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Abstract
This paper proposed a robust chaos control scheme for surface permanent magnet synchronous

motor (SPMSM) drive system considering the uncertain parameters and external disturbances. A nonlinear
time delay estimator is utilized to estimate the nonlinearities, uncertain parameters and disturbances of the
system on line, so it is not necessarily required the exact model of the system. Then, based on the time
delay estimator, a simple feedback controller, which is only related to the system errors and control input,
is simple and easy to be constructed. The control gains can be obtained easily using pole placement
method. The stability of the proposed control scheme is analyzed according to Lyapunov stability theory.
Law-filter is also used to improve the performance of the system. Simulation results illustrate the
effectiveness of the presented control method.
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1. Introduction
Permanent magnet synchronous motor (PMSM) drive system has been widely used in

industrial application, thanks to the advantages of high torque/inertia ratio, high torque/weight
ratio, compact size and no rotor loss, such as in robotic system, CNC system, diskdrive
systems, and so on. During the past years, the stability of the motor drive system, which is an
essential requirement for industrial automation manufacturing, has received considerable
attenuation. It has been found that chaos widely exists in all kinds of motor drive systems, such
as induction motors, DC motors, and switched reluctance motors [1]. Chaotic behavior in
permanent magnet DC motor with its parameters fall into a certain area is first addressed by
Hemati [2]. Li has found that chaos was also existed in surface permanent magnet synchronous
motor (SPMSM) [3]. Without considering power electric switching, SPMSM drive system can be
transformed into a typical Lorenz system, which is well known exhibiting chaotic behavior. In
most engineering applications, this undesirable chaotic oscillation, which will extremely destroy
the stabilization of the system or even induce system collapse, should be suppressed or even
eliminated.

Up to now, numerous control methods have been successfully used to control chaotic
SPMSM system, such as decoupling control [4], feedback control [5, 6], dynamic surface control
[5], Lyapunov exponents placement method [7, 8], sliding mode control [9], adaptive control [10,
11], and fuzzy control [12, 13]. However, decoupling control, feedback control, back-stepping
control, and Lyapunov exponents placement method, all of which depend on the mathematical
model of the system, cannot guarantee dynamic performance because of uncertain system
parameters. It requires a parameter adaptive mechanism for the adaptive control technique,
which increases the expense and complexity of the system and reduces its response capacity.
Sliding mode control requires uncertain terms to meet specific match conditions and exhibits
inherent chattering. Fuzzy control is usually based on Takagi–Sugeno fuzzy models of the
system. Li et al. [12] proposed the fuzzy feedback control scheme, which exhibits poor
responsiveness. Li et al. [14] then proposed optimal fuzzy guaranteed cost control, which
improves its responsiveness, but has a structure that is too complicated for application.
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Moreover, the abovementioned methods are based on the assumption that there is no
external disturbance in SPMSM. In fact, the uncertainties in a system usually are comprised of
unpredictable plant parameter perturbation from the norm, external disturbance acting on the
system, and unmodeled plant dynamics including undesirable nonlinear effects [15].Wu et at.
[16] presented L2-gain passivity control method to restrain the disturbances. Although this
control strategy can effectively inhibit the external disturbances in the system, but the uncertain
parameters is not considered. To solve these problems, based on time delay estimation
method, we propose a novel robust controller for SPMSM chaotic system with both parameter
uncertainties and external disturbances. Time delay estimation, which has been successfully
applied to control robot manipulators [17-19], is used to estimation of the nonlinearities,
uncertainties and external disturbances. Low-pass filter are used to obtain the smooth delay
estimation signals and control input signals. With this controller, the system exhibits not only
rapid response, but also robustness under uncertain parameters and external disturbances.

This paper is organized as follows. Section 2 presents the chaos model of SPMSM. The
proposed time delay controller is designed in detail in Section 3, and the stability is verified
according to Lyapunov stability. Section 4 presents the simulation results to illustrate the
effectiveness of the method. Finally, Section 5 concludes.

2. Chaos in SPMSM
The transformed model of SPMSM can be expressed as follows [3]:
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Where dv , qv , di , and qi are the transformed stator voltage components and current

components in the d-q frame, w and LT are the transformed angle speed and external load
torque respectively, and γ and σ are the motor parameters.

