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Abstract 
This paper introduces a novel clustering algorithm that combines crisp and fuzzy clustering. It not 

only has the high accuracy of fuzzy clustering, but also reduces the dependency on initialization. 
Specifically, it constitutes a fast learning process and therefore, the convergence rate and the accuracy of 
the RBFNN are greatly improved. The simulation results show that this strategy is successfully applied to 
the fault diagnosis of electric power grid. The training speed and the fault-tolerance of information 
aberrance, which comes from the maloperation of the protections and breakers, are superior to the 
traditional RBFNN.  
 
Keywords: fault diagnosis, RBF neural network, crisp clustering, fuzzy clustering, electric power grid 
 

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 
 
 
1. Introduction 

With a substantial increase of the types and quantities of the grid electrical equipments, 
the increasing complexity of operating conditions coupled with natural disasters and misuse 
make the grid fault occurs frequently. If the partial fault of the power grid can not received timely 
treatment, it will lead to a large-scale blackout, which seriously endangers the stable operation 
of the power system. However, in the case of the abnormal operation, multi-fault of protective 
relays and circuit breakers, fast and accurate fault diagnosis is very difficult to achieve for the 
influx of massive amounts of information [1-3]. In recent years, with the development of 
computer technology and intelligent theory, a variety of artificial intelligent and optimization 
methods are used in power system fault diagnosis, such as fuzzy theory, optimization 
techniques, expert systems, Petri networks, data mining [7, 8]. Artificial Neural Networks with its 
self-learning ability, fault tolerance, and parallel information processing capabilities, is more and 
more used in the study of power system fault diagnosis, especially the RBFNN that shows its 
advantages in practical engineering applications [8]. RBFNN has a any function approximation 
ability in theory, training and execution time is less than other commonly used network learning 
algorithms, and the network has a certain degree of fault tolerance for the non- training 
detection samples. 

There are a variety of learning algorithms of RBFNN during the RBFNN training period, 
[9-13], a clustering algorithm which fully takes into account the data inherent distribution 
relationship is proposed in this paper, the diagnostic result of this method is compared with the 
result simulated by traditional fuzzy clustering algorithm (FCM) [14, 15]. The simulation results 
of the 4-bus test system show that the clustering speed and the accuracy of hybrid clustering 
algorithm are both better than FCM algorithm. 

The rest of the paper is organized as follows. In section 2, we introduce the RNFNN 
about its structure. In section 3, the proposed approach combined with crisp and fuzzy 
clustering algorithms is presented. In Section 4, it deals with the parameter estimation for the 
training of the RBFNN. In Section 5, the effectiveness of such a methodology is investigated by 
means of simulations. Finally, conclusions are drawn in Section 6. 
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2. RBFNN Structure 
RBFNN is a feedforward network with three-tier structure; its topology is shown in 

Figure 1. Input layer nodes transfer the input signals to the hidden layer, the hidden layer nodes 
are composed of radial action functions like Gaussian kernel function, and the output layer 
nodes are usually simple linear functions. When the input signal is close to the center of the 
base function, the hidden layer nodes will produce a larger output, which shows that this 
network has a capacity of local approximation. As the form of the basis function, the most 
commonly used is Gaussian function: 
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Where x is n –dimensional input vector, ic is the center of the i th basis function, i is 

the width of Gaussian function, m is the number of hidden nodes. The Gaussian function above 
has the characteristics of simple structure, good analyticity and any order derivable. 
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Figure 1. Structure of RBFNN 
 
 

For the structure above, the input layers carry out the nonlinear mapping of ( )ix R x , 

while the output layers carry out the linear mapping of ( )i
kR x y , that is: 
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Where p is the number of the output layer nodes.  

