIs, specifically their neurophysiological responses that are coordinated with periodic visual stimuli [3]. 

The SSVEP BCI allocates unique frequencies to different targets, allowing for the detection of user intent via 

EEG signals when focusing on a certain target [4]. SSVEP BCIs are notable for their high information 

transfer rates (ITRs), low user training requirements, and the lack of individual decoder calibration. However, 

obstacles come from variances in visual stimulus properties that influence SSVEP responses, as well as the 

scarcity of commercial or clinical systems [5]. Notably, the SSVEP pattern outperforms other EEG signal 

patterns in terms of correct classification, making it a focus of current BCI research [6]. The primary goal of 

this study is to investigate the practical applications of SSVEP-based BCIs, namely speller systems. These 

https://creativecommons.org/licenses/by-sa/4.0/
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systems utilize graphical user interfaces (GUIs) to produce different EEG patterns in response to stimuli, 

which simplifies model calibration and reduces training time [7]. The addition of extra stimuli is intended to 

improve BCI speller efficiency [8]. The Bremen Speller, a pioneering high-speed SSVEP BCI speller, 

established the multi-target stimulus paradigm [9]. 

Recent research emphasizes BCI spellers, incorporating three EEG signals: sensorimotor rhythm 

(SMR), P300 event-related potential (ERP), and SSVEP [10]. The SSVEP speller's high ITR, easy 

deployment, and minimal user training time make it a prominent choice for real-world BCI applications [11]. 

Ongoing investigations into BCI spellers and other BCI applications, such as brain painting (BP) for the P300 

BCI, showcase a commitment to user-centered design principles. BP, developed to address the 

communication needs of individuals, including those with ALS, illustrates the innovative potential of BCIs 

[12]-[14]. The utilization of an alternative communication channel in BP demonstrates a unique design 

approach, showcasing the versatility and potential impact of BCIs in diverse applications. 

This research is driven by the increasing importance of non-invasive BCI systems and their wide-

ranging potential applications, spanning fields from healthcare to gaming [15]. Within this context, Steady-

state visually evoked potential (SSVEP)-based BCI systems emerge as a particularly promising avenue. 

However, the efficacy of these systems hinges on the quality of templates utilized for stimulus detection. In 

real-world scenarios, the intricacies of user responses and the variability in the number of stimuli present a 

complex challenge for template creation. This study aims to tackle these challenges by introducing an 

innovative approach to generate invariant templates, ensuring precise and efficient SSVEP detection across a 

diverse range of subjects and stimuli. The implications of this research are profound, holding the potential to 

significantly augment the capabilities of SSVEP-based BCIs. This improvement, in turn, can have a 

transformative impact on the lives of individuals with motor disabilities. Furthermore, the applications extend 

to fields such as human-computer interaction and cognitive neuroscience, indicating a broad spectrum of 

potential benefits across various domains. 

 This research pioneers a novel approach, cross-subject multi-modal fusion technique (CMFT), aimed at 

elevating the efficiency of SSVEP-Based BCI detection. CMFT introduces innovative techniques for 

enhanced signal processing and feature fusion, contributing to improved performance in SSVEP-based 

BCI systems. 

 A key innovation of this study lies in the introduction of invariant templates tailored for SSVEP-based 

BCIs. These templates exhibit robustness to variations in user responses, thereby significantly 

enhancing the accuracy of SSVEP detection. This robust template design addresses a critical challenge 

in real-world scenarios where user responses can vary widely. 

 The research incorporates the development of spatial filters and templates that facilitate inter-subject 

knowledge transfer. This novel approach allows for the transfer of common knowledge across subjects, 

minimizing the need for individualized calibration. By doing so, the BCIs become more user-friendly, 

streamlining the user experience and potentially broadening the accessibility of such neuro 

technologies. 

