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ABSTRACT

Support vector machine (SVM) is a pivotal classification algorithm, and its
evolutionary counterpart, the twin SVM (TWSVM), has gained acclaim for
its advanced generalization capabilities, particularly in handling imbalanced
data. TWSVMs achieve swift training by explicitly exploring a pair of non-
parallel hyperplanes, yet selecting numerical values for hyperparameters poses a
challenge due to the uncertainty introduced by random preferences. This paper
presents a novel approach, the Chebyshev distance-based TWSVM, specifically
designed for hyperparameter tuning in imbalanced binary classification. This
innovative model mitigates the uncertainty of hyperparameter selection by lever-
aging Chebyshev distance, thereby enhancing the generalization capabilities
of the TWSVM. To evaluate its efficacy, computational tests were conducted
on publicly accessible real-world benchmark datasets across various domains,
including non-linear cases. The results demonstrate that the Chebyshev
distance-based TWSVM outperforms several existing methods, achieving supe-
rior performance with reduced computational time and setting a new benchmark
in the field.
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1. INTRODUCTION
Support vector machine (SVM) is a robust binary classification method introduced by Cortes and

Vapnik in 1995. SVM is based on Vapnik-Chervonenkis dimensional theory and structural risk minimization.
It utilizes decision hyperplanes, known as support hyperplanes, to separate data into two classes. The distance
between these hyperplanes is maximized through quadratic programming, making SVM effective even in non-
linearly separable cases with the kernel trick. The SRM principle enhances generalization and reduces training
errors. SVM finds widespread applications in text classification, face recognition, finance, bio-medicine, and
more. Robust SVM, with a new loss function, addresses noise for better generalization. The basic idea involves
finding supporting hyperplanes with the largest distance between them, achieved by solving a convex quadratic
minimization problem. Modifications like the least squares SVM simplify hyperplane determination through
linear equations, offering advantages in specific scenarios [1].

In non-linear models, a feature map ϕ : Rn → H maps data into a higher-dimensional Hilbert
space H, where the search for separating hyperplanes occurs, and the associated kernel function is denoted as
K : Rn × Rn → R [2]. The decision function for linear models is of the form:
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f(x) = sgn(⟨w, z⟩+ b) (1)

and the decision function for non-linear models will be,

f(x) = sgn(

i=I∑
i=1

αiyiK(xi, x) + b) (x ∈ Rn) (2)

The primary aim of SVM (2) and (3) is to minimize a higher bound on generalization error. In
linearly separable cases, SVM finds the hyperplane that is farthest from the closest learning samples. For
non-separable data, SVM maximizes the margin while keeping the error low. However, traditional SVM faces
challenges due to complex quadratic programming problem (QPP) calculations and difficulties handling non-
linearly independent data, which may lead to lower accuracy [3].

Despite its superior performance compared to other systems, SVM struggles with complex data due to
the high computational cost of solving QPPs. To tackle this, Platt [4] introduced sequential minimal optimiza-
tion (SMO), a specialized algorithm for solving QPPs during SVM training. Various enhancements, including
advanced kernel methods [5], have improved SVM accuracy over the past decade. In 2001, Fung and Man-
gasarian [6] proposed proximal SVM (PSVM), using systems of linear equations instead of quadratic or linear
programming problems, and classifying data by assigning points to the closest of two parallel planes. In 2006,
Mangasarian and Wild [7] introduced generalized eigen value proximal support vector machine (GEPSVM),
which classifies non-parallel hyperplanes using a generalized eigenvalue approach and avoids solving QPPs.
Ye and Ye [8] proposed an improved approach in 2009, laying the groundwork for twin SVM (TWSVM).