 
 

3. Hybrid Fuzzy Clustering Algorithm 
3.1. The Basic Theory 

The core idea of the algorithm is that for those sample sets which needed to be 
clustered, all of the samples should be divided into three categories: one part of the samples are 
only belong to one of the clusters, this kind of samples is called the crisp clustering samples; 
another part of the samples, which are called semi - fuzzy clustering samples [16], belong to 
some of the clusters; the last part of the samples, which are called full fuzzy samples, belong to 
all cluster. From the experimental verification, this idea well considers the inherent data 
distribution relationship among the samples. Objective function of the clustering algorithm based 
on the above idea is given below. The objective function of crisp clustering [17, 18], and the 
objective function of fuzzy clustering are used to do a simple affine arithmetic, where the 
parameter   is a variable to control the clustering speed, clustering accuracy, and dependency 
on initialization of the algorithm. The mathematical expression form of the objective function is 
shown in formula (3): 
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Where c is the number of clusters, n  is the number of samples, iv is the random cluster 

centers chosen before clustering, [0,1)  , [0,1]iku   is the membership degree of the k -th 

training vector to the i -th cluster. If 0  , the objective function will become FCM algorithm with
2m  ; if 1  , then it becomes crisp clustering algorithm. The constraint is shown in the 

following: 
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According to the basic principle of the clustering algorithm, the minimum value of the 

objective function will be obtained under the constraint of the formula (3), if values of the degree 
of membership iku and the cluster center iv  are the stagnation point of Lagrange function

( , )ik kF u   which corresponds to HJ , so the following formula can be used to solve the value: 
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After partial differential, we get: 
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ik iu v，  and k  can be solved by the above equation: 
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For 0iku  ， the following scaling inequality can be obtained, this equation can be used 

as a discriminant to judge each sample belongs to which cluster, its form is as follows: 
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Change Equation (10) to Equation (11)：  
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Obviously, the Equation (11) expresses that: kT  represents the set of the cluster 

centers which contain the k -th sample, ( )kT  represents the number of the clusters which the 

k -th sample is belonged to. Apparently, when ( ) 1kT  , 1 ( )kT c  , and ( ) 0kT  , the 

sample belongs to the crisp clustering samples, semi fuzzy clustering samples and full fuzzy 
samples, respectively. 

 
3.2. The Process of Hybrid Fuzzy Algorithm 

Based on the foregoing analysis, the general process of this algorithm is as follows. 
Firstly, classification, and next, for those samples which belong to different clusters, different 
methods are adopted to calculate the corresponding degree of the membership. Then, calculate 
cluster centers, and check the cluster center to see whether it still changes. If it changes, repeat 
the above steps until the change reaches a certain error threshold, then stop the algorithm, the 
cluster center will be got. Introduce iteration parameter v , the above algorithm is rewritten as an 
iterative form. 
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Equations for calculating the degree of membership of different samples are as follows: 
When ( ) 1kT  , the sample belongs to the crisp clustering samples. iku  is calculated by 

Equation (13). 
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When1 ( )kT c  , the sample belongs to the semi-fuzzy clustering samples. iku  is calculated 

by Equation (14). 
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When ( ) 0kT  , the sample belongs to the full fuzzy clustering samples. iku is calculated by 

Equation (15). 
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The degree of membership is normalized by Equation (16). 
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The update formula of cluster center is: 
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The following steps show the process of the proposed hybrid fuzzy algorithm. 

Select values for c and . Randomly initialize 1 2, , ..., cv v v , set iter 0 . 

 
(0): ( )kk T c  ，  (0)

1 2, , ...,k cT v v v    

 
Step 1： Set iter iter 1  . 

Step 2： Use Equation (12) to update the sets ( )v
kT and their cardinalities ( )( )(1 )v

kT k n   . 

Step 3： If ( )( ) 1v
kT  , use Equation (12)to calculate membership degrees (1 ;1 )iku k n i c    ; 

if ( ) 0kT  , use Equation (16) to calculate membership degrees; else use Equation 

(17).  
Step 4： If 0(1 ;1 )iku k n i c     ，set 0iku  . 

