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 In modern agriculture, ensuring plant health is essential for high crop yields 

and quality. Plant diseases pose risks to economies, communities, and the 

environment, making early and accurate diagnosis crucial. The internet of 

things (IoT) has revolutionized farming by enabling real-time crop 

monitoring and using drones and cameras for early disease detection. This 

technology helps farmers address challenges with precision and 

sustainability. This research proposes an ensemble learning model 

incorporating multi-class capsule networks (MCCN) and other pre-trained 

model with majority voting system is implemented to predict plant diseases 

and pests early. The research aims to develop a robust MCCN-based 

ensemble prediction model for timely disease identification. To evaluate the 

performance of the ensemble model, various key metrics, including 

accuracy, and loss value, are assessed. Furthermore, a comparative analysis 

is conducted, benchmarking the MCCN model against other well-known 

pre-trained models such as residual network-101 (ResNet101), visual 

geometry group-19 (VGG19), and GoogleNet. This research signifies a 

substantial stride towards the realization of IoT-driven precision agriculture, 

where advanced technology and machine learning contribute to the early 

detection and mitigation of plant diseases, ultimately enhancing crop yield 

and environmental sustainability. 

Keywords: 

Capsule network  

Convolutional neural network 

Deep learning 

Ensemble learning 

Multi-class capsule networks 

Precision agriculture  

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Karthikeyan Dhandapani 

Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology 

Kattankulathur, Chennai, Tamil Nadu, India 

Email: karthipncl@gmail.com 

 

 

1. INTRODUCTION 

In modern agriculture, plant health is crucial for achieving high crop yields, impacting both quality 

and quantity. Plant infections can threaten economies, communities, and the environment, highlighting the 

need for early and accurate disease diagnosis. In contrast, employing automated disease segmentation 

through plant leaf image analysis with soft computing techniques presents a more efficient alternative to the 
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existing approach. The advent of the internet of things (IoT) has initiated a transformative era in agriculture, 

endowing farmers with the tools for precise and sustainable farming practices to address the multifaceted 

challenges in the agricultural landscape. The rapid evolution of technology is ushering in a shift from 

conventional practices towards cutting-edge methodologies. The automation of early-stage plant disease 

detection has become imperative, not only to streamline detection processes, enhance accuracy, but also to 

ensure consistent crop yields despite variations in climatic, soil, and environmental conditions. Manual 

pathogen detection in plants is burdened by its high costs, time intensiveness, and the necessity for 

specialized expertise. 

 

 

2. LITERATURE REVIEW 

The researchers primarily emphasize image processing techniques for extracting distinctive features, 

rather than concentrating on classifier systems. Recognizing the limitations of machine learning algorithms, 

the research direction has shifted towards deep learning algorithms. Deep learning models have gained 

prominence in image processing applications due to their ability to automatically extract features and train 

themselves. They have demonstrated significantly improved performance compared to traditional machine 

classification models, especially in tasks like plant leaf classification. 

In 2015, Kawasaki et al. [1] introduced a three-layered convolutional neural network (CNN) 

structure designed to detect cucumber leaf diseases, achieving an impressive accuracy rate of 94.9%. 

Similarly, Lee et al. [2] presented a five-layer CNN model in 2015 for categorizing 44 different plant species. 

This model was tested using 2,816 images from the MalayaKew (MK) dataset, sourced from the Royal 

Botanic Gardens in New England, and achieved a remarkable accuracy of 99.7%. In 2016, Mohanty et al. [3] 

conducted experiments that explored the state-of-the-art techniques in plant disease identification and 

classification, marking a significant advancement in this field. Their research employed AlexNet and 

GoogleNet as integral components. The dataset was divided into three distinct categories: original color 

images, grayscale images, and segmented images. The model underwent training using each of these image 

sets, with the highest performance observed in the model trained on the original color images. Impressively, 

the proposed system achieved an average accuracy rate of 99.53%. 