Jayadeva et al. [9] introduced TWSVM, a binary SVM classifier, to enhance GEPSVM’s general-
ization ability. TWSVM determines two non-parallel hyperplanes and solves two small QPPs, reducing com-
putational cost. TWSVM offers faster performance and better generalization than SVM and GEPSVM, using
kernels in non-linear classification while requiring matrix inversions. In 2017, Ma et al. [10] proposed an it-
erative algorithm based on L2p norm distance to enhance TWSVM for two-class data classification. Although
numerous methods exist in the literature to enhance the performance of the TWSVM model, there is still no
appropriate method to tune the hyperparameters, which are considered key parameters in the TWSVM model.
To address this issue, in 2023 Balasubramanian and Gajendran [11] introduced the P-distance based regularized
TWSVM. This method aims to improve the generalization capacity of TWSVM and reduce the randomness
in hyperparameter tuning. To be precise, the proposed method specifically addresses the issue of randomly
tuning hyperparameters by using Chebyshev distance. This study investigates the effect of a method designed
to improve the generalization capacity of TWSVM and reduce the randomness in hyperparameter tuning.

2. TWIN SUPPORT VECTOR MACHINE
Consider all data samples in the positive class of a matrix A ∈ Rm

1 × n , where ithrow Ai ∈ Rn

and the matrix B ∈ Rm
2 × n represents the negative class. From (6), the linear TWSVM determines two

non-parallel hyperplanes, where w1 ∈ Rm, w2 ∈ Rm, b1 ∈ R and b2 ∈ R. The hyperplane of TWSVM is
positioned close to the data of one class [1] or [−1] and distanced from the data of another class [1] or [−1] as
much as possible.

The formulation of TWSVM can be expressed as follows:

min
(w1,b1,q1)∈R(2n+1)

∥ Aw1 + e1b1 ∥2 +c1e
T
2 q1,

such that − (Bw1 + e2b1) + q1 ≥ e2, q1 ≥ 0 (3)

min
(w2,b2,q2)∈R(2n+1)

∥ Bw2 + e2b2 ∥2 +c2e
T
1 q2,

such that (Aw2 + e1b2) + q2 ≥ e1, q2 ≥ 0 (4)

In TWSVM, c1, c2 > 0 are hyperparameters, e1, e2 are vectors of ones of appropriate dimensions and q1, q2
are slack variables. Apparently, the goal of TWSVM is to solve the QPP’s (7) and (8).

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1383–1391



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1385

The dual problems can be obtained as follows:

max
α

eT2 α− 1

2
αTG(HTH)−1GTα, such that 0 ≤ α ≤ c1 (5)

max
γ

eT1 γ − 1

2
γTH(GTG)−1HT γ, such that 0 ≤ γ ≤ c2 (6)

where α and γ are Lagrange multipliers, H = [Ae1] and G = [Be2]. The solutions of equations utilized to
find two hyper planes by,

[w1b1]
T = −(HTH)−1GTα and [w2b2]

T = −(GTG)−1HT γ

Although the matrices GTG or HTH are positive semi definite and singular. They introduced a reg-
ularization parameter and the inverse matrices (GTG)−1and (HTH)−1 are replaced by (GTG + δI)−1 and
(HTH+ δI)−1 respectively, where δ and I are positive scalar and unit matrix respectively [11]. The nonlinear
TWSVM are given by,

min
(w1,b1,q1)∈R2n+1

∥ K(A,CT )w1 + e1b1 ∥2 +c1e
T
2 q1,

such that− (K(B,CT )w1 + e2b1) + q1 ≥ e2, q1 ≥ 0 (7)

min
(w2,b2,q2)∈R2n+1

∥ K
(
B,CT

)
w2 + e2b2 ∥2 +c2e

T
1 q2,

such that−
(
K(A,CT )w2 + e1b2

)
+ q2 ≥ e1, q2 ≥ 0 (8)

The performance of TWSVM exceeds that of classical SVM and GEPSVM on specific benchmark datasets.
During simulation, a key challenge is selecting appropriate parameters for model construction. Despite the
existence of various parameter selection methods for TWSVM, directly choosing hyperparameters remains a
laborious exhaustive search process. To address these issues, the proposed Chebyshev-based (CB-TWSVM)
formulation proves beneficial in tuning hyperparameters without relying on randomness.