Step 5： Then use Equation (16) to initialize membership degrees. 
Step 6： Use Equation (17) to update the cluster centers. 
Step 7： If there are no noticeable changes for the cluster centers, then stop, else turn to step1. 

 
 

4. Parameter Estimation of the RBFNN 
In this clustering algorithm, the number of the hidden nodes equals the clusters c , while 

the center of the radial basis function is the clustering center 1 2, , ..., cv v v . For the calculation of 

the width of the radial basis function, two questions should be considered. First of all, the width 
value can not be too small, because the small width will cause a small degree of overlap. 
However, the degree of overlap can not be too large, because an over estimated behavior will 
be caused, which will greatly reduce the performance of the network. So, a new method to 
calculate the width of the radial basis function, which gives full consideration of the specific data 
distribution of each class, is proposed in this paper. A threshold value of membership degree is 
selected, and a credible selection is 0.001  [19]. Then the samples of each class are re-

screened and expressed using Equation (18). 
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Next, the maximum distance from the cluster center to the sample of the iG cluster is obtained: 
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Finally, the width i  yields: 
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Thus, the value of RBFNN is obtained by the following equation. 
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The value of the radial basis function is matrix H , which is solved by substituting the 

cluster center and the width above into Equation (21). Apparently, H is n c , where n  is the 
total number of samples, and c is the number of clusters. 

For the solving of the weight, assume the output of the training samples isY , the actual 

output of the network isY , then according to the training process of the weight, the following 
error function can obtain the minimum only under the proper weight w . An expression of the 
error function: 
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Here, the least squares method is adopted to solve the weight value which makes the 

error function to achieve the minimum value. The following weight calculation formula can be 
easily deduced: 
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Where, 1[ ]TH H  represents the pseudo-inverse calculation of the matrix. The well 

trained RBNNN is as follows. 
 

1

( ) ( )
m

k k i i k
i

f x y w g x


                                                                                (24) 

 
 

5. Simulation and Analysis on Fault Diagnosis 
5.1. Fault Diagnosis Simulation Based on Improved RBFNN 

A four-bus-bar system is used as the experimental system, and it is shown in Figure 2. 
The system is composed of bus bars B1~B4, a transformer T1, and four transmission lines L1 ~ 
L4. CB represents the circuit breaker, MB represents the main protection of the bus bar, ML is 
the main protection of the transmission line, BL is the backup protection of the transmission line, 
and MT is the main protection of the transformer. The values of condition attributes are “0”or “1”. 
“1” indicates that the closed circuit breaker is disconnected or in protective state, “0” represents 
that the circuit breaker is unchanged or protection is non-operation. 
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Figure 2. A Simple Power Grid Structure 
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39 samples are selected as a training sample set, so the input and output of the neural 
network are 39 16 , 39 21 , respectively. Set 0.5  , randomly initialize the number of clusters 

and cluster centers, such as C 30 , and the diagnostic results are shown in Table 1. For these 
39 16  -dimensional training input samples, we have the following description: each of this 16 -
dimensional input signal represents the corresponding operation of the circuit breaker and the 
protection in the above figure, the order of the protection and circuit breaker in the input signal is 
as follows: ( 1 2 4 5 6 7, , , , , ,CB CB CB CB CB CB 10 1 2, , , ,CB MB MT ML 7 8 9 4 7, , , , ,ML ML ML BL BL BT ) 

.Assume one of the input vector is (1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ), it represents that 1CB  and 