Transfer learning, a prevalent technique in deep learning, involves the utilization of pre-trained 

models as a foundational starting point, followed by fine-tuning through a classification algorithm. Several 

research studies have successfully applied this approach in conjunction with specific algorithms to classify 

plant diseases. Ramcharan et al. [4] employed an InceptionV3 pre-trained model for feature extraction, 

coupled with a support vector machine (SVM) classifier for classification purposes. They trained the model 

using 11,670 infected cassava leaves from image datasets, achieving a remarkable classification accuracy of 

98%. Similarly, in 2017, Shijie et al. [5] implemented a technique merging visual geometry group-16 

(VGG16) with SVM for tomato leaf disease identification, attaining an accuracy of 89% in tests conducted 

with 440 infected images, spanning 11 different class labels. 

Zhang et al. [6] in 2018 proposed an improvised GoogLeNet model and Cifer 10 model for maize 

leaf disease classification top identification accuracy of about 98%. The research by Singh et al. [7] in 2019 

proposed a multi-layer CNN structure for identification of mango leaves affected by the anthracnose fungal 

infection. In this work, they have conducted a rigorous evaluation using a real-time dataset collected at Shri 

Mata Vaishno Devi University, Katra, Jammu and Kashmir, India. This dataset comprises a total of 1,070 

images depicting the leaves of mango trees. It encompasses a diverse range of images, including those of 

both healthy leaves and leaves that have been infected by various diseases. The outcomes of their study 

demonstrate a notable improvement in classification accuracy achieved by the multi-layer convolutional 

neural network (MCNN) model in comparison to existing state-of-the-art approaches. 

Sun et al. [8] in 2020 used an improvised RPN model for detection of northern maize leaf blight in 

challenging field conditions and achieved an accuracy of 91.8% after 6,000 iterations. In 2020, Hu et al. [9], 

introduce the multidimensional feature compensation residual neural network (MDFC-ResNet) model 

designed for precise disease identification within the system. 

Zinonos et al. [10] in 2021, presents the practical outcomes of a combined long range (LoRa) and 

deep learning-powered computer vision system, designed for efficient identification of grape leaf diseases 

utilizing low-resolution images. In this research, they employ the grad-CAM method to visualize the 

judgments made by the CNN’s output layer. The visualization results highlight significant activation in the 

disease’s affected region, elucidating how the network effectively discriminates between various grape leaf 

diseases. A comprehensive evaluation was conducted using a total of 1,296 bean leaf images by  

Elfatimi et al. [11] in 2022. The results obtained through this approach demonstrated the remarkable 

performance of our MobileNet model in classifying bean leaf diseases. Specifically, the proposed model 

exhibited impressive average classification accuracy, surpassing 97% on the training dataset and exceeding 

92% on the test dataset, encompassing the two unhealthy classes and one healthy class. These findings 

https://ieeexplore.ieee.org/author/37085997929
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underscore the potential of deep learning techniques in the realm of bean leaf disease detection and 

classification, offering robust and accurate results. 

The research by Vishnoi et al. [12] in 2023, proposed an improvised CNN model for detecting apple 

leaf diseases and achieved an accuracy of 98%. In the same year, Farah et al. [13], proposed a transfer 

learning based VGG19 model for classification of soybean leaf diseases and achieved an accuracy up to 

94.16%. For a comprehensive overview of existing research in leaf disease identification using deep learning 

algorithms, please refer to Table 1, summarizing the recent efforts of various researchers in this field from 

the year 2020 [14], [15]. 

 

 

Table 1. Previous studies conducted by diverse researchers on leaf disease recognition utilizing  

deep learning algorithms from the year 2020 
Author Algorithm used Dataset Prediction accuracy 