 

 

2. RELATED WORK 

The addressed research delves into various paradigms within the context of P300-based BCIs and 

their associated challenges. The row-column paradigm (RCP) is a widely adopted approach with its own set 

of issues, impacting ITRs and recognition accuracy. The study explores an innovative modification, the rapid 

control prototyping (RCP) paradigm, introducing face flashing (FF) to address these challenges. This 

paradigm involves superimposing images onto matrix rows and columns, demonstrating potential 

enhancements in terms of accuracy and cognitive load [16]-[18]. Additionally, the research investigates the 

single character paradigm (SCP) against RCP, providing evidence favoring SCP for larger P300 peaks and 

higher accuracy, albeit with a greater time investment. The T9 speller, incorporating word prediction and a 

traditional paradigm, offers a unique approach to character selection. The study emphasizes the significance 

of paradigms in spelling tasks, showcasing the trade-offs between speed and accuracy [19]. 

Shifting focus to a three-dimensional (3-D) configuration in the P300 speller, the research explores 

its potential impact on user acceptance and user-friendliness. The 3-D interface introduces variations in 

flashing paradigms, allowing for the examination of trial fluctuations. This innovation holds implications for 

industries such as gaming and healthcare, highlighting the versatility of BCI technology [20]-[23]. The 

introduction of the BCI-Utility measure adds a quantitative dimension to the assessment of BCI systems, 

specifically emphasizing user experience. The metric encompasses error correction scenarios, recognizing the 

system-specific nature of BCI-Utility and its dependence on experimental design. The research further delves 

into coding schemes, introducing the time division multiple access (TDMA) scheme and spatial division 

multiple access (SDMA) technology [24]. TDMA utilizes temporal information for independent target flash 
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sequences, showcasing advantages over frequency division multiple access (FDMA). Meanwhile, SDMA 

explores spatial data for target detection, emphasizing the impact on SSVEP power topography. However, 

SDMA-coded BCI systems pose challenges in stimulus characteristics [25], [26]. 

 

 

3. PROPOSED METHODOLOGY 

SSVEP signal analysis, data preprocessing, and the development of invariant templates with spatial 

filters are all included in this procedure. A number of participants provide data, and templates are developed 

for efficient SSVEP detection. While templates are averaged over variations and individuals, spatial filters 

are taught using single-trial data. The SSVEP in a target subject is then found using these templates. The 

SSVEP signal is decomposed into smaller parts in order to obtain precise data. The target is selected based on 

which stimulus has the strongest relationship. This method aims to improve SSVEP-based applications' 

accuracy and efficiency, particularly in environments with lots of participants and inputs. 

 

3.1.  Data pre-processing 

Step signal analysis is used to eliminate the visual lag in the initial set of data. The filtered sequence 

and band are used to obtain the data. To eliminate power noise, a 50 Hz filter notch is employed. After the 

data preparation is finished, the target is identified and the processing of the information is carried out. This 

is the suggested workflow in Figure 1. 

 

 

 
 

Figure 1. Proposed workflow [trans-subject multi-feature fusion for improved SSVEP-based BCI detection] 

 

 

3.2.  Spatial filters and SSVEP template 

The calibration data collected from one source is treated to the appropriate S-th stimulus and is 

shown as C_s=[C_s^1,C_s^2,……,C_s^(s_g)] ∈W^(s_e*s_f*s_d), and S=1,2,…,S_k. However, S_h, S_i, 

S_g, and S_k represent the sample point's channels, which include the blocks and the amount of stimuli. 

S_s^g∈W^(s_e*s_f) (g=1,2,...,S_g) represents the d-th block of data for C_s. Participants share common 

knowledge by using a spatial filter and SSVEP data from many blocks to construct both internally and 

mutually invariant templates for a trial-test assessment. Each block d divides the separated EEG data C_s in 

half. In (1) illustrates how trial data Z_p^d from block d is transformed into multi-trial data δ_p^d for 

template training. 