7ML have action, respectively. The dimension of the output training samples is 39 21 , including 

single device fault and dual devices fault. If there is a fault of the device, the corresponding 
value takes “1”, otherwise, the value is “0”. There are 21 groups of input test samples, so the 
input test matrix is 21 16 . Moreover, in order to detect the fault tolerance of the proposed 
algorithm, a new set of test samples is set by reversing all the action values of 1MB . Simulation 

results show that when the test samples are non-interference samples, accuracy of fault 
diagnosis is 100%. When the test samples with nosy, the output of the neural network is shown 
in Table 1, the correct fault diagnosis results have been marked with lines, only the sample 2 
and the sample 10 can not correctly diagnosed in 21 group samples, apparently, accuracy of 
fault diagnosis is 90%.Particularly attention that sample 2 and sample 10 are complementary, 
so when disturbed, neither samples are able to identify by any diagnostic methods [20]. If we do 
not consider these two situations, diagnostic accuracy is still 100%, much higher than the 
method in [20]. 

 
 

Table 1. Simulation Results of Fault Diagnosis Based on Improved RBFNN 

Number B1 T B2 B3 B4 L1 L2 L3 L4 B1,T B2,T 

1 0.1991 -0.0245 -0.0126 -0.0163 -0.015 0.0284 0.0336 -0.0026 -0.0229 0.0249 -0.0171 

2 0.0023 0.0226 0.0122 0.0163 0.014 -0.012 -0.0294 0.0208 -0.0016 0.0208 0.0264 

3 -0.2193 -0.059 -0.0446 0.0113 -0.0274 -0.0602 -0.091 0.1153 0.3673 0.1782 0.0382 

4 -0.0908 0.1005 0.1083 -0.0361 0.0161 0.0187 -0.0035 -0.0308 -0.007 0.0169 -0.0406 

5 -0.1533 0.0373 -0.0283 -0.0267 -0.0185 0.0292 -0.1169 -0.1155 0.1816 -0.0394 -0.033 

6 -0.3025 0.0626 -0.0382 0.0566 -0.0432 0.0294 -0.0674 0.0104 0.1043 -0.1172 -0.0305 

7 -0.2617 -0.0652 -0.059 -0.0046 -0.0939 0.0458 0.0251 -0.0838 0.0968 -0.1278 -0.028 

8 -0.2145 0.0719 0.0341 -0.013 0.0486 0.0352 -0.1075 -0.0204 0.1728 -0.1291 -0.0385 

9 -0.155 0.0633 -0.0382 0.0265 -0.0218 0.0158 -0.129 -0.0553 0.1975 -0.0287 -0.0171 

10 0.0073 -0.0067 -0.0195 -0.0092 -0.0301 0.0088 0.0098 -0.012 0.0056 -0.0016 -0.016 

11 0.1239 0.0692 0.0432 0.02 0.0561 -0.0072 -0.1131 0.1115 0.1406 -0.032 1.0494 

12 0.0629 0.0456 0.0839 -0.0024 0.0247 0.0204 0.0112 0.0415 0.1614 0.7472 0.0071 

13 0.1119 0.166 0.0114 0.0611 0.0199 0.0614 -0.1401 0.055 1.1083 -0.0673 0.0234 

14 0.0498 0.0224 0.0195 -0.044 0.0661 0.0681 -0.0804 1.0788 0.1798 -0.1002 0.0182 

15 0.0964 0.4742 0.0483 0.0828 -0.0363 0.042 0.6092 0.1391 0.0176 0.1134 0.0228 

16 0.0031 0.0654 -0.0024 0.0553 0.0697 1.1067 -0.087 0.0521 0.1154 -0.0077 0.0112 

17 0.0737 0.1311 -0.0312 0.0344 0.9908 0.0801 -0.2165 0.0435 0.171 0.0299 0.0191 

18 0.0329 0.0401 -0.0127 1.0705 0.0629 0.0736 -0.0553 -0.0394 0.1044 0.0304 0.0023 

19 0.0774 0.0582 1.0167 0.0553 0.0229 0.0046 -0.0157 0.0093 0.0519 0.0751 0.0002 

20 0.1165 0.5958 0.0873 -0.0187 0.0653 -0.0149 0.4101 -0.0057 0.1586 -0.0104 -0.0193 