Considering the case that, after an operation of the system, the external inputs are set
to zero, namely, 0d q Lv v T   , system (1) becomes an autonomous system:

( )

d d q

q q d

q

i i wi

i i wi w

w i w





   
    
  







. (2)

The modern nonlinear theory such as bifurcation and chaos has been used to study  the
nonlinear characteristics of SPMSM drive system in [3]. It has found that, with the operating
parametersγ and σ falling into a certain area, SPMSM will exhibit complex dynamic behavior,
such as periodic, quasi periodic and chaotic behaviors. In order to make an overall inspection of
dynamic behavior of the SPMSM, the bifurcation diagram of the angle speed w with increasing
of the parameter  is illustrated in Figure 1(a).We can see that the system shows abundant
and complex dynamical behaviors with increasing parameter  . The typical chaotic attractor is
shown in Figure 1(b) with 0d q Lv v T   , 26  , and 5.46  .

According to chaos theory, the Lyapunov exponents and power spectrum are two
effective methods to determine whether a continuous dynamic system is chaotic. In general, a
three-dimensional nonlinear system has one positive Lyapunov exponents, implying that it is
chaotic. Figure 1(c) and (d) show the Lyapunov exponents and power spectrum of SPMSM
chaotic system (6) with 26  , and 5.46  . When the parameters are set as obove,
calculated Lyapunov exponents are: 1 0.483474EL  , 2 0.000926EL   , 3 7.942549EL   ,and
the Lyapunov dimension is 2.060755LD  , which means the system is chaotic.
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(a) (b)

(c) (d)

Figure 1. Bifurcation Deagram and the Characterizations of chaos in SPMSM  (a) Bifurcation
diagram of state variable w with the parameter  (b) typical chaotic attractor  (c) Lyapunov

exponents (d) power spectrum of state variable w

Considering the uncertain parameters and external distanbances, the dynamic model of
the system can be described as follows:

1
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Where  and  represent the uncertainty of  and  respectively 1d and 2d represent
the total disturbance including the unmodeled dynamics and external disturbances, which are
assumed to be continuous and bounded ( 1 1d  and 2 2d  ).

Following an actual operation, this article assumes that the fluctuation range of system
parameters is 30%, that is, 1 0.3     , 2 0.3     . The chaotic attractor of SPMSM
with parameter uncertainties is shown in Figure 2.

Figure 2. Chaotic Attractor of SPMSM with Parameter Uncertainties
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3. Controller Design for SPMSM Chaotic System
System (1) indicates three equilibrium points: 0 (0,0,0)S , 1( 1, 1, 1)S      , and

2 ( 1, 1, 1)S        . Given that γ=26, 0 (0,0,0)S is locally stable, and 1(25,5,5)S and

2 (25, 5, 5)S   are both locally unstable [3]. Assuming that one equilibrium point of system (1) is
( , , )d dd qd dS i i w , then:

0

0

( ) 0

d dd d qd

qd qd d dd d

d qd d

i i w i

i i w i w

w i w





    
     
   







. (4)

To quickly stabilize to equilibrium point ( , , )d dd qd dS i i w , u1 and u2 are used to control the
system. Under the control of u1 and u2, the system model can be represented as:
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Let e1 = id − idd, e2 = iq − iqd, e3 = w − wd, we can obtain the dynamic error equations of
the system:
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System (6) indicates that error state e3 is internally stable when e1 and e2 converge to
zero (because 0    ). So the focus of the controller design is to make e1 and e2 converge
to zero. The first and second equation of system (6) can be rewritten as:
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Where,
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System analysis is required prior to designing the controller. Since 1 1 2 3( , , )f e e e and

2 1 2 3( , , )f e e e are both continuous, if the time delay τ is sufficiently small, according to time delay
estimation method [19], the following approximation holds:

1 1 2 3 1 1 2 3

2 1 2 3 2 1 2 3

( , , ) ( , , )

( , , ) ( , , )
t t

t t

f e e e f e e e

f e e e f e e e









 

(9)

That is, 1 1 2 3( , , )tf e e e and 2 1 2 3( , , )tf e e e can be estimated by 1 1 2 3( , , )tf e e e  and 2 1 2 3( , , )tf e e e 

respectively. So, according to this method, it can be formally defined as :
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Where
^

means the estimated value of  , and t  means time delayed value of  . Note (7),
(11) can be rewritten as:
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Theorem. Consider dynamic error system (6). If the controller is designed as:
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Then system (6) globally asymptotically stable at the equilibrium point O (0, 0, 0), that is, system
state (id, iq, w) converge to ( , , )dd qd di i w , where k1 and k2 are the controller parameters that are
positive real numbers.