Tetila et al. [14] Deep neural network (DNN) with fine 

turned transfer learning 

UAV images of soybean 99.04% 

Li et al. [15] Faster recurrent-CNN (RCNN) Sea cucumber videos 99% 

Liu et al. [16] generative adversarial network (GAN) 

based Xception network 

8,124 images of grape leaves 98.70% 

Zeng et al. [17] GAN based deep CNN model 14,056 images of citrus leaves 92.60% 

Ai et al. [18] Inception-ResNet-v2 27 disease images of 10 crops 86.1% 

Pham et al. [19] Enhanced transfer learning 450 images of mango leaves Up to 89.41% 
Zhou et al. [20] Restructured deep residual dense 

network 

AI challenger 2018 datasets for 

tomato leaf diseases 

95% 

Zhou et al. [21] Fine grained-GAN with ResNet 1,500 images of grape leaves 96.27% 

Zinonos et al. [10] LoRa with deep learning Grape leaves - 

Hassan and Maji [22] CNN with inception layer and residual 
connection 

Plantvillage dataset 
rice disease dataset 

cassava dataset 

99.39%, 99.66%, and 
76.59% respectively 

Amin et al. [23] ResNet152 and InceptionV3 15,408 images of corn leaf 98.37% and 96.26% 
respectively 

Chen et al. [24] Lightweight M-Inception PlantVillage dataset 99.21% 

Liu and Zhang [25] PiTLiD based Inception-V3 Apple leaf imags 98.65% 
Masood et al. [26] MaizeNet 2,112 images of mize leaf 97.89% 

Hosny et al. [27] CNN based on local binary pattern 

(LBP) 

Apple leaf, tomato leaf, and grape 

leaf 

98.8%, 96.5%, and 

98.3% respectively 
Alharbi et al. [28] EfficientNet CGIAR dataset 98.5% 

Abinaya et al. [29] Residual U-net 54,303 images of corn leaf 95.26% 

Farah et al. [13] Transfer learning based VGG 16 model 6,410 images soybean leaves 94.16% 

 

 

Presently, there is a notable scarcity of systems for monitoring and forecasting crop conditions. 

Muskmelon, a lucrative crop, hinges its productivity on optimal farming practices, careful management, and 

disease-free plant growth. With a relatively short lifespan of 55 to 65 days, any disease outbreak during this 

period results in complete losses for farmers. Moreover, there is a dearth of comprehensive information on 

fine-grained plant disease prediction that incorporates additional deep learning layers. 

 

 

3. PROPOSED METHOD 

This research proposes an ensemble learning model incorporating multi-class capsule networks 

(MCCN) and other pre-trained model with majority voting system is implemented to predict plant diseases 

and pests early. The research aims to develop a robust MCCN-based ensemble prediction model for timely 

disease identification. The architecture of the proposed methodology is shown in Figure 1. 

 

3.1.  Capsule network 

A capsule is like a group of specialized neurons, where each neuron is tuned to recognize different 

characteristics of an object, like its position, size, or color. Capsule networks aim to predict these features, 

including the object’s orientation, based on the information they receive. This loss of spatial information can 

be detrimental when dealing with diseases in plants, which require preserving even more information.  

To address this issue, capsule networks are used for infection classification in leaf images, as they maintain 

more spatial information, leading to improved accuracy. 

 

3.2.  Architecture of multi-class capsule network 

We have made a notable change by eliminating the standard max-pooling layers that usually follow 

each convolutional layer. Furthermore, we’ve adapted the loss function within the capsule network to a 
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multi-class entropy loss function, which is tailored to identify a network with six distinct classes. In this 

setup, one class signifies a healthy condition, while the remaining five classes represent different disease 

labels. 

The architecture of the MCCN is illustrated in Figure 2. This comprehensive structure comprises ten 

convolutional layers for extracting essential features, followed by a single primary capsule layer and a single 

disease capsule layer responsible for the classification process. In addition, there are three fully connected 

layers, which play a role in decoding the image segments and are crucial for reconstructing the loss function. 

This reconstruction process measures how effectively the algorithm models the provided data. 

The process of feature extraction from the input image is achieved through convolutional layers.  

In our proposed structure, there are a total of ten convolutional layers. To facilitate a meaningful comparative 

analysis with the benchmarked dataset, the input image is resized to 256×256 pixels. It’s worth noting that 

the benchmarked dataset for comparison is the PlantVillage dataset, where all images share the same 

dimensions of 256×256 pixels. 