21 0.8054 -0.0106 0.0251 0.0278 0.0744 -0.0311 -0.0078 0.0384 0.0407 0.0518 -0.0104 
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Table 1. Simulation Results of Fault Diagnosis Based on Improved RBFNN (continued) 
序号 B2,L1 B2,L2 B2,L3 L1,L2 L2,L3 L3,L4 L2,L4 B3,L4 B3,L1 NO 

1 
-

0.1692 
0.0365 

-
0.1263 

0.2161 
-

0.3115 
0.0948 0.0103 

-
0.0287 

0.2784 0.8245 

2 0.6837 
-

0.0409 
0.0134 

-
0.1186 

0.0964 
-

0.0172 
0.012 

-
0.0352 

0.2427 0.0713 

3 0.2631 0.0292 0.0379 
-

0.1149 
0.0819 0.022 0.1863 0.4587 

-
0.3363 

0.1633 

4 0.3089 
-

0.0748 
0.0308 

-
0.0548 

0.0749 
-

0.0086 
0.7118 0.1199 

-
0.3114 

0.1516 

5 0.3246 0.1079 0.2568 
-

0.0863 
0.0753 0.4628 0.0802 0.2216 

-
0.3468 

0.1876 

6 0.3882 
-

0.0003 
0.1394 

-
0.0125 

0.8084 
-

0.0377 
0.109 0.1821 

-
0.3954 

0.1547 

7 0.1716 0.128 0.0873 0.6047 0.2277 
-

0.0835 
0.1133 0.3049 

-
0.2241 

0.2263 

8 0.2788 
-

0.0781 
0.7449 

-
0.0686 

0.0997 0.0395 0.0972 0.1456 
-

0.2992 
0.2005 

9 0.302 0.6507 0.1022 
-

0.1124 
0.0427 

-
0.1141 

0.326 0.1045 
-

0.3355 
0.1758 

10 0.2427 0.0611 
-

0.0129 
0.0819 

-
0.0755 

-
0.0038 

0.0026 0.0133 0.8094 
-

0.0551 

11 0.4029 
-

0.1669 
-

0.0839 
-

0.2815 
-

0.0434 
0.1132 0.1239 

-
0.1066 

-
0.5055 

0.0861 

12 0.33 
-

0.1502 
-

0.0333 
-0.284 

-
0.1999 

0.0018 0.1295 0.2325 
-

0.3593 
0.1293 

13 0.2788 
-

0.1554 
-

0.0524 
-

0.3219 
-

0.1005 
0.0391 0.0658 0.0534 

-
0.3151 

0.0971 

14 0.323 
-

0.1007 
-

0.2273 
-

0.2907 
-

0.0764 
0.1147 0.191 0.0402 

-
0.3554 

0.1034 

15 0.2905 
-

0.1116 
-

0.1179 
-

0.2731 
-

0.2478 
0.1681 

-
0.0558 

-
0.0146 

-
0.3241 

0.0769 

16 0.2657 
-

0.1668 
-

0.2331 
-

0.3389 
0.0323 0.1277 0.1727 

-
0.0401 

-
0.2934 

0.0921 

17 0.3287 
-

0.2186 
-

0.1654 
-

0.2579 
-

0.0731 
-

0.0786 
0.3863 0.0237 

-
0.3692 

0.098 

18 0.316 
-

0.2758 
-

0.0419 
-

0.3878 
0.0537 0.12 0.1343 0.0195 

-
0.3306 

0.0828 

19 0.335 
-

0.2178 
-0.006 

-
0.2323 

-
0.0013 

0.0062 0.0267 
-

0.0072 
-

0.3552 
0.0961 

20 0.3517 
-

0.1337 
0.0109 -0.382 0.1828 0.0506 

-
0.0197 

-
0.1794 

-
0.3413 

0.0954 

21 0.0023 
-

0.1119 
-

0.0635 
0.1268 0.0292 0.2151 -0.024 

-
0.1926 

0.0073 0.0077 

  
 

