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 Fast-RRT improves on the original rapidly-exploring random trees (RRT) by 

incorporating two main stages: improved-RRT and fast-optimal. The 

improved-RRT stage enhances the search process through fast-sampling and 

random steering, while the fast-optimal stage optimizes the path using fusion 

and path arrangement. However, path fusion can only be optimal when the 

newly found path is unique and different from previous paths. This 

uniqueness rarely occurs in cases with narrow corridors, so path fusion only 

provides suboptimal conditions. To address this, the study explores using 

honey bee mating optimization (HBMO) to optimize or replace the fusion 

stage. HBMO helps determine new beacon coordinates, which are nodes 

between the start and goal points along the path, through a batch beacon 

adjustment approach. The results show that integrating HBMO into Fast-

RRT improves its optimality, with a 21.85% reduction in path cost and a 

5.22% decrease in completion time across environments with varying 

difficulty levels. This hybrid algorithm outperforms previous methods in 

terms of both path optimality and convergence rate, demonstrating its 

effectiveness in enhancing Fast-RRT’s performance. 
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1. INTRODUCTION 

Not only behavior-based movement [1]-[3], simultaneous localization and mapping (SLAM) [4], [5] 

and path tracking [6]-[8], path planning is also an issue that must be considered to make robots able to 

navigate autonomously in unknown environment [4], [9]. Searching and sampling-based path planning 

algorithms serve as two major approaches in robotics and artificial intelligence, each having distinct 

characteristics. Search-based algorithms such as A* [10] and Dijkstra [11], [12] prioritize the search for 

optimal paths through systematic exploration of the search space, ensuring completeness and optimality. 

They are efficient in smaller, static environments where the right solution is paramount. In contrast, 

sampling-based methods such as rapidly-exploring random trees (RRT) [13] and probabilistic roadmaps 

(PRM) [14] focus on exploring feasible regions of space through random sampling, making them particularly 

adept in high-dimensional and dynamic environments. While it does not guarantee optimality, it offers 

scalability and adaptability, making it suitable for scenarios with complex obstacles or constantly changing 

terrain. The choice between the two depends on factors such as environmental dynamics, computing 

resources, and the desired balance between optimality and efficiency. Many researchers and practitioners 

utilize sampling-based path planning methods to increase optimality while taking advantage of the speed 
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available in finding solutions. Sampling-based algorithms, such as RRT and its variants, prioritize efficiency 

by exploring the configuration space through random sampling and incremental tree growth. 

Although RRT may not guarantee an optimal solution in its basic form, researchers have developed 

techniques to increase its optimality without reducing its speed. For example, algorithms such as RRT-

Connect [15]-[17]. RRT-Connect carries a two-way approach in finding paths between start points and end 

points in the search space. By initializing an exploration tree from a starting point, RRT-Connect iteratively 

performs a random expansion, adding new points connected to nearby points in the tree. This process 

continues until the path reaches the end point, then the reverse process is carried out from the end point to the 

start point. By combining the two trees from opposite directions, RRT-Connect creates sufficient connection 

paths between the start and end points in the search space. 

Although it does not guarantee an optimal path, this approach is efficient in exploring the search 

space and often provides solutions in a short time. In response to these limitations, rapidly-exploring random 

trees star (RRT*) [13], [18] was introduced, improving the algorithm with a different approach. RRT* 

combines a random exploration approach with a node evaluation and reconnection process to improve the 

quality of the resulting paths. 

Additionally, RRT* dynamically updates existing paths by considering the total cost from the 

starting point to each node in the exploration tree. Thus, RRT* enables the search for more efficient and 

potential paths to reach optimal solutions in various motion planning problems. However, the non-specific 

direction of exploration means that RRT* has the potential to conduct sampling in places that have actually 

never been touched or even have no significance for excessive exploration. This makes the convergence 

speed slow and needs attention. Referring to this limitation, RRT* was improved with a hybrid approach that 

utilizes the artificial potential field method [19]-[21]. The use of APF in RRT* is intended to produce more 

targeted exploration within a given environment [20], [21]. The integration of the two aims to accelerate 

convergence towards a solution by reducing the number of iterations required, as well as reducing execution 

time to reach the optimal path. The APF algorithm is known for its simplicity and powerful mathematical 

analysis, despite its limitation to state spaces of up to five dimensions due to its inability to operate in local 

minima environments. Apart from that, Quick-RRT* has also been introduced with the motivation of an 

exploration method with good convergence speed [9], [22]. Quick-RRT* integrates the concept of triangle 

inequality to speed up the process of determining nodes and connections in exploration trees. By using 

triangle inequalities, Quick-RRT* can reduce the number of distance evaluations between existing nodes, 

resulting in faster path finding. This approach optimizes search steps by prioritizing expansion to nodes that 

have the greatest probability of directing a path to the destination point. 

