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Abstract
The problem of finite-time stabilization for networked control systems with both sensor-to-controller
and controller-to-actuator packet dropouts is investigated in this paper.By using the iterative approach, the
NCSs with bounded packet dropout is modeled as switched linear systems. Sufficient conditions for finite-
time stabilization of the underlying systems are derived via linear matrix inequalities (LMIs). Lastly, an
illustrative example is given to demonstrate the effectiveness of the proposed results.
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1. Introduction

Networked control systems (NCSs) are feedback control systems with network
channels used for the communications. Compared with the traditional point-to-point wiring, the
use of the communication channels can reduce the costs of cables and power, simplify the
installation and maintenance of the whole system, and increase the reliability. The NCSs have
many industrial applications in automobiles, manufacturing plants, aircrafts, and HVAC systems
[1]. However, the insertion of the communication network in feedback control loop makes the
analysis and design of an NCS complicated because it introduces some problems existing in the
network into control systems such as limited communication bandwidth, network-induced delay,
packets disorder and packets loss which often happen inevitably during information
transmission see the references [2-8]and the references cited therein.

Among a number of issues arising from such a framework, packet loss of NCSs is an
important issue to be addressed and has been receiving great attentions. For instance, Xiong
and Lam [9] studied the problem of stability and stabilization of linear systems over networks
with bounded packet loss. Bakule and De La Sen [10] tackled the problem of decentralized
stabilization of networked complex composite systems with nonlinear perturbations. Wang and
Yang [11] investigated the problem of state-feedback control synthesis for networked control
systems with packet dropout. Sun and Qin [12] studied NCSs with both sensor-to-controller and
controller-to-actuator packet dropouts via switched system approach. For more details of the
literature related to networked problems with packet dropout, the reader is referred to [13-18]
and the references therein.

It is worth pointing out most of existing literature relate to stability and performance
criteria defined over an infinite-time interval. However, the main attention in many practical
applications is the behavior of the dynamical systems over a fixed finite-time; for example, large
values of the state are not acceptable in the presence of saturations [19, 20]. In this sense it
appears reasonable to define as stable a system whose state, given some initial conditions,
remains within prescribed bounds in the fixed finite-time interval. For this purposes finite-time
stable (FTS) could be used [21, 22]. Recently, Amato et al. extends this concept to finite-time
boundedness in [23]. To date, with the aid of linear matrix inequalities (LMIs) formulation, more
results of finite-time stability and stabilization of various systems. For more details of the
literature related to finite-time stability, the reader is referred to [24-28], and the references
therein.
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However, to the best of our knowledge, the finite-time stability and stabilization
problems for NCSs with packet dropout have not been fully investigated to date. Especially, for
the case where both sensor to-controller and controller-to-actuator packet dropouts are
considered simultaneously, very few results related to NCSs are available in the existing
literature, which motivates the study of this paper.

In this paper, the finite-time stabilization problems of a class of NCSs with bounded
packet dropout is studied. Firstly, we model the NCSs with bounded packet dropout as switched
linear systems. Then, the concepts of the finite-time stability (FTS) and problem formulation are
given. The main contribution of this paper is to design a state-feedback controller which
guarantees the resulting the resulting closed-loop discrete-time system uniform finite-time
stable.

In the sequel, the following notation will be used: The symbols R" and R™™ stand for
an n-dimensional Euclidean space and the set of allnxM real matrices, respectively, A" and
A™ denote the matrix transpose and matrix inverse, diag {A, B} represents the block-
diagonal matrix of A and B, P > 0stands for a positive-definite matrix, | is the unit matrix
with appropriate dimensions, and Z, ={L,2,--}.

2. Problem Formulation and Preliminaries
The framework of NCSs considered in the paper is depicted in Figure 1. The process to
be controlled is modeled by a linear discrete-time system.

x(k +1) = Ax(k) + Bu(k) (1)

Where k € Z, is the time step, X(k) € R" andu(k) € R™ are is system state and control input,
respectively. A and B are known real constant matrices with appropriate dimensions.

u(i) x(k)

Actuator  f— Plant 1 Sensor

Controller

Figure 1. lllustration of NCSs over Communication Network

We make the following assumptions about the NCS:

1) Networks exist between sensor and controller, and between controller and actuator;
2) The sensor is clock driven; the controller and the actuator are event driven;

3) The data are transmitted in a single packet at each time step.

