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Abstract 
The problem of finite-time stabilization for networked control systems with both sensor-to-controller 

and controller-to-actuator packet dropouts is investigated in this paper.By using the iterative approach,  the 
NCSs with bounded packet dropout is modeled as switched linear systems. Sufficient conditions for finite-
time stabilization of the underlying systems are derived via linear matrix inequalities (LMIs). Lastly, an 
illustrative example is given to demonstrate the effectiveness of the proposed results. 

  
Keywords: networked control systems, packet dropout, finite-time stability, LMIs 
 

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 
 
 
1. Introduction 

Networked control systems (NCSs) are feedback control systems with network 
channels used for the communications. Compared with the traditional point-to-point wiring, the 
use of the communication channels can reduce the costs of cables and power, simplify the 
installation and maintenance of the whole system, and increase the reliability. The NCSs have 
many industrial applications in automobiles, manufacturing plants, aircrafts, and HVAC systems 
[1]. However, the insertion of the communication network in feedback control loop makes the 
analysis and design of an NCS complicated because it introduces some problems existing in the 
network into control systems such as limited communication bandwidth, network-induced delay, 
packets disorder and packets loss which often happen inevitably during information 
transmission see the references [2-8]and the references cited therein. 

Among a number of issues arising from such a framework, packet loss of NCSs is an 
important issue to be addressed and has been receiving great attentions. For instance, Xiong 
and Lam [9] studied the problem of stability and stabilization of linear systems over networks 
with bounded packet loss. Bakule and De La Sen [10] tackled the problem of decentralized 
stabilization of networked complex composite systems with nonlinear perturbations. Wang and 
Yang [11] investigated the problem of state-feedback control synthesis for networked control 
systems with packet dropout. Sun and Qin [12] studied NCSs with both sensor-to-controller and 
controller-to-actuator packet dropouts via switched system approach. For more details of the 
literature related to networked problems with packet dropout, the reader is referred to [13-18] 
and the references therein. 

It is worth pointing out most of existing literature relate to stability and performance 
criteria defined over an infinite-time interval. However, the main attention in many practical 
applications is the behavior of the dynamical systems over a fixed finite-time; for example, large 
values of the state are not acceptable in the presence of saturations [19, 20]. In this sense it 
appears reasonable to define as stable a system whose state, given some initial conditions, 
remains within prescribed bounds in the fixed finite-time interval. For this purposes finite-time 
stable (FTS) could be used [21, 22]. Recently, Amato et al. extends this concept to finite-time 
boundedness in [23].  To date, with the aid of linear matrix inequalities (LMIs) formulation, more 
results of finite-time stability and stabilization of various systems. For more details of the 
literature related to finite-time stability, the reader is referred to [24-28], and the references 
therein.  
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However, to the best of our knowledge, the finite-time stability and stabilization 
problems for NCSs with packet dropout have not been fully investigated to date. Especially, for 
the case where both sensor to-controller and controller-to-actuator packet dropouts are 
considered simultaneously, very few results related to NCSs are available in the existing 
literature, which motivates the study of this paper. 

In this paper, the finite-time stabilization problems of a class of NCSs with bounded 
packet dropout is studied. Firstly, we model the NCSs with bounded packet dropout as switched 
linear systems. Then, the concepts of the finite-time stability (FTS) and problem formulation are 
given. The main contribution of this paper is to design a state-feedback controller which 
guarantees the resulting the resulting closed-loop discrete-time system uniform finite-time 
stable.  

In the sequel, the following notation will be used: The symbols nR  and n mR   stand for 

an n-dimensional Euclidean space and the set of all n m  real matrices, respectively, TA  and
1A  denote the matrix transpose and matrix inverse,  diag A, B  represents the block-

diagonal matrix of A  and B , 0P  stands for a positive-definite matrix, I is the unit matrix 

with appropriate dimensions, and {1,2, }Z   . 

 
 
2. Problem Formulation and Preliminaries 

The framework of NCSs considered in the paper is depicted in Figure 1. The process to 
be controlled is modeled by a linear discrete-time system. 

 
( 1) ( ) ( )x k Ax k Bu k                                                              (1) 

 

Where k Z   is the time step, ( ) nx k R  and ( ) mu k R  are is system state and control input, 

respectively. A  and B  are known real constant matrices with appropriate dimensions. 
 
 

 
 

Figure 1. Illustration of NCSs over Communication Network 
 
 

We make the following assumptions about the NCS: 
1) Networks exist between sensor and controller, and between controller and actuator; 
2) The sensor is clock driven; the controller and the actuator are event driven; 
3) The data are transmitted in a single packet at each time step. 