3. CHEBYSHEV DISTANCE BASED TWSVM
Hyperparameter sensitivity significantly affects the performance, convergence, and generalization of

machine learning models, including TWSVM, which are particularly sensitive to the regularization parameter
ci. Smaller values of ci lead to wider margins but allow more misclassifications, while larger values result
in tighter margins with fewer errors. Traditional TWSVM models often lack systematic methods for tuning
ci, prompting the development of CB-TWSVM, a new approach that employs Chebyshev distance to improve
hyperparameter selection without relying on random values where numerous literature reviews suggest that
distance measures can be employed in various steps of TWSVM algorithm [12]. Additionally, to enhance
performance, we use a fixed rectangular kernel. The Chebyshev distance, also known as the maximum or L∞
metric, measures the largest difference between any coordinate dimension of two points [13]. The mathematical
foundation of Chebyshev distance is derived from Minkowski distance. For variables x and x′, Minkowski
distance is defined as,

dp(x, x
′) =∥ x− x′ ∥p= (

d∑
i=1

| xi − x′
i |p)

1
p

where p ≥ 1. When p → ∞, Chebyshev metric can be derived as,

Dche(x, x
′) =∥ x− x′ ∥∞= max

i
| xi − x′

i | (9)

For two points (x1, y1) and (x2, y2) in a two-dimensional space, the Chebyshev distance is
defined as:

D∞ = max(| x2 − x1 |, | y2 − y1 |)

Chebyshev distance-embedded twin support vector machine for ... (Sai Lakshmi Balasubramanian)
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general, for n-dimensional space, the Chebyshev distance between two points (x1, y1, . . . , z1) and
(x2, y2, . . . , z2) is given by:

D∞ = max(| x2 − x1 |, | y2 − y1 |, . . . , | z2 − z1 |)

Chebyshev distance essentially computes the maximum absolute difference along any dimension.
Consequently, Chebyshev distance serves as a measure of the maximum separation along any axis between
two points in the learning set [14]. Applying (7) to (9) in place of c1 and c2 for the positive and negative
training sample sets, respectively, we obtain the following: for the positive training sample set, we use (9) in
place of c1 in (7), and for the negative training sample set, we use (9) in place of c2 in (8). This substitution
allows us to utilize the relationship defined in (9) to express c1 and c2 for the respective positive and negative
sample sets [15]. Proposed CB-TWSVM shown in Algoritm 1.

Algorithm 1. Proposed CB-TWSVM
1. X = {x̄i | x̄i = (xi1, xi2, . . .)} ∀ xi1 ∈ [0, 1] where, X1 ⊆ X and X2 ⊆ X are two classes of X are labeled as class I and
class II.
2. Set hyperparameters cI ,
cI ← c1, c2
for each cI , From (3.), Dche(x, x

′) =∥ x− x′ ∥∞= max
i
| xi − y′i |

3. Compute cI
cI = σ[Dche(xi, xj)/i ̸= j]

∀ I = 1, 2 for xi, xj ∈ XI

4. Apply cI ← c1, c2, validating the model
5. Update and fixing kernel parameter as rectangular kernel k(A,CT ) = k(B,CT ) = 1

2
,

6. Generate hyperplane,
(a) [w1b1]T = −(HTH)−1GTα

(b) [w2b2]T = −(GTG)−1HT γ

end

4. SIMULATION RESULTS AND DISCUSSIONS
After testing various pairwise distance measures, Chebyshev distance proved effective for tuning ci

values. The performance of the CB-TWSVM was tested on seven benchmark datasets [16], which were nor-
malized to [0,1] scale using Z-score normalization. MATLAB 2023 was used for performance evaluations, with
gaussian kernels. The effectiveness of CB-TWSVM was also examined under conditions of data imbalance, a
common issue in classification tasks characterized by unequal class distributions, quantified by the imbalance
ratio (IR).