Therefore, Quick-RRT* significantly speeds up the motion planning process, making it an attractive 

option in situations where speed of execution is an important factor. Furthermore, based on the benefits of 

both APF- and Quick-based methods, a hybrid approach such as PQ-RRT* is proposed, combining the 

strengths of each to achieve improved performance in planning tasks [23], [24]. Although Quick-RRT* can 

speed up the motion planning process by using the concept of triangle inequality to prune the evaluation of 

distances between vertices, aggressive pruning can result in suboptimal paths [25]. This process can eliminate 

nodes that are important for creating a better path, and result in solutions that are further from optimal. In 

addition, the sensitivity to parameters and the difficulty of adjustment also makes the implementation 

complexity also increase. Therefore, other methods are introduced with a focus on maintaining speed and 

optimality as ideally as possible. 

Different from the previous one, this method was built by considering the RRT as a base. The 

scientific reason is the desire not to rely on repeated search processes as in RRT*. This method is called Fast-

RRT [26], [27]. Although there is no reconnection process in this method, sampling is adopted from the 

improved-RRT. The improvement in question is the addition of fast-sampling and random-steering processes. 

Fast-sampling is a way of generating random nodes without repetition in the touched area. Meanwhile, 

random steering is applied to control the generation of random nodes in the direction towards the target point. 

One advantage of improved RRT in fast-RRT is that it can speed up exploration even in environments with 

narrow passageways thanks to its fast-sampling and random steering. Fast-sampling, on the other hand, 

removes the chance that the first path found is not the best one because it restricts sampling to unexplored 

areas. Furthermore, 𝑋𝑛𝑒𝑤 obtained will have very limited connection options to other nodes in 𝑇 in the 

absence of wiring such as RRT*. As a result, the newly created path will typically resemble the previous 

𝑇𝑜𝑝𝑡. This has an impact on the path fusion process, which ought to be at its best when the newly formed path 

differs from the old one as well. Therefore, the RRT* wiring process is used in this study. In addition,  

Fast-RRT also introduces the path-optimal stage which contains a sequential process between the fusion and 

tuning paths as an effort to maintain the optimality of the path formed. Thus, Fast-RRT has better 

performance when compared to RRT or RRT* in terms of convergence speed and optimality. 
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However, in reality Fusion will only produce new paths that are less than optimal and slow down 

planning time. Therefore, there needs to be development of Fast-RRT with objectivity to replace the fusion 

stage. In this research, the honey-bee mating optimization (HBMO) [28]-[32] method was involved. Its 

involvement is to connect random nodes around the nodes on the path resulting from the initial Fast-RRT 

stage with reference to the shortest distance. As an optimization method, HBMO can be applied in 

determining the optimal solution, both minimum and maximum, by considering the objective function or a 

single numerical quantity. So, this is enough to prove that HBMO has a high level of feasibility to represent 

the expected solution. Although there are many variants of the method, such as simulated annealing (SA) 

[31], grey wolf optimization (GWO) [33]-[36], artificial bee colony (ABC) [29], [37], [38], particle swarm 

optimization [39]-[42], and genetic algorithm (GA) [29], [35], [36], HBMO has capabilities that cannot be by 

other methods. 

To maximize the optimality of the results, HBMO is essentially used to control the position of nodes 

other than the goal and start contained in 𝑇𝑜𝑝𝑡. Updating these positions are used to obtain the optimal path, 