Let/ ={i,i,,---}, which a subsequence is ofZ, ={1,2,---}, denote the sequence of
time points of successful data transmission from the sampler to the zero-order hold, and
s=max(i,,, —1,) be the maximum packet-loss upper bound. Then the following concept and

i el

mathematical models are introduced to capture the nature of packet losses.
The state feedback controller law is:

u(k) = Kx(k) 2)
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Where K € R™" is to be designed. From the viewpoint of the zero-order hold, the control input
is:

u(l) =u(i,) = Kx(i,)

Fori, <1 <i,,, —1. The initial inputs are set to zeros:U(l) =0, 0<1<i,-1. Hence the closed-
loop system becomes:

x(1+1) = Ax(1) + BKx(i,), i <I<i, -1 (3)

From the closed-loop system (3), we can obtain:
e
x(im):(A'm'k + ) A’BKJx(ik), i el (4)

r=0

Define the packet dropout process as follows:

n(i) =i, — i (5)
Which takes values in the finite state space / ={1,2,---,S}.
Let,
z(k) = x(i)
z(k +1) = x(i.4)
K — Aimfik (6)

i(k)
[P

1
By = ZJ A'B

It is easily seen that the closed-loop system (4) can be described by the follow in switched
system.

Z(k+1):('z1(k)+§i(k)K)Z(k) (7)
Where i(K) =i,,, —I, is arbitrarily switching signal.

For simplicity, at any arbitrary discrete time K € Z__, the switching signal i(K) is denoted
byi . Then, the closed-loop system (7) can be rewritten as:

z(k+1) = (A +BK)z(k) (8)

The general idea of finite-time stability concerns the boundedness of the state of a system over

a finite-time interval for the given initial conditions; this concept can be formalized through the

following definition, which is an extension to discrete-time systems of the one given in [14].
Definition 1: (Finite-time stability (FTS)). The discrete-time switched system

x(k +1) = Ax(k), keZ,

Is said to be FTS with respect to (C,,C,, N,R) where0<cC, <C,,R is a symmetric positive-
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definite matrixand N € Z, _, if:
X" (0)Rx(0) < ¢, = x" (K)Rx(k) <¢,, Vk ={1,2,--- N}

The following problem will be dressed in this paper.
Problem 1. For the discrete-time system (1), we find a networked state feedback

controller (5) such that the closed-loop system is FTS with respect to (Cl, C,, N, R).

We next provide a lemma which will play an important role in the late development.
Lemma l. The LMI

Y(x) W(X) -0
W' (x) R(X)

Is equivalent to:
R(x)>0, W(X)R*(x)W'(x)>0

WhereY (X) =Y (x), R(x)=R"(x)and W (X) depend on X .

3. Main Results

In this section, we will develop the stabilization results for the closed-loop NCS (8). The
following theorem presents a sufficient condition for the finite-time stability of the considered
system with arbitrary packet-loss process.

Theorem 1. The closed-loop NCS (8) with arbitrary packet-loss process is FTS with

respect to (C,,C,, N, R) if, there exist positive definite matrix S € R™ and scalar y >1 such
that the following matrix inequalities hold:

{S AiS+BiX}<O ©)

* —73

And,
Ana (Q) (Q);/Ncl<cz (10)
ﬂ’min (Q)

WhereQ =R ™SR and A () and A, () indicate the maximum and minimum

eigenvalue of the augment, respectively. Then state feedback controller is given by K = XS*.
Proof. Choose a Lyapunov functional candidate for the system (8) as follows:

V (k) = x" (k)S *x(k) (11)
Then, along the solution of system (8) we have:

V(k+1)=x"(k+1)S 'x(k +1)

_ _ (12)
= X" (K)(A, + BK)TS (A + BK)x(K)

Substituting K =XS™ into (11) and pre- and post-multiplying bydiag{S'l, S'l} , we can obtain
the equivalent condition.