4.1. Dataset description
Breast cancer 699: breast cancer, a leading cause of female cancer deaths, has driven research into

prevention. Data mining techniques are utilized to extract insights for prediction and classification. The WBCD
dataset, containing 699 samples (with 16 missing values as of July 15, 1992), includes 10 attributes. Among
these, 241 cases (65.5%) are malignant and 458 (34.5%) are benign. The class attribute uses integers 2 and 4
to denote benign and malignant cases, respectively [17]. Breast cancer 569: breast cancer ranks as the second
leading cause of death among women worldwide, underscoring the importance of early detection. To improve
predictive accuracy, researchers increasingly rely on advanced machine learning algorithms. A key resource in
this effort is the Wisconsin breast cancer dataset (WBCD) from the UCI repository. This dataset contains 569
instances and 30 features, with 357 benign and 212 malignant cases, providing a comprehensive and robust
foundation for assessing the effectiveness of machine learning models in predicting breast cancer outcomes
[18]. Fertility: infertility carries a societal stigma, with 30% of cases attributed to male factors. Despite this,
male infertility remains under diagnosed and under represented. The World Health Organization (WHO) links
the decline in male fertility primarily to lifestyle and environmental changes. The dataset includes 9 input
features related to these factors, following WHO criteria. It contains 100 samples, with 88 samples indicating
normal seminal quality and 12 indicating altered seminal quality [19].

Immunotherapy: human papillomavirus (HPV) infection can cause warts, particularly on the hands
and feet, complicating treatment at later stages. A literature review shows varied proposed treatments, with
a key challenge being the need for personalized patient care. This variability complicates the identification
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of optimal treatments for faster recovery. In their study, the authors used immunotherapy datasets from UCI,
which contain detailed information on 8 attributes across 90 patient instances. These features are crucial for
analysing and understanding immunotherapeutic responses to HPV [20].

German statlog: the German statlog dataset, used for binary classification, contains 1,000 instances
with 20 features related to financial history. It’s commonly used to predict credit risk (good or bad) and
to compare the performance of classification algorithms in machine learning research [21]. Ionosphere: the
Ionosphere dataset is used for binary classification tasks in machine learning. It contains 351 instances with 34
features, which are radar signal attributes used to classify whether signals pass through the ionosphere (labelled
“good”) or are blocked (labelled “bad”). This dataset is often used to evaluate classification algorithms in
research [22]. Sonar: the Sonar dataset is used for binary classification in machine learning, consisting of
208 instances with 60 features. Each feature represents the energy of sound waves reflected off objects at
various angles, and the task is to classify whether an object is a rock or a metal cylinder (mine). This dataset is
commonly used to test and compare the performance of classification algorithms [23].

The purpose of our modelling is to demonstrate the stability of our model across different non-linear
datasets. Benchmark datasets from various domains such as biomedical, financial, and other sectors were taken
from UCI. To demonstrate the stability of the proposed model, their accuracy, F-mean, recall, and elapsed time
were compared with those of other existing SVM models. Table 1 shows the measure of imbalance ratio and
their descriptions about dataset.

Table 1. Class imbalance factor
Dataset Instances Attributes IR

Breast cancer 699 10 1.90041
Breast cancer 569 32 1.68396

Fertility 100 10 7.3333
Immunotherapy 90 8 3.5
German statlog 1,000 20 2.3333

Ionosphere 351 34 1.7857
Sonar 208 61 1.1224

Figure 1 depicts the scatter plots which are useful for visualizing the relationship or correlation be-
tween two continuous variables. Each Figures 1(a) to 1(g) represents the dispersion of the respective dataset
along the x and y axes, respectively. It allow us to observe patterns, trends, and potential outliers in the data.
The position of each point on the plot provides information about the values of both variables x1, x2 for that
specific data point.

Performance of proposed method is computed by the following metrics as sensitivity, accuracy, F1
score, and its elapsed time. Numerical analysis carry through linear k(xi , xj ) = x t

i xj and the non-linear kernel

such as gaussian kernel k(xi , xj ) = exp(−∥xi−xj∥2

2µ2 ) with µ where the hyperparameter c1 and c2 are tuned using
Chebyshev distance whereas fixing rectangular kernel for more precise results.