 

δs
g

= [Cs
1, … . , Cs

g−1
, Cs

g+1
, … . , Cs

sg
] (1) 

 

ϑs = {Cs1, Cs2 ,……….,Cssm  }, (2) 

 

δ
sm
g

= [Csm
1 , … . , C

sm
g−1

, C
sm
g+1

,….., C
sm

sg
] (3) 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 3, June 2025: 1755-1764 

1758 

The g − th combination of SSVEP data consists of the target along with the neighboring stimuli 

data. Cs
g
, δs 

g
 and δ

sj
g

 (k = 1,2, … , Sm). Whereas g is in the range from 1 to Sg for each stimulus g, there are 

Sg variations for the SSVEP training data. The g − th variation for the SSVEP training is encountered with 

data, the training method involves the transferred spatial features that consist of three steps: 

 The internal spatial filter and template extract frequency information from surrounding stimuli.  

 Calculated mutually invariant spatial filters and templates from many sources to identify shared 

knowledge across subjects. 

 Used internal and mutual invariant samples to train test-trial spatial filters. 

The flowchart includes multiple steps as shown.  

 

3.2.1. Internal invariant template 

For every given source subject o, we can find the associated spatial filter to the s-th stimulus 

b_(r,t)^g ∈W^(S_e) by optimizing the subjective correlation by examining the corresponding SSVEPs for the 

target and neighboring stimuli δ_(〖r,t』^ )^g∈ W^(S_e*S_f*S_((g-1)) ) and δ_(〖r,t^m』^ )^g∈ 

W^(S_e*S_f*S_((g-1)) ) (m=1,2,…,S_m) through each subject r. In (4) defines the multi-trial data by 

simplifying the expressions δ_(r,t)^g and δ_(〖r,t^m〗^)^g from (1) and (3), respectively. δ_(r,t)^(g_m) is in 

W^(S_e*S_f) (p=1,2,…,S_y). S_y is the number of trials for multi-trial data, and S_y=S_g-1, as described in 

(5). In (6) evaluates the invariant spatial filter, y_(o,q)^d. 
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The aforementioned (10) depicts the covariances between the trial data acquired from the p-th 

stimulus and its nearby stimulus. In (6) solves the decomposition of S^(-1) U. The spatial filter y_(o,q)^d is 

assessed using the associated eigenvector. The spatial filter y_(o,q)^d and an invariant template 

V_(o,q)^d∈T^(P_f) for the relevant source submitted as o are derived as indicated in (11). 
 

Vo,q
d = yo,q

d  Vδo,q
d

 (11) 

 

A. Mutually invariant: To assess the mutually invariant template, the filter is trained with SSVEP data from O 

source individuals. The spatial filter X_p^d∈T^(P_e) corresponds to the p-th stimulus assessed to maximize the 

correlation between different individuals. In contrast to utilizing the target stimulus, inter-subject maximum 

correlation is assessed using the SSVEP target data for the target and surrounding stimuli.  

In the first step the d − th multi-trial data for the p − th stimulus from two varied subjects o1 and o2 

denoted as Vδo1,q
d ∈ TPe∗Pf∗Pv  and Vδo2,q

d ∈ TPe∗Pf∗Pv . The E12 and E21 for inter-subject cross-variance, E11 

and E22 regarded as the inter-subject co-variance. Assumption of xV E11 x == xV E22 x, the term E21 is the 

transposition, whereas the optimization problem is solved as given in (12). Here R = E12 + E21 and T =
E21 + E22, henceforth the matrices R and T are evaluated as shown in (13). 
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T =
1

O
∑  O

o=1 [ cov(δo,q d ) + ∑  
Pj

j=1
cov (δ

o,q j
d )] (14) 

 

Bp
d = xp

d   V δq d  (15) 

 