5.2. Comparison between FCM and the New Method 
FCM is adopted to train RBFNN, and test results are compared with the results 

simulated by the improved method. Also select the number of clusters C = 30, simulation results 
are shown in Table 2. From Table 2, the fault diagnosis accuracy of RBFNN based on FCM is 
85%, that is in 21 groups of samples, only 15 groups of diagnosis is correct. 
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Table 2. Simulation Results of Fault Diagnosis of RBFNN Based on FC 
序号 B1 T B2 B3 B4 L1 L2 L3 L4 B1,T B2,T 

1 0.0376 0.0105 0.0529 -0.0491 -0.0372 0.0269 0.025 0.0132 -0.0397 -0.0262 -0.0153 

2 0.0374 0.0031 -0.0187 0.0318 0.0209 -0.0101 -0.032 -0.0456 -0.0534 -0.0282 0.1933 

3 0.0114 -0.1069 -0.0763 0.0478 -0.0151 -0.0165 -0.0441 0.1828 0.1758 0.2316 0.0355 

4 0.0713 0.014 0.2555 0.0089 -0.048 0.0703 0.0309 -0.0007 -0.0211 0.1185 -0.1321 

5 0.0884 -0.0335 -0.09 -0.0441 0.0042 0.0419 -0.1448 -0.0807 0.1461 0.1327 -0.1111 

6 0.0309 -0.1946 -0.0391 0.1521 -0.0417 -0.0411 -0.0461 0.0932 0.0041 0.1138 -0.0537 

7 0.1123 -0.2232 0.0035 0.1154 -0.0491 -0.0011 -0.03 0.1339 -0.1001 0.1447 -0.1171 

8 0.106 -0.0045 -0.0451 0.0086 0.1434 0.0765 -0.1052 0.1109 0.02 0.0142 -0.173 

9 0.0257 -0.0098 -0.0711 0.0309 0.112 -0.0422 -0.0357 -0.0057 0.0066 0.0909 -0.0558 

10 0.058 0.0302 0.0291 -0.0116 -0.0059 -0.0257 -0.0044 -0.084 -0.0645 -0.1007 0.2958 

11 -0.1137 -0.0704 -0.0607 0.0272 0.0303 0.0287 0.0146 0.1522 0.125 0.2013 0.4311 

12 -0.0942 -0.0367 -0.0138 -0.0589 0.0407 0.0314 0.1061 0.1699 0.005 0.523 0.0295 

13 -0.0379 0.1285 -0.1082 0.1661 -0.0312 0.1556 0.0373 0.0406 0.4323 0.0657 0.01 

14 -0.0716 -0.1051 -0.0655 0.0199 0.1636 0.1549 0.0327 0.4302 0.0123 0.2028 0.0155 

15 -0.0739 0.2076 0.0096 0.1399 -0.0036 0.106 0.2601 0.0955 0.0895 0.2116 -0.0681 

16 -0.0915 0.006 -0.0776 0.1205 0.1424 0.44 0.062 0.1767 0.1548 0.0908 -0.0899 

17 -0.0732 -0.0311 0.0561 0.1256 0.3619 0.1309 -0.0554 0.1741 -0.051 0.084 -0.0938 

18 -0.0112 -0.0025 0.1209 0.4426 0.1131 0.0883 0.0533 0.015 0.131 -0.0313 -0.1238 

19 -0.0017 0.0001 0.3961 0.2223 0.1309 -0.013 0.0279 0.018 -0.0404 0.1095 -0.1203 

20 -0.0208 0.3913 -0.0226 0.0804 0.0215 0.0475 0.2019 -0.043 0.1777 0.0668 -0.1521 

21 0.1842 -0.0054 0.0156 0.0063 -0.0517 -0.0733 -0.0588 -0.0517 -0.0212 -0.0766 -0.0938 