𝑇𝑜𝑝𝑡, which is 𝑇𝑖𝑛𝑖𝑡 . 𝑇𝑜𝑝𝑡 is made up of beacon nodes that link 𝑥𝑖𝑛𝑖𝑡  and 𝑥𝑔𝑜𝑎𝑙 . It is evident that this path has 

fewer beacon nodes than all the nodes in 𝑇𝑖𝑛𝑖𝑡 , except for 𝑥𝑖𝑛𝑖𝑡  and 𝑥𝑔𝑜𝑎𝑙, since it creates a collision-free 

direct connection between nodes and the farthest nodes. Then, in the HBMO optimization process, the 

number of beacon nodes, 𝑁, is considered as a decision variable. Due to their small number, HBMOs should 

optimize their locations by shifting them to pertinent areas. For every beacon node, this displacement is 

constrained by the radius 𝑟. The only other requirements for this decision variable are to maintain a 

connection without running into any environmental obstacles. Furthermore, the fitness function used is the 

path cost, which determines the total connection distance from 𝑥𝑠𝑡𝑎𝑟𝑡 − 𝑥𝑔𝑜𝑎𝑙through the beacon nodes, 

considering that the path from the beacon node connection represents a candidate solution. Therefore, it is 

evident that this kind of optimization refers to minimizing the search space within a time constraint to 

generate optimal paths. 

The HBMO generation is controlled based on the number of samples left over after reaching the 

designated maximum sampling based on this time restriction. This kind of HBMO deployment pattern 

enables the beacon node to move to a new location and possibly establish a direct connection with another 

beacon node that is the farthest away. At the conclusion of the process, path optimization is done once more 

before the final path is decided to break the cycle of finding the best path. Referring to a search cycle like 

this, this method was later named HBMO-optimized Fast-RRT* with the latest form being the creation of 

Fast-RRT which adds a rewiring process, and the implementation of HBMO after path optimization has been 

carried out. The performance of the proposed method for solving a global path planning are compared to its 

predecessor, namely RRT* and Fast-RRT, in terms of optimality and convergence rate. And according to the 

comparative result, the proposed method shows a significant improvement. 

The rest of this paper is organized as follows: the material and methods are presented in section two. 

It covers the problem statement, Fast-RRT, and HBMO; the proposed method is presented in section three 

including the pseudocode and flowchart; the result and discussion is discussed in section four; and section 

five presents the conclusion. 

 

 

2. METHOD 

In this section, the materials and methods involved in this research are presented. It includes the 

problem statement, brief review on Fast-RRT, and honey bee mating optimization. They are presented to 

provide more clarity on the methods that have been developed in the next section. 

 

2.1.  Problem statement 

Let 𝑋 ∈ ℝ𝑛 is representation of state space for a path planning problem, with 𝑛 ∈ 𝑁 is space dimension, 

thus 𝑋 = {𝑋𝑜𝑏𝑠, 𝑋𝑓𝑟𝑒𝑒} is state space with 𝑋𝑜𝑏𝑠 ∈ 𝑋 refers to obstacle coordinates and 𝑋𝑓𝑟𝑒𝑒 ∈ 𝑋 refers to the free 

space. Moreover, if the start node 𝑥𝑖𝑛𝑖𝑡 ∈ 𝑋𝑓𝑟𝑒𝑒  and goal node 𝑥𝑔𝑜𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒  are given, then referring to 𝑋𝑜𝑏𝑠, the 

path planning algorithm has to find the ideal path from-to those nodes, denoted as 𝜎 = [0, 𝑇] → 𝑋𝑓𝑟𝑒𝑒  with 

𝜎(0) = 𝑥𝑖𝑛𝑖𝑡  and 𝜎(𝑇) = 𝑥𝑔𝑜𝑎𝑙  where 𝑋𝑔𝑜𝑎𝑙 = {𝑥 ∈ 𝑋|𝑥 − 𝑥𝑔𝑜𝑎𝑙| < 𝑟} for 𝑟 is radius around 𝑥𝑔𝑜𝑎𝑙. 

 

2.2.  Fast-RRT 

In general, Fast-RRT consists of two main steps in solving global path planning problems, namely 

Improved-RRT and Fast-Optimal. Respectively, they are used to find feasible paths and to optimize paths by 

combining current and previous paths. Both are executed sequentially to determine the best path. This can be 

seen in Algorithm 1. 
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Algorithm 1. Fast-RRT 
Input: 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝 

Output: A path 𝑇 connecting 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙 

for 𝑖 = 1: 𝑁 
𝑇𝑖𝑛𝑖𝑡 ←  𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇(𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝) 

if 𝑇𝑖𝑛𝑖𝑡 is found  

𝑇𝑜𝑝𝑡 ←  𝑓𝑎𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑇𝑖𝑛𝑖𝑡, 𝑇𝑜𝑝𝑡) 
endif 

endfor 

 

Both the improved-RRT and fast-optimal stages each have two sub-step descriptions which make 

them different from their predecessor, namely RRT. In improved-RRT there is fast sampling which is 

designed not to repeat sampling in areas that have already been explored, and random steering which is used 

to change the relationship between two nodes if there is a collision with an obstacle in the environment. The 

representative algorithm for improved-RRT can be seen in Algorithm 2. 
 