 

 

 
 

Figure 1. Architecture of ensemble model prediction 

 

 

 
 

Figure 2. Architecture of MCCN 
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3.3.  Capsule layer 

The primary capsule layer contains a total of 53,08,672 learnable parameters, and these parameters 

are then passed on to the disease capsule layer, serving as the higher capsule layer. In the transition, the 3,200 

eight-dimensional vectors are meticulously mapped into the disease capsule layer, resulting in 3,200 

capsules, each comprising eight neurons arranged in a 1×1 structure, as described in reference [30]. 

These eight-dimensional vectors are further transformed into six class labels, expanding their vector 

size to sixteen dimensions. These six class labels represent five distinct disease categories and one for the 

category of healthy leaves. The link weights connecting the DisiCaps layer with the preceding layer 

encompass two vital parameters: Cij, which pertains to each capsule’s connection to all six class labels, and 

Wij, which signifies the connection between specific neurons in the output layer. 

The total number of learnable Cij parameters amounts to 19,200 parameters (3,200 capsules×6 class 

labels). Similarly, the total number of learnable Wij parameters stands at 24,57,600 parameters (8 dimensions 

×16 dimensions×32,00 capsules×6 class labels). In this setup, the primary capsule layer consists of eight 

capsules labeled as ui, and these capsules are interconnected with sixteen capsules labeled as vj in the 

DisiCaps layer. A squashing function, as described in [31], [32], is applied to ensure that the output falls 

within the range of zero to one. The final step entails assessing the results from both low-level capsules and 

high-level capsules and making any required adjustments. 

 

3.4.  Final layers 

This process generates a vector with dimensions of 16×512, where 16 corresponds to the dimension 

of the DisiCaps layer. Subsequently, the fully connected layer is further extended to encompass 1,024 

neurons, utilizing the rectified linear unit (ReLU) activation function. Eventually, this expanded fully 

connected layer contains 784 neurons, aligning with the input dimensions of the last CNN layer, which 

measures 28×28 pixels. 

 

3.4.1. VGG19 

VGG19 derives its name from its structure, consisting of 19 layers, including 16 convolutional 

layers and 3 fully connected layers. The repeated pattern of small-sized kernels (3×3) for convolutional layers 

contributes to its distinctive design. While VGG19 exhibits remarkable performance, its main drawback lies 

in its resource-intensive nature due to a large number of parameters. This can lead to challenges in deploying 

the model on resource-constrained devices. 

 

3.4.2. ResNet101 

While ResNet101 addresses challenges related to training deep networks, its computational 

complexity may pose challenges for deployment on resource-constrained devices. Model compression 

techniques are often explored to mitigate this issue. 

 

3.4.3. GoogleNet 

The standout feature of GoogleNet is the use of the inception module, which employs multiple 

convolutional filters of different sizes (1×1, 3×3, and 5×5) and a pooling layer in parallel. This allows the 

network to capture features at various spatial scales within the same layer. 

 

3.4.4. Dataset description 

For our experimental work, we’ve assembled a real-time dataset comprising six distinct class labels. 

This dataset encompasses various categories, specifically, “Disinfected leaf,” “Early Blight,” “Mosaic virus,” 

“Leaf spot,” “Bacterial Spot,” and “Powdery Mildew.” Our research primarily focuses on addressing the five 

most common diseases that typically afflict muskmelon plants. The images utilized in this study have been 

sourced from a one-acre agricultural plot situated in Sathappadi Village, Attur Taluk, Salem District, Tamil 

Nadu. This location’s geographic coordinates are approximately 11° 35’ 53.2176’’ N for latitude and 78° 35’ 

48.4872’’ E for longitude [30], [32]. 

Muskmelon, known for its profitability, has a relatively short lifespan, typically around 65 days. 