Let 1 2{ , , }i i  , which a subsequence is of {1,2, }Z   , denote the sequence of 

time points of successful data transmission from the sampler to the zero-order hold, and 

1max( )
k

k k
i

s i i
 


  be the maximum packet-loss upper bound. Then the following concept and 

mathematical models are introduced to capture the nature of packet losses. 
The state feedback controller law is: 
 

( ) ( )u k Kx k                                                         (2) 
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Where m nK R   is to be designed. From the viewpoint of the zero-order hold, the control input 
is: 
 

( ) ( ) ( )k ku l   u i   Kx i   

 

For 1 1k ki l  i    . The initial inputs are set to zeros: 1( ) 0, 0 -1u l  l  i   . Hence the closed-

loop system becomes: 
 

1( 1) ( ) ( ), 1k k kx l Ax l BKx i i l  i                                           (3) 

 
From the closed-loop system (3), we can obtain: 
 

1

1

1

1
0

( ) ( ),
k k

k k

i i
i i r

k k k
r

x  i A A BK x i i




 





 
   
 

                               (4) 

 
Define the packet dropout process as follows: 
 

1( )k k ki  i i                                                         (5) 

 
Which takes values in the finite state space {1, 2, , }s  . 

Let, 
 

1

1

1

( )

1

( )
0

( ) ( )

( 1) ( )
k k

k k

k

k

i i
i k

i i
r

i k
r

z k x  i

z k x  i

A A

B A B









 




  



 



                                                       (6) 

 
It is easily seen that the closed-loop system (4) can be described by the follow in switched 
system. 
 

( ) ( )( 1) ( ) ( )i k i kz k A B K z k                                          (7) 

 

Where 1( ) k ki k i i  is arbitrarily switching signal.  

For simplicity, at any arbitrary discrete time k Z , the switching signal ( )i k  is denoted 

by i . Then, the closed-loop system (7) can be rewritten as: 
 

( 1) ( ) ( )i iz k A B K z k                                                    (8) 

 
The general idea of finite-time stability concerns the boundedness of the state of a system over 
a finite-time interval for the given initial conditions; this concept can be formalized through the 
following definition, which is an extension to discrete-time systems of the one given in [14]. 

Definition 1: (Finite-time stability (FTS)). The discrete-time switched system  
 

( 1) ( ),ix k A x k k Z           

                                                    

Is said to be FTS with respect to 1 2( , , , )c c N R  where 1 20 c c  , R  is a symmetric positive-
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definite matrix and 0kN Z  , if: 

 1 2(0) (0) ( ) ( ) , 1, 2, ,T Tx Rx c x k Rx k c k N              

                               
The following problem will be dressed in this paper. 
Problem 1. For the discrete-time system (1), we find a networked state feedback 

controller (5) such that the closed-loop system is FTS with respect to 1 2( , , , )c c N R . 

We next provide a lemma which will play an important role in the late development. 
Lemma 1.  The  LMI 
 

( ) ( )
0

( ) ( )T

Y x W x

W x R x

 
 

 
 

 
Is equivalent to: 
 

1( ) 0, ( ) ( ) ( ) 0TR x W x R x W x   

 

Where ( ) ( ), ( ) ( )T TY x Y x R x R x  and ( )W x depend on x . 

 
 

3. Main Results 
In this section, we will develop the stabilization results for the closed-loop NCS (8). The 

following theorem presents a sufficient condition for the finite-time stability of the considered 
system with arbitrary packet-loss process. 

Theorem 1. The closed-loop NCS (8) with arbitrary packet-loss process is FTS with 

respect to 1 2( , , , )c c N R  if, there exist positive definite matrix n nS R   and scalar 1   such 

that the following matrix inequalities hold: 
 

0
*

i iS A S B X

S
 

  
                                                          (9) 

 
And, 
 

Nmax
1 2

min

(Q)
c <c

(Q)

 


                                                            (10) 

 

Where 1/2 1 1/2Q R S R   and max ( ) �  and min ( ) �  indicate the maximum and minimum 

eigenvalue of the augment, respectively. Then state feedback controller is given by -1K = XS . 
Proof.  Choose a Lyapunov functional candidate for the system (8) as follows: 
 

1( ) ( ) ( )TV k x k S x k                                                      (11) 

 
Then, along the solution of system (8) we have: 
 

1

1

( 1) ( 1) ( 1)

( )( ) ( ) ( )

T

T T
i i i i

V k x k S x k

x k A B K S A B K x k





   

  
                               (12)  

 