B. Trial spatial filter testing: the internally invariant and mutually invariant templates, a spatial filter 

wo,q
d ∈TPe

 for each source subject o is trained via a single trial data Zo,q d . The spatial filter wo,q
d  is obtained 

to simultaneously maximize to evaluate the correlation between Zo,q d  and Bp
d. The evaluation of wo,q

d  is 

computed using a multi-objective optimization problem. 
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3.3.  SSVEP detection through transfer parameters 

The transmission of spatial filters and templates as single-trial data with one target patient as A∈ 

T^(P_e)*P_f has been identified. SSVEP detection uses four distinct kinds of CC between spatially filtered 

data. The transferred templates are assessed by merging spatial filters with templates taught from source 

subjects, shown below in (23), (24). 

 

μp =    [μp(1)][μp(2)     ][μp(3)][ μp (4)]    [α(xO   Z,

Bp  
1

O
∑  O

o=1 α(yo,q  A, Vo,q) 
1

O
∑  O

o=1 α(wo,q  A, Bp) ] (23) 

 

φp = ∑  4
σ=1 sign(μp(σ))(μp(σ))2 (24) 

 

3.4.  Decomposition method 

The decomposition method is applied to decompose SSVEP into sub-components, which extract 

precise accurate information through SSVEP data. This decomposition technique is used for SSVEP 

performance detection which can be further enhanced. Here each subset l(l = 1,2, … . . Pl) of this technique is 

implemented by the zero-pulse filter. The feature τp
l   is evaluated within each sub-band by (24). Upon 

integration τp
l  through each sub-band, the end correlation feature is obtained via γp as given in (25). However 

μ(l) =
1

l1/4 +
1

4
 is the associated weight function, the target frequency is obtained through the h with maximum 

correlation as shown by (26). 

 

γp = ∑  
Pl
l=1 μ(l). (τp

l )2, (25) 

 

h = pargmaxγp, p=1,2,……,Ph (26) 

 

 

4. PERFORMANCE EVALUATION 

The deep neural network (DNN) is assessed using the BETA (BEnchmark Database Towards BCI 

Application) [27] dataset. A full experimental study is performed, and the results are compared to state-of-

the-art methodologies that have previously been assessed on specific datasets and shown promising results. 

Conv-CA, ms-eTRCA, eTRCA, TSCORRCA, m-Extended-CCA, Extended-CCA (Extended-canonical 
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correlation analysis), and CORRCA (Two stage – correlated. This dataset comprises meticulously curated data 

points, meticulously selected to represent a diverse range of scenarios and conditions relevant to our study. 

 

4.1.  Dataset details 

The dataset was used to evaluate the BCI SSVEP speller. Thirty-five healthy volunteers took part in 

six sessions of the Benchmark dataset, which had a 5x8 character matrix flashing forty characters at rates 

ranging from 8 to 15.8 Hz. Data on EEG were collected from 64 channels. The BETA dataset included 70 

subjects divided into four blocks who used a character display that resembled a keyboard; they experienced 

an average visual delay of 130 ms. 

 

4.1.1. Beta dataset 

The Beta dataset constitutes a pivotal component in our research, serving as a cornerstone for evaluating 

the effectiveness and performance of the proposed methodologies. This dataset comprises meticulously curated 

data points, meticulously selected to represent a diverse range of scenarios and conditions relevant to our study. Its 

comprehensive nature allows for thorough testing and validation, ensuring robustness and reliability in our 

findings. Through the utilization of the Beta dataset, we aim to provide a rigorous and standardized framework for 

assessing the capabilities and limitations of our proposed approaches, thereby contributing to the advancement of 

knowledge and understanding in the field of BCIs. Figure 2 displays the layout of the character matrix used for 

stimulus presentation in BETA dataset experiments. 