Performance of the individual benchmark dataset and experimental results signifies the robustness
and advantage of CB-TWSVM approach. Table 2 shows the performance of non-linear CB-TWSVM of bench-
mark breast cancer datasets and it is compared with various SVM’s like PSVM, CPSVM, CPSVM, TWSVM,
LSTSVM, CPTWSVM, CB-TWSVM with their elapsed time [2].

Table 3 shows the performance of non-linear CB-TWSVM of fertility and immunotherapy datasets.
Also, the comparison with other evolved SVM models, evaluation metrics and computational time are discussed
[24]. Table 4 shows the performance of non-linear CB-TWSVM of various benchmark datasets. Also, the
comparison with other evolved SVM models like TWSVM, TBSVM, F-TWSVM, γ-TWSVM, WLSTSVM,
and LSTSVM’s evaluation metrics and computational time are discussed [25], [26].

The proposed CB-TWSVM outperforms all the other existing SVM models in accuracy as well as
other metrics for the benchmark datasets taken for numerical experiments. Figure 2 with 2(a) to 2(g) in
Appendix shows the three dimensional surface plot for representing data with multiple components or for
visualizing uncertainties or error. The benchmark dataset is analysed with the target values represented along
the x-axis, actual values along the y-axis, and the corresponding errors depicted along the z-axis. The proposed
method is further applied to large datasets, including those for image and text recognition.

Chebyshev distance-embedded twin support vector machine for ... (Sai Lakshmi Balasubramanian)
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 1. Dataset dispersion of: (a) breast cancer (699), (b) breast cancer (569), (c) fertility,
(d) immunotherapy, (e) German statlog, (f) ionosphere, and (g) sonar
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Table 2. Performance analysis of various SVMs for breast cancer dataset in non-linear case
Dataset SVM PSVM CPSVM TWSVM LSTSVM CPTSVM CB-TWSVM

Acc Acc Acc Acc Acc Acc Acc
F-mean F-mean F-mean F-mean F-mean F-mean F-mean
Recall Recall Recall Recall Recall Recall Recall

Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) Time(sec)
BC (683) 97.06 96.88 96.54 96.91 95.98 97.69 99.51

- - - - - - 0.9976
- - - - - - 0.9951

0.0036 0.1852 0.7261 0.0233 0.0126 0.2346 0.3745
BC (569) 97.93 98.01 97.97 96.34 96.38 97.56 99.12

- - - - - - 0.9956
- - - - - - 0.9912

0.18 0.1054 0.4479 0.0539 0.0086 0.3759 0.5193

Table 3. Performance analysis of various SVMs for the fertility and immunotherapy in non-linear case
Dataset FSSVM FS-CTBSVM Chi-TBSVM TBSVM TWSVM NN CB-TWSVM

Acc Acc Acc Acc Acc Acc Acc
F-mean F-mean F-mean F-mean F-mean F-mean F-mean
Recall Recall Recall Recall Recall Recall Recall

Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) Time(sec)
Fertility 91.89 88.89 89.88 88.98 88.14 87.00 96.67

- - - - - - 0.9831
- - - - - - 0.9667

0.02 0.004 0.009 0.005 0.74 0.48 0.04283
Immunotherapy 87.89 87.89 86.77 83.41 78.93 87.80 96.30

- - - - - - 0.9811
- - - - - - 0.963

0.04 0.06 0.03 0.03 0.41 0.56 0.02086

Table 4. Performance analysis of various SVMs for the benchmark datasets in non-linear case
Dataset TWSVM TBSVM F-TWSVM γ-TWSVM WLSTSVM LSTSVM CB-TWSVM

Acc Acc Acc Acc Acc Acc Acc
F-mean F-mean F-mean F-mean F-mean F-mean F-mean
Recall Recall Recall Recall Recall Recall Recall

Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) Time(sec)
German Statlog - - 78.20 76.25 76.08 74.96 98

- - - - - - 0.9899
- - - - - 0- 0.98
- - 14.98 13.89 10.713 9.8172 2.4528

Ionosphere 87.46 87.75 - 94.72 95.68 91.82 94.03
- - - - - - 0.9692
- - - - - - 0.9403

0.0064 0.088 - 3.24 0.6141 0.5438 0.14326
Sonar 89.64 90.0 - 91.71 - - 95.16

- - - - - - 0.9752
- - - - - - 0.9516

0.014 0.008 - 0.52 - - 0.0615

5. CONCLUSION
This paper introduces a novel extension to TWSVM called the CB-TWSVM, designed to enhance

the performance of the traditional TWSVM. CB-TWSVM incorporates Chebyshev distance as regularized hy-
perparameters, leveraging the distance between positive and negative classes in the training data to construct
non-parallel hyperplanes. This is achieved by integrating the standard deviation of Chebyshev distances into
the model. One of the key advantages of CB-TWSVM is its ability to naturally generalize from TWSVM,
strategically considering the distance between binary classes rather than relying on random selection. This
approach is particularly beneficial in real-world scenarios where the distance measures between positive and
negative classes differ significantly. Experimental results demonstrate that CB-TWSVM offers superior gener-
alization performance compared to other classifiers, outperforming existing models in terms of accuracy and

Chebyshev distance-embedded twin support vector machine for ... (Sai Lakshmi Balasubramanian)
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other statistical measures. Specifically, CB-TWSVM achieves the highest accuracy rates of 99.51%, 99.12%,
96.67%, 96.29%, 98%, 94.03%, and 95.16% on the breast cancer 699, breast cancer 569, fertility, immunother-
apy, German statlog, ionosphere, and sonar datasets respectively.

APPENDIX

(a) (b) (c)

(d) (e) (f)

(g)

Figure 2. Surface plot for misclassification: (a) breast cancer (699), (b) breast cancer (569), (c) fertility,
(d)immunotherapy, (e) German statlog(f) ionosphere, and (g) sonar
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[13] A. Elen and E. Avuçlu, “Standardized variable distances: a distance-based machine learning method,” Applied Soft Computing,
vol. 98, p. 106855, Jan. 2021, doi: 10.1016/j.asoc.2020.106855.

[14] L. V. Utkin, M. S. Kovalev, and E. M. Kasimov, “An explanation method for black-box machine learning survival models
using the chebyshev distance,” in Conference on Artificial Intelligence and Natural Language, 2020, pp. 62–74, doi: 10.1007/978-
3-030-59082-6 5.

[15] I. Iswanto, T. Tulus, and P. Sihombing, “Comparison of distance models on K-nearest neighbor algorithm in stroke disease detec-
tion,” Applied Technology and Computing Science Journal, vol. 4, no. 1, pp. 63–68, Jul. 2021, doi: 10.33086/atcsj.v4i1.2097.

[16] D. Dua and C. Graff, “UCI machine learning repository,” 2017. http://archive.ics.uci.edu/ml.
[17] Y. Li and Z. Chen, “Performance evaluation of machine learning methods for breast cancer prediction,” Applied and Computational

Mathematics, vol. 7, no. 4, pp. 212–216, 2018, doi: 10.11648/j.acm.20180704.15.
[18] K. M. M. Uddin, N. Biswas, S. T. Rikta, and S. K. Dey, “Machine learning-based diagnosis of breast cancer utilizing

feature optimization technique,” Computer Methods and Programs in Biomedicine Update, vol. 3, p. 100098, 2023, doi:
10.1016/j.cmpbup.2023.100098.

[19] D. GhoshRoy, P. Alvi, and K. Santosh, “Unboxing industry-standard AI models for male fertility prediction with SHAP,” Healthcare,
vol. 11, no. 7, p. 929, Mar. 2023, doi: 10.3390/healthcare11070929.
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