Substituting -1K = XS  into (11) and pre- and post-multiplying by  -1 -1diag S , S ，we can obtain 

the equivalent condition. 
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1 1 1 1

1
0

*
i iS S A S B XS

S

   



  
  

                                             (13) 

                    
From Lemma 1, (12) and (13), it follows that: 
  

( ) ( )V k V k                                                              (14) 

 
Applying iteratively (14), we can obtain: 
 

 ( ) (0), 1, 2, ,kV k V k N                

                                         

Noting that  1/2 1 1/2Q R S R    and using the fact 1  we have: 

 
1

1/ 2 1/ 2

max

max

(0) (0) (0)

(0) (0)

(Q) (0) (0)

(Q) (0) (0)

k k T

k T

k T

N T

V x S x

x R QR x

x Rx

x Rx

 



 

 









                                                 (15) 

 
And, 
 

1

1/ 2 1/ 2

min

( ) ( ) ( )

(0) (0)

(Q) ( ) ( )

T

T

T

V k x k S x k

x R QR x

x k Rx k







                                           (16) 

 
Putting together (14)-(16), we obtain: 
 

max

min

(Q)
( ) ( ) (0) (0)

(Q)

N
T Tx k Rx k x Rx

 






                                 (17) 

 
From (17), it follows that (10) implies that, for all 1, 2, ,k N   2( ) ( )Tx k Rx k c . Therefore, the 

proof follows. 
Remark 2. If conditions (9) and (10) in Theorem 1 is satisfied with 1  , then system 

(8) is finite-time stable with respect to 1 2( , , , )c c N R  for all  0kN Z   and it is also 

asymptotically stable. 
Theorem 2. The closed-loop NCS (8) with arbitrary packet-loss process is FTS with 

respect to 1 2( , , , )c c N R  if, there exist positive definite matrix n nS R   and scalars 0   , 

0   and 1   such that the following matrix inequalities hold: 

 

0
*

i iS A S B X

S
 

  
                                                (18) 

 

0
*

S SR

R




 
  

                                                     (19) 

 

0
*

R I

S

 
  

                                                     (20)                                   
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1 2 0N c c                                                         (21) 

                                           

Where 1/2 1 1/2Q R S R   and max ( ) �  and min ( ) �  indicate the maximum and minimum 

eigenvalue of the augment, respectively. Then state feedback controller is given by -1K = XS . 
Proof. According to Theorem 1, it suffices to prove condition (10) is guaranteed by (19)-

(21). 
Using Lemma 1, it follows that: 
 

10 0
*

S SR
S RS S R S

R


 


 

       
 and 1 10 0

*

R I
S R S R

S


   

       
        

                                        
From the above two equations, we have: 
 

1R S R               

                                                        
Which means that: 
 

1/2 1 1/2I R S R I                  

                                                 
Noting that 1/ 2 1 1/ 2Q R S R   , we can obtain the following relation:           

                                                              
I Q I                                                               (22) 

 
On the other hand, from (21), we have: 
 

1 2
N c c

 


                                                            (23) 

 
Putting (22) and (23) together, we have: 
 

Nmax
1 1 2

min

(Q)
c <c

(Q)
N c

  
 

                                           (24) 

 
This completes the proof. 

Remark 4. We can see that the conditions in Theorem 2 are not LMIs. However, once 
we fix an  , they can be turned into LMIs based feasibility problem which can be solved via 

existing software (for example the LMI Control Toolbox of MATLAB).  
 
 
5. An Illustrative Example  

To illustrate the effectiveness of the proposed method, we present a numerical 
example. Consider the state-space plant model: 

 
2 3 1

( 1) ( ) ( )
1 2 1

x k x k u k
   

          
 

 
Since packet-loss process is arbitrary, we can obtain the packet-loss upper bound 2s 

, for given 1 1c  , 2 10c   , 2R I  , 100N  , if let 1.11  ,  by solving LMIs (20)-(23) by 

Theorem 2, we can obtain state feedback controller:  
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 ( )  -3.5843 -4.2463 ( )u k x k  

 

Which ensure the closed-loop NCS is FTS with respect to 1 2( , , , )c c N R . 

 
 
5. Conclusion 

In this paper, the finite-time stabilization problems of a class of NCSs with bounded 
packet dropout is investigated. The main contribution of this paper is that both sensor-to-
controller and controller-to-actuator packet dropouts have been taken into account. The 
sufficient conditions for finite-time stabilization of the underlying systems are derived via LMIs 
formulation. Lastly, an illustrative example is given to demonstrate the effectiveness of the 
proposed results. 
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