Finite-Time Stabilization of Networked Control Systems with Packet Dropout (Yanling Shang)



6754 =

ISSN: 2302-4046

-S7* ST'A +ST'BXS™
* _}/Sfl

From Lemma 1, (12) and (13), it follows that:
V(k) <V (k)
Applying iteratively (14), we can obtain:

V (k) <7V (0), Vk={12,,N}

Noting that Q = R™2S™R™"2 and using the facty >1we have:

7V (0) = 7*x"(0)S'x(0)
— kaT (O)R1/2QR1I2X(O)
<7 Zmax (Q)X" (0)RX(0)
< 7" Anax (Q)XT (0)RX(0)

And,

V (k) = x" (k)S *x(k)
— XT (O)R1/2QR1/2X(O)
2 A (Q)X" (K)RX(K)

Putting together (14)-(16), we obtain:

x" (K)Rx(k) < %XT (0)Rx(0)

(13)

(14)

(15)

(16)

(17)

From (17), it follows that (10) implies that, for allk =1,2,---,N x' (k)Rx(k) <c, . Therefore, the

proof follows.

Remark 2. If conditions (9) and (10) in Theorem 1 is satisfied with y =1, then system

(8) is finite-time stable with respect to(c,,C,,N,R) for all

asymptotically stable.

NeZ., and it is also

Theorem 2. The closed-loop NCS (8) with arbitrary packet-loss process is FTS with
respect to (C,,C,,N,R) if, there exist positive definite matrix S <R™ and scalars >0 ,

£ >0 and ¥ >1 such that the following matrix inequalities hold:

'S .S + B, X
AI 1 <0
* _7/8 :|

'S aSR}
<0

(18)

(19)

(20)
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Bric,—ac, <0 (1)

WhereQ=R™S™R™"?and 4, () and A, () indicate the maximum and minimum

eigenvalue of the augment, respectively. Then state feedback controller is given by K = XS*.

Proof. According to Theorem 1, it suffices to prove condition (10) is guaranteed by (19)-
(21).
Using Lemma 1, it follows that:

*

{s @SR AR

|
R}o:SaRS—S <0=aR<S™* and[ . S}<O:>81—ﬂR<O:>81<ﬂR

-a
From the above two equations, we have:

aR<S7' < pR
Which means that:

al <RY?S'RY2 < pI

Noting thatQ = R™/?S™'R™? | we can obtain the following relation:

al <Q< Bl (22)
On the other hand, from (21), we have:

B

;y“cl <c, (23)

Putting (22) and (23) together, we have:

7na(Q) g B

ZyNe, <c, (24)
ﬂ’min (Q) a

This completes the proof.
Remark 4. We can see that the conditions in Theorem 2 are not LMIs. However, once
we fix any, they can be turned into LMIs based feasibility problem which can be solved via

existing software (for example the LMI Control Toolbox of MATLAB).

5. An lllustrative Example
To illustrate the effectiveness of the proposed method, we present a numerical
example. Consider the state-space plant model:

x(k+1):[ _21 _ﬂx(k){ _ju(k)

Since packet-loss process is arbitrary, we can obtain the packet-loss upper bound S = 2
, for givenc, =1, ¢, =10 , R=1, , N =100, if lety =1.11, by solving LMIs (20)-(23) by
Theorem 2, we can obtain state feedback controller:
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u(k)=[ -3.5843 -4.2463]x(k)

Which ensure the closed-loop NCS is FTS with respect to (C;,C,, N, R).

5. Conclusion

In this paper, the finite-time stabilization problems of a class of NCSs with bounded
packet dropout is investigated. The main contribution of this paper is that both sensor-to-
controller and controller-to-actuator packet dropouts have been taken into account. The
sufficient conditions for finite-time stabilization of the underlying systems are derived via LMIs
formulation. Lastly, an illustrative example is given to demonstrate the effectiveness of the
proposed results.

Acknowledgements

This work is supported by National Nature Science Foundation of China under Grant
61073065and and the Key Program ofScience Technology Research of Education Department
of HenanProvince under Grant 13A120016.

The author would like to thank the editor and the anonymous reviewers for their
constructive comments and suggestions for improving the quality of the paper.

References

[11 GC Walsh, H Ye. Scheduling of networked control systems. IEEE Control Syst. Mag., 2001; 21:
57-65.

[2] GC Walsh, H Ye, LG Bushnell. Stability analysis of networked control systems. IEEE Trans. Control
Syst. Technol., 2002; 10; 438-446.

[8] W Zhang, MS Branicky, SM Phillips. Stability of networked control systems. IEEE Trans. Control Syst.
Mag., 2001; 21: 84-99.

[4] D Yue, QL Han, J Lam. Network-based robust H~ control of systems with uncertainty. Automatica.
2005; 41: 999-1007.