 

 

 
 

Figure 2. Layout of the character matrix used for stimulus presentation in BETA dataset experiments 

 

 

4.2.  Results for Beta dataset 

Figure 3 shows the graph depicting performance across 9 channels illustrates the superiority of the PS 

algorithm over existing approaches like CORRCA and Extended-CCA. The PS algorithm consistently exhibits 

higher signal strengths across all channels, ranging from 46.23 at channel 0.2 to 88 at channel 1. Conversely, 

methods such as CORRCA and Extended-CCA consistently yield lower signal strength values. Notably, compared 

to the existing system (ES) [28], which shows a signal strength value of 83.45 for channel 1, the PS algorithm 

demonstrates even stronger and more reliable signal strengths, with a value of 88. This emphasizes the robustness 

and effectiveness of the PS algorithm in providing enhanced signal strengths across a spectrum of channels.  

In Figure 4, a graph spanning 64 channels illustrates the consistent outperformance of the PS 

algorithm compared to existing approaches. Through a comprehensive evaluation of various methods 

alongside PS, it becomes evident that PS consistently delivers higher accuracy values across all channels. 

When juxtaposed with approaches above mentioned and PS consistently exhibits superior accuracy for each 

channel. For instance, considering the signal strength at channel 0.2, PS achieves a notably higher value of 

49.5, surpassing the ES [28] value of 46.54. This underscores the remarkable performance and reliability of 

the PS algorithm in providing elevated accuracy values across the entire spectrum of channels. 

Notably, the PS consistently surpasses the performance of existing methods, achieving the highest 

ITR values across all channels. For instance, at channel 0.2, PS demonstrates an ITR of 140.5, whereas the 

existing method achieves 137.5. The most substantial performance disparity between PS and other methods is 

observed at channel 0.3, where PS achieves an ITR of 182.5 compared to 180.5 attained by the existing 
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method (ES [28]). This highlights the superior performance of PS across the entire spectrum of evaluated 

channels. Figure 5 visually represents the ITR graph across the nine channels, illustrating the enhanced 

performance of PS in comparison to other methods, based on the BETA dataset. 

 

 

 
 

Figure 3. Comparison graph of accuracy across 9 channels for the BETA dataset 

 

 

 
 

Figure 4. Comparison graph of accuracy across 64 channels for BETA dataset 

 

 

 
 

Figure 5. ITR graph data for 9 channels for BETA dataset comparisons 
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Figure 6 shows an evaluation of intrinsic transfer rate (ITR) over 64 channels, comparing the 

performance of several approaches the existing method, along with PS. Interestingly, PS consistently 

outperforms other approaches in all channels. For example, at channels 0.2, PS has an ITR of 142, beating ES 

[28]'s 138.9, proving its strong performance. This tendency is similar across all of the channels, with PS 

obtaining the greatest ITR levels. At channel 0.4, PS obtains an exceptional ITR value of 200.5, surpassing ES's 

value of 195.7. These findings illustrate PS's excellent ITR performance over the entire 64-channel spectrum. 

 

 

 
 

Figure 6. ITR graph of 64 channels for BETA dataset comparison 
 

 

5. CONCLUSION 

In conclusion, the proposed methodology represents a pioneering and thoroughgoing approach to 

enhance the effectiveness and precision of SSVEP-based BCIs. The introduction of invariant templates and 

the deployment of spatial filters address the intricate challenges associated with user-specific variations and 

the calibration demands inherent in SSVEP BCIs. By facilitating internal and mutual knowledge transfer 

across subjects, the research significantly diminishes the necessity for individual calibration, streamlining the 

user training process. Moreover, the decomposition method enhances the analysis of SSVEP signals, 

extracting precise information to elevate detection performance. These contributions hold the potential to 

propel SSVEP-based BCIs to new heights, rendering them more user-friendly, with elevated ITRs, and 

versatile across diverse domains, ranging from assistive technologies to cognitive neuroscience. The 

outcomes of this research mark a promising stride towards the pragmatic and efficient integration of SSVEP-

based BCIs, promising improved communication and control for individuals with varying needs and 

capabilities. 
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