Algorithm 2. Improved-RRT 
Input: 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝 

Output: A path 𝑇 connecting 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙 

𝑥𝑟𝑎𝑛𝑑 ← 𝑓𝑎𝑠𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑎𝑝) 
𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝑇, 𝑥𝑟𝑎𝑛𝑑) 
𝑥𝑛𝑒𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑒𝑒𝑟(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑟𝑎𝑛𝑑) 
𝐸𝑖 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤) 
if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑀𝑎𝑝, 𝐸𝑖)  

𝑇 ←  𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑥𝑛𝑒𝑤, 𝐸𝑖) 
if 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙 

𝑇𝑖𝑛𝑖𝑡 ← 𝑔𝑒𝑡𝑃𝑎𝑡ℎ(𝑇) 
endif 

endif 

endfor 

 

where, 𝐸𝑑𝑔𝑒(. ) is a function to get a connection node to node, 𝑎𝑑𝑑𝑁𝑜𝑑𝑒(.) appends the node to trees 𝑇, and 

𝑇𝑖𝑛𝑖𝑡  is a feasible path from 𝑥𝑖𝑛𝑖𝑡 to 𝑥𝑔𝑜𝑎𝑙  obtained by tracing all nodes based their own parent. Whereas 

𝑓𝑎𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(. ) is stated as shown in Algorithm 3. 
 

Algorithm 3. Fast sampling 
Input: 𝑀𝑎𝑝 
Output: 𝑥𝑟𝑎𝑛𝑑 

𝑥𝑟𝑎𝑛𝑑 ← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑎𝑝) 
while 𝑥𝑟𝑎𝑛𝑑 ∈ 𝑋𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 

𝑥𝑟𝑎𝑛𝑑 ←  𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑎𝑝) 
endwhile 
 

where 𝑥𝑟𝑎𝑛𝑑 in 𝑋𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑  is detected by measuring each node on 𝑇 to 𝑥𝑟𝑎𝑛𝑑 . It is assumed to be detected if the 

distance is less than a predefined radius. Meanwhile, randomSteer(.) is done by executing Algorithm 4. 
 

Algorithm 4. Random steering 
Input: 𝑀𝑎𝑝, 𝑇, 𝑥𝑟𝑎𝑛𝑑 

Output: 𝑥𝑛𝑒𝑤 

𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝑇, 𝑥𝑟𝑎𝑛𝑑) 
𝐸𝑖 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟) 
if 𝐶𝑜𝑙𝑙𝑖𝑠𝑜𝑛𝐹𝑟𝑒𝑒(𝐸𝑖 , 𝑀𝑎𝑝) 
return 𝑥𝑛𝑒𝑤 

else 

𝜃 ← 𝑟𝑎𝑛𝑑(2𝜋) 
𝑥𝑛𝑒𝑤 ← 𝐸𝑥𝑝𝑎𝑛𝑑(𝑥𝑛𝑒𝑎𝑟, 𝜃) 
endif 

 

where 𝜃 refers to the steering angle of 𝑥𝑛𝑒𝑎𝑟-𝑥𝑛𝑒𝑤connection, which is randomly generated in range of 

[0, 2𝜋] if 𝑥𝑛𝑒𝑤  collides to the obstacle. And 𝑒𝑥𝑝𝑎𝑛𝑑(. ) is a function used to refind 𝑥𝑛𝑒𝑤  according to 𝑥𝑛𝑒𝑤  

and 𝜃. Furthermore, in Fast-Optimal there are also two sub steps, namely path fusion and path tuning. As the 

name suggests, fusion involves two previously obtained paths with a newly obtained path, which is then 

combined into a path with better quality based on the intersection point. For the record, this intersection point 

is the intersection point of the two processed paths, and is obtained by finding the average position based on 

two close points. The process of path fusion can be seen in Algorithm 5. 
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Algorithm 5. Path fusion 
Input: 𝑇𝑖𝑛𝑖𝑡, 𝑇𝑜𝑝𝑡 