 
 

Table 2.  Simulation Results of Fault Diagnosis of RBFNN Based on FCM (continued) 
序号 B2,L1 B2,L2 B2,L3 L1,L2 L2,L3 L3,L4 L2,L4 B3,L4 B3,L1 NO 

1 0.0116 0.0482 -0.0107 0.0397 -0.0883 0.108 0.2865 -0.189 0.0469 0.7487 

2 0.4919 -0.0476 -0.0193 0.0956 0.0047 -0.0088 -0.1424 0.0664 0.2808 0.1802 

3 0.1699 0.0612 -0.2329 0.0833 0.3119 -0.0015 -0.3405 0.491 -0.2363 0.2679 

4 0.1656 -0.2361 -0.1212 0.0522 0.0141 0.105 0.2026 0.236 -0.0706 0.2851 

5 0.2135 0.2137 0.0387 0.0599 0.0073 0.33 -0.2058 0.3092 -0.1408 0.2649 

6 0.1676 -0.098 0.0341 0.3773 0.4729 -0.1553 -0.3409 0.39 -0.1703 0.3451 

7 0.2245 -0.0964 -0.2123 0.607 0.2325 0.0018 -0.1392 0.3011 -0.1369 0.2289 

8 0.2632 -0.0806 0.4515 0.0627 0.1226 -0.0774 -0.2249 0.2211 -0.1224 0.2322 

9 0.099 0.5487 -0.1736 0.1179 -0.0903 0.0483 -0.1565 0.3072 -0.0977 0.3511 

10 0.2808 -0.0086 0.1375 0.0753 -0.0037 0.0649 0.1467 -0.1513 0.4321 -0.0899 

11 0.4022 -0.0065 -0.2665 -0.1144 -0.0171 -0.1329 -0.2933 0.3178 0.1487 0.1964 

12 0.1932 0.0361 -0.3406 0.0626 0.2426 -0.0028 -0.2676 0.3828 -0.2502 0.2417 

13 0.1785 -0.004 -0.199 0.0216 0.0138 0.0029 -0.3902 0.4511 -0.2197 0.286 

14 0.1642 -0.1786 0.1269 0.01 0.1911 -0.1967 -0.3107 0.3523 -0.2276 0.2791 

15 0.2087 -0.2023 -0.3229 0.2416 0.2287 -0.2165 -0.2218 0.2282 -0.1639 0.2458 

16 0.2138 -0.2171 0.1864 0.237 -0.4928 0.0171 -0.2303 0.246 -0.1778 0.2834 

17 0.2242 0.4747 0.2519 -0.1618 -0.0953 -0.107 -0.4238 0.1315 -0.1494 0.227 

18 0.2627 0.3066 -0.3378 0.3919 -0.0183 -0.2393 -0.4729 0.2443 -0.1695 0.237 

19 0.2112 0.2379 -0.285 -0.098 0.0677 -0.1407 -0.1072 0.2452 -0.1276 0.2671 

20 0.2426 -0.0986 -0.1024 -0.0595 0.3378 -0.1097 -0.2674 0.1727 -0.1293 0.2651 

21 0.0374 0.0604 0.1749 0.2784 0.3204 0.1918 0.1211 0.011 0.0581 -0.0266 
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6. Conclusion 
In this paper, a new hybrid fuzzy clustering algorithm is proposed to optimize the 

parameters of the RBFNN, and it is applied to the fault diagnosis of power grid. Simulation 
results show that the method in this paper reduces the influence of the clustering initial choice to 
the diagnostic results, and improves the convergence speed and accuracy of RBFNN. It has 
validity for power grid fault diagnosis, especially for the noise disturbance, such as switching or 
protecting malfunction, it has high robustness. This method has a practical significance for the 
fast and accurate fault diagnosis, and the enhancement of supply reliability. 
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