[5] X Jiang, QL Han, SR Liu, A Xue. A new H~ stabilization criterion for networked control systems,”
IEEE Trans. Automat. Control. 2008; 53: 1025-1032.

[6] H Gao, T Chen, J Lam. A new delay system approach to network-based control. Automatica. 2008;
44; 39-52.

[71 J Jameel. Performance enhancement of wireless communication systems using transmit and receive
diversity. IJACT. 2010; 2(3): 163-171.

[8] J Hu, GY Li, Y Song. Signal framing methods of automotive embedded networked control system for
bandwidth consumption optimization. JDCTA. 4(4): 15-27, 2010.

[9] J Xiong, J Lam. Stabilization of linear systems over networks with bounded packet loss. Automatica.
2007; 43(1): 80-87.

[10] L Bakule, M De La Sen. Decentralized stabilization of networked complex composite systems with
nonlinear perturbations. Proceedings of the 2009 |IEEE International Conference on Control and
Automation. 2009; 1-3: 2272-2277.

[11] YL Wang, GH Yang. State feedback control synthesis for networked control systems with packet
dropout. Asian Journal of Control. 2009; 11(1): 49-58.

[12] YG Sun, SY Qin. Stability and stabilization of networked control systems with bounded packet
dropout. Acta Automatica Sinica. 2011; 37: 113-118.

[13] K Tsumura, H Ishii, H Hoshina. Tradeoffs between quantization and packet loss in networked control
of linear systems. Automatica. 2009; 45(12): 2963-2970.

[14] Y Niu, T Jia, X Wang, F Yang. Output-feedback control design for NCSs subject to quantization and
dropout. Information Sciences. 2009; 179(21): 3804-3813.

[15] Y Ishido, K Takaba, DE Quevedo. Stability analysis of networked control systems subject to packet-
dropouts and finite-level quantization. Systems & Control Letters. 2011; 60(5): 325-332.

[16] OC Imer, S Yuksel, T Basar. Optimal control of LTI systems over unreliable communication links,”
Automatica. 2006; 42(9): 1429-1439.

[171Y Zhao, H Gao, T Chen. Fuzzy constrained predictive control of non-linear systems with packet
dropouts. IET Control Theory & Applications. 2010; 4(9): 1665-1677.

[18] J Zhang, Y Xia, Design of H» fuzzy controllers for nonlinear systems with random data dropouts,”
Optimal Control Applications and Methods. 2011; 32(3): 328-349.

TELKOMNIKA Vol. 12, No. 9, September 2014: 6750 — 6757



TELKOMNIKA ISSN: 2302-4046 m 6757

[19] El-Gohary. Optimal control of an angular motion of a rigid body during infinite and finite-time intervals.
Appl. Math. Comput., 2003; 141: 541-551.

[20] El-Gohary, AS Al-Ruzaiza. Optimal control of non-homogenous prey—predator models during infinite
and finite-time intervals. Appl. Math. Comput., 2003;146: 495-508.

[21] P Dorato. Short time stability in linear time-varying systems. Proc. IRE international convention record
1961; part 4: 83-87.

[22] L Weiss, EF Infante. Finite time stability under perturbing forces and on product spaces. IEEE Trans.
on Automat. Control. 1967; 12: 54-59.

[23] F Amato, M Ariola, P Dorate. Finite-time control of linear systems subject to parametric uncertainties
and disturbances. Automatica. 2001; 37; 1459-1463.

[24] E Moulay, W Perruquetti. Finite time stability and stabilization of a class of continuous systems. J.
Math. Anal. Appl., 2006; 323; 1430-1443.

[25] E Moulay, M Dambrine, N Yeganefar, W Perruquetti. Finite-time stability and stabilization of time-
delay systems. Systems & Control Letters. 2008; 57: 561-566.

[26] Q Ming, Y Shen. Finite-time He control for linear continuous system with norm-bounded disturbance.
Commun. Nonlinear Sci. Numer. Simulat. 2009; 14: 1043-1049.

[27] F Amato, M Ariola, C Cosentino. Finite-time control of discrete-time linear systems: analysis and
design conditions. Automatica. 2009; 46: 919-924.

[28] X Lin, H Du S Li. Uniform finite-time stability and feedback stabilization for discrete-time switched
linear systems and its application to networked control systems. Control and Decision. 2011; 6: 841-
846.

Finite-Time Stabilization of Networked Control Systems with Packet Dropout (Yanling Shang)