Output: 𝑇𝑜𝑝𝑡 

for each point in 𝑇𝑜𝑝𝑡 

for each point 𝑇𝑖𝑛𝑖𝑡 

if ‖𝑝𝑜𝑖𝑛𝑡𝑇𝑜𝑝𝑡
, 𝑝𝑜𝑖𝑛𝑡𝑇𝑖𝑛𝑖𝑡

‖ < 𝑇ℎ𝑟 

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑑𝑥𝑃𝑜𝑖𝑛𝑡𝑇𝑜𝑝𝑡
, 𝑖𝑑𝑥𝑃𝑜𝑖𝑛𝑡𝑇𝑖𝑛𝑖𝑡

 

endif 

endfor 

endfor 

𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝐴 ← ‖𝑇𝑖𝑛𝑖𝑡(𝑠𝑡𝑎𝑟𝑡): 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥)‖ 

𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝐵 ← ‖𝑇𝑜𝑝𝑡(𝑠𝑡𝑎𝑟𝑡): 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥)‖ 

𝐶𝑜𝑠𝑡𝐼𝑛𝑡𝐺𝑜𝑎𝑙𝐴 ← ‖𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥): 𝑇𝑖𝑛𝑖𝑡(𝑔𝑜𝑎𝑙)‖ 

𝐶𝑜𝑠𝑡𝐼𝑛𝑡𝐺𝑜𝑎𝑙𝐵 ← ‖𝑇𝑜𝑝𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥): 𝑇𝑜𝑝𝑡(𝑔𝑜𝑎𝑙)‖ 

if 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝐴 < 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝐵 
SubpathA = 𝑇𝑖𝑛𝑖𝑡(𝑠𝑡𝑎𝑟𝑡): 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥) 
else 

SubpathA = 𝑇𝑜𝑝𝑡(𝑠𝑡𝑎𝑟𝑡): 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥) 
endif 

if 𝐶𝑜𝑠𝑡𝐼𝑛𝑡𝐺𝑜𝑎𝑙𝐴 < 𝐶𝑜𝑠𝑡𝐼𝑛𝑡𝐺𝑜𝑎𝑙𝐵 

SubpathB = 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥): 𝑇𝑖𝑛𝑖𝑡(𝑔𝑜𝑎𝑙) 
else 

SubpathB = 𝑇𝑜𝑝𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥): 𝑇𝑜𝑝𝑡(𝑔𝑜𝑎𝑙) 
endif 

𝑇𝑜𝑝𝑡 = [SubpathA, SubpathB] 

 

After the fusion process is complete, the resulting path is then tuned using the path fine tuning 

process. No different from the optimization process in general, this path fine tuning applies triangular 

inequality to shorten the path. With this process the initial point will try to be connected to the next point. 

When there is no collision with an obstacle, the starting point is connected to a further point, and so on. 

However, the point connection is invalid if a collision occurs and the Subpath is the connection between the 

initial point and the last point which is still free of obstacles, and the initial point is determined again. The 

starting point for the second Subpath is the point connected to the starting point on the Subpath that has been 

formed. Next, the process repeats, until the target point is successfully connected to the last Subpath. Finally, 

the path generated by path fine tuning combines these Subpaths. 

 

2.3.  Honey bee mating optimization (HBMO) 

As a potential metaheuristic algorithm, the HBMO algorithm mimics the drone, brood, and queen. 

Genotype, speed, energy, and spermatheca with a certain capacity are characteristics of each queen. The 

drone's sperm store, known as the spermatheca, is created during mating with the queen. Consequently, speed 

and energy are initialized prior to each mating trip for queens with a specific spermatheca size. The drone 

sperm is kept in the queen's spermatheca following a successful mating attempt. The remaining genes from 

the queen's genome are completed later in the breeding process, and some drone genes are copied into the 

parent's genotype to generate the brood. The queen chooses a drone at random from the issue choice space, 

and mating flights are mapped into the HBMO algorithm. The queen's spermatheca contains the genome of 

every drone that mates successfully. Additionally, in each iteration of the HBMO algorithm, all drones left 

after the mating flight were destroyed to simulate drone mortality at the end of the breeding season. Model 

worker bees use heuristic functions to try to enhance the quality of their brood. As a potential genetic answer, 

the HBMO algorithm mimics the drone, brood, and queen. Workers' brood care is translated into an 