Proof. Add control 1u and 2u to the first and second equations of Equation (6), we can
obtain that:
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If the candidate Lyapunov function is defined as 2 21
1 22 ( )V e e  , then the time derivative

of V along the trajectory of (14) is:
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Where ζ1 and ζ2 denotes the estimated error, they are expressed by:
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V is negative outside the set  1 1 1 2 2 2e k e k    , so the solutions are

ultimately bounded. If e1=0 (an ideal case as 0  ) and e2=0 (an ideal case as 0  ), then
the controlled subsystem (14) is globally asymptotically stable.

If we assumes that the stable time of e1 and e2 are tm1 and tm2,respectively, then after tm
( 1 2max{ , }m m mt t t ), e1≡0 and e2≡0. Substituting 1 0e  and 2 0e  into the third equation of
system (6) yields:

3 3( )e e    , (16)
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Obviously, subsystem (16) is globally asymptotically stable because of 0    .
Thus, system (6) is globally asymptotically stable. That is, system state (id, iq, w)

converge to ( , , )d dd qd dS i i w .

4. Simulation Results
We use SIMULINK of MATLAB to verify the feasibility of the proposed control scheme

for SPMSM chaotic system. In the simulation, the fourth-order Runge–Kutta method is used to
solve the systems with time step size 0.001. The parameters of SPMSM are selected as 26 
, and 5.46  . The uncertain parameters are selected as the same as in Section 3, and the
external distances are 1 0.5sin(5 )d t and 2 0.5sin(5 )d t . The control method takes effect
after t=10 s.

Supposed we choose the control parameters to be 1 30k  , 2 60k  , and 0.001  . The
desired equilibrium point ( , , )d dd qd dS i i w is set as: if 0 20t  , 1( , , ) (25,5,5)d dd qd dS i i w S ; if

20t  , 1( , , ) (25,5,5)d dd qd dS i i w S .
For the purpose of examining the robustness of the proposed method for uncertain

parameters and the anti-disturbance capacity in SPMSM chaotic system, the simulation results
are shown in Figure 3.

(a) (b)

(c) (d)

Figure 3. The Response of SPMSM Chaotic System under the Proposed Control
Scheme with Uncertain Parameters and External Distanbances (a) state trajectories (b) control

inputs  (c) 1f ,
^

1f and
^

1 1 1e f f  (d) 2f ,
^

2f and
^

1 2 2e f f 
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As can be seen from Figure 3, the proposed controller can quickly stabilize the system
state to a desired equilibrium point. However, the design of the controller has a big chattering
phenomenon, which will affect the performance of the system.

In order to improve the performance of the designed controller, a low-pass filter is
introduced to the controller in this paper. The cutoff frequency of the low-pass filter is set as

100cw  Hz. Moreover, the same low-pass filter is also introduced to estimate 1f and 2f . the
simulation results of the improved controller are shown in Figure 4.

(a) (b)

(c) (d)

Figure 4. The Response of SPMSM Chaotic System under the Proposed Control Scheme with
Uncertain Parameters and External Distanbances using Low-pass Filters (a) state trajectories

(b) control inputs  (c) 1f ,
^

1( 1 )ef f and
^

1 1 1e f f  (d) 2f ,
^

2 ( 2 )ef f and
^

2 2 2e f f  .

We can see from Figure 4 that the control inputs and estimator outputs are both
smooth. The states of the system stabilize the system state to a desired equilibrium point and
the estimation errors converge to zero quickly.

5. Conclusion
We develop a novel robust control scheme for SPMSM chaotic system with both

parameter uncertainties and external distances. This controller applies time delay estimator to
estimate the nonlinearities, uncertain parameters and external disturbances. Law-filter has been
used to improve the performance of the system. The structure of this controller is easy to design
and implement. Simulation results verify that the proposed controller exhibits quick
responsiveness and strong robustness. Future research should investigate the implementation
of the proposed control scheme by using an experimental setup. The scheme can also be
extended to synchronize SPMSM chaotic systems with uncertain parameters.
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