During this brief period, any outbreak of disease can have a devastating impact on the entire crop, leading to 

significant yield losses. Consequently, there is a pressing need for the development of an early disease 

prediction system to mitigate these risks. From this vast repository, we extracted images relevant to the five 

major diseases that commonly affect plants, and these images were employed as a benchmark dataset for our 

disease classification efforts. As a standard practice, all the images in this dataset have been uniformly 

resized to dimensions of 256×256. 
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4. RESULTS AND DISCUSSION 

The model’s performance is evaluated using a range of key metrics, focusing on accuracy and loss. 

During 50 epochs, training and validation accuracies and loss values are recorded for each model. After 

training, models are tested on 30% of the unused dataset to measure their accuracy. For predictions, an 

ensemble learning model is used with majority voting to select the most accurate model. The training and 

validation accuracy and loss function of ResNet101 is shown in Figure 3. The training accuracy of the 

ResNet101 model exhibits a progressive increase from an initial accuracy of 62.53% to a peak of 98.59%. 

The validation accuracy of the ResNet101 model follows a similar increasing trend, starting at 66.41% and 

reaching 92.37% in the final epoch. 

 

 

 
 

Figure 3. Training and validation accuracy and loss values ResNet101 

 

 

The training and validation accuracy and loss function of VGG19 is shown in Figure 4. The training 

accuracy of the VGG19 model steadily increased with each epoch, reaching a peak of 98.57% in the final 

epoch. The validation accuracy of the VGG19 model followed a similar positive trajectory. Starting at 

66.41%, the accuracy steadily increased and reached 96.95% in the final epoch. This alignment with the 

training accuracy demonstrates the model’s ability to generalize well to data it has not seen during training. 

 

 

 
 

Figure 4. Training and validation accuracy and loss values VGG19 

 

 

The training and validation accuracy and loss function of GoogleNet is shown in Figure 5.  

The training accuracy of the GoogleNet model exhibits a progressive increase from an initial accuracy of 

62.53% to a peak of 98.13%. The validation accuracy of the GoogleNet model follows a similar increasing 
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trend, starting at 66.41% and reaching 92.37% in the final epoch. The training and validation accuracy and 

loss function of MCCN is shown in Figure 6. 

The MCCN exhibited noteworthy performance during both training and validation phases, as 

depicted by the evolving accuracy values over the course of 50 epochs. The training accuracy consistently 

improved throughout the epochs, starting at 85.997% and reaching an impressive 99.1%. This progressive 

increase underscores the model’s capability to effectively learn and adapt to the complexities of the dataset. 

The validation accuracy mirrored the training accuracy trend, demonstrating a parallel increase from an 

initial 72.95% to a peak of 98.74%. This synchronization indicates that the model not only performed well on 

the training set but also maintained its effectiveness when confronted with previously unseen data during 

validation. The consistent rise in validation accuracy signifies the robustness of the MCCN in making 

accurate predictions on diverse data, reinforcing its potential for real-world applications. The testing accuracy 

of the models is shown in Table 2. The experimental results unequivocally demonstrate the superiority of the 

MCCN-based ensemble learning model. This model surpasses its counterparts, achieving an outstanding 

accuracy rate of 99.54%. 

 

 

 
 

Figure 5. Training and validation accuracy and loss values GoogleNet 

 

 

 
 

Figure 6. Training and validation accuracy and loss values MCCN 

 

 

Table 2. Testing accuracy of different models 
Models ResNet101 VGG19 GoogleNet MCCN Ensemble model 

Testing accuracy 98.67% 98.73% 98.36% 99.25% 99.54% 
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5. CONCLUSION 

This research presents an ensemble learning model combining MCCN with pre-trained models and a 

voting system for early detection of plant diseases and pests, achieving an impressive 99.54% accuracy.  

The model surpasses established architectures like ResNet101, VGG19, and GoogleNet, promoting IoT-

driven precision agriculture to enhance crop yields and environmental sustainability. Future work includes 

field trials to validate real-world applicability, optimizing the MCCN architecture, and integrating additional 

data sources like meteorological and soil information. Scalability for large-scale farming and compatibility 

with IoT systems are key areas for practical deployment. This approach aims to revolutionize proactive 

disease control in agriculture. 
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