algorithm that uses heuristic functions to improve brood. The drone's sperm store, known as the spermatheca, 

is created during mating with the queen. Consequently, speed and energy are initialized prior to each mating 

trip for queens with a specific spermatheca size. The drone sperm is kept in the queen's spermatheca 

following a successful mating attempt. The remaining genes from the queen's genome are completed later in 

the breeding process, and some drone genes are copied into the parent's genotype to generate the brood. The 

queen chooses a drone at random from the issue choice space, and mating flights are mapped into the HBMO 

algorithm. The queen's spermatheca contains the genome of every drone that mates successfully. Next, a 

drone (solution) is chosen at random from the decision space to mate with the queen using mating flight. 

Each chosen drone's genome is kept in the spermatheca of the queen. Each chosen drone's genome is kept in 

the spermatheca of the queen. By using crossover and mutation operators between the queen and the solution 

kept in the queen's spermatheca, diploid broodstock are produced. By using crossover and mutation operators 

between the queen and the solution kept in the queen's spermatheca, diploid broodstock are produced. To 

enhance the quality of the brood, the heuristic function that simulates worker bees is used. The HBMO 

algorithm's flow diagram is shown in Figure 1. 
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Figure 1. Flowchart of HBMO 

 

 

3. PROPOSED METHOD 

The fast-sampling and random steering found in improved-RRT in Fast-RRT have the advantage 

of being able to speed up the exploration process, even in environments with narrow passageways. 

However, fast-sampling, which limits sampling to areas that have not yet been explored, actually 

eliminates the possibility that the initial path obtained is less than optimal. In addition, without wiring such 

as RRT*, 𝑥𝑛𝑒𝑤  obtained will have very few connection options to other nodes in 𝑇. So, the new path that is 

formed will tend to have similarities to the previous 𝑇𝑜𝑝𝑡. This affects the path fusion process which 

should be optimal when the new path formed also has variations from the previous one. Thus, in this 

research the wiring process on the RRT* is applied. In the proposed method, the implementation is carried 

out after edge 𝐸𝑖 is obtained. 

After 𝑥𝑛𝑒𝑤  is added to tree 𝑇 and its parent is assigned, the exploration process is repeated until the 

termination criterion is met, namely when 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙 . This process then produces results in the form of the 

initial path 𝑇𝑖𝑛𝑖𝑡 . Instead of applying Fast Optimal, in this research the application of the metaheuristic 

Algorithm 6, HBMO, was carried out. This implementation is based on the shortcomings of path fusion 

found in Fast-RRT, namely that it has the potential to not be executed because, newly varied paths are rarely 

obtained by simply increasing sampling only. Another reason is that it takes quite a long time to execute the 

path fusion process. Therefore, this is contrary to the initial motivation of fast sampling, which was held with 

the aim of increasing the convergence rate of Fast-RRT. 

Basically, HBMO is carried out to regulate the position of nodes other than the goal and start 

contained in 𝑇𝑜𝑝𝑡 as an effort to increase the optimality of results. The best bee candidate, which successfully 

shows the shortest path value, is assumed to be the queen in HBMO. This queen will then be mated with the 

drone. The bees that are not selected as queens are assumed to be drone candidates. By utilizing roulette 

wheel selection, drone candidates will be selected. Technically, this selection refers to the results of the 

previous fitness calculation. The total of the overall fitness becomes the divisor, for each drone fitness. Here, 

the representation value will be obtained which is then used as a reference in making the Cumulative 

Probability Distribution. Then by creating a cumulative probability array, roulette wheel selection is 

simulated. This cumulative probability array is a reference where each individual occupies a wheel segment 

that is proportional to its selection probability. Assuming that the roulette wheel selector is a random number 

from 0-1, then clearly the coordinates of the node that produces a shorter distance than the others have the 

potential to be selected as a drone. After the drone is selected, the simulation of the mating process between 

the drone and the queen is carried out. In this simulation, the principles of crossover and mutation are carried 

out. Both processes involve changing the coordinate data into binary form. In this study, the coordinate value 

was changed to 8-bit binary. In the crossover process, the good bits on the queen and drone are exchanged 

using the single-point crossover method. The crossover point divides the chromosome into two parts on each 
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drone and queen. And the exchange is done on the bit collection after the crossover point. While in mutation, 

which is done after the crossover is complete, the study applies bit flipping to the chromosomes of both 

drones and queens. The results of the crossover and mutation processes are then called brood in Figure 1. 

Next, both of them which represent the characters of the drone and queen are tested based on their fitness 

values. This is to ensure that between the two there is one that is better than the queen. If not, the queen will 

be the same and the drone selection is repeated. And so on, until a better brood is produced, which then 

replaces the drone and queen in the next iteration/generation. This iteration is set 5 times which is equivalent 

to the repetition of the random node generating process in the path optimization space, so that reposition does 

not reduce the quota of the optimization itself. After the termination criteria are met, another beacon 

reposition is carried out. Gradually, the random appointment of beacons that are repositioned is what makes 

the proposal called the batch beacon optimization method. This process stores 𝑇𝑜𝑝𝑡 and as a note, the 𝑇𝑜𝑝𝑡  is 

𝑇𝑖𝑛𝑖𝑡 which has been optimized by applying Algorithm 7. 𝑇𝑜𝑝𝑡  consists of beacon nodes connecting 𝑥𝑖𝑛𝑖𝑡  with 

𝑥𝑔𝑜𝑎𝑙 . Because it implements a direct connection of nodes to the furthest nodes that is collision-free, the 

number of beacon nodes of this path is clearly less than all the nodes contained in 𝑇𝑖𝑛𝑖𝑡  other than 𝑥𝑖𝑛𝑖𝑡 and 

𝑥𝑔𝑜𝑎𝑙 . The number of beacon nodes 𝑁 is then considered as a decision variable in the optimization process 

using HBMO. The small number makes it relevant for HBMOs to carry out optimization by moving their 

locations to relevant areas. This displacement is limited by the radius 𝑟 for all beacon nodes. Apart from that, 

the criteria for this decision variable are to adhere to a connection without collisions with obstacles in the 

environment. Furthermore, considering that the path from the beacon node represents a candidate solution, 

the fitness function used is the path cost which calculates the total connection distance from 𝑥𝑠𝑡𝑎𝑟𝑡 − 𝑥𝑔𝑜𝑎𝑙  

through the beacon nodes. Thus, for the purpose of generating optimal paths this type of optimization refers 

to minimizing the search space with limited time. Based on this time limitation, the HBMO generation is 

regulated according to the number of remaining samples towards the specified maximum sampling. HBMO 

with a deployment pattern like this allows the beacon node to shift to another area, with the potential to be 

connected directly to another farthest beacon node. So as to end the cycle of determining the best path, path 

optimization is carried out again at the end of the process before the final path is determined. Overall, this 

proposed method can be seen in the flowchart in Figure 2. 
 

Algorithm 6. HBMO-optimized Fast-RRT* 
Input: 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝 

Output: A path 𝑇𝑖𝑛𝑖𝑡 connecting 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙 

for 𝑖 = 1: 𝑁 

𝑥𝑟𝑎𝑛𝑑 ← 𝑓𝑎𝑠𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑎𝑝) 
𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝑇, 𝑥𝑟𝑎𝑛𝑑) 
𝑥𝑛𝑒𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑒𝑒𝑟(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑟𝑎𝑛𝑑) 
𝐸𝑖 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤) 
if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑀𝑎𝑝, 𝐸𝑖)  

𝑄 ← 𝑁𝑒𝑎𝑟(𝑥𝑛𝑒𝑤 , 𝑇, 𝑟) 
𝑥𝑚𝑖𝑛 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑝𝑎𝑟𝑒𝑛𝑡(𝑄, 𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟, 𝐸𝑖) 
𝑇 ← 𝐶𝑜𝑛𝑛𝑒𝑐𝑡(𝑇, 𝑥𝑚𝑖𝑛 , 𝑥𝑛𝑒𝑤 , 𝐸𝑖) 
𝑇 ← 𝑅𝑒𝑤𝑖𝑟𝑒(𝑇, 𝑄, 𝑥𝑛𝑒𝑤) 
if 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙 

𝑇𝑖𝑛𝑖𝑡 ← 𝑔𝑒𝑡𝑃𝑎𝑡ℎ(𝑇) 
𝑇𝑜𝑝𝑡 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑃𝑎𝑡ℎ(𝑇𝑖𝑛𝑖𝑡, 𝑀𝑎𝑝) 

𝑇𝑜𝑝𝑡 ← 𝐻𝐵𝑀𝑂(𝑇𝑜𝑝𝑡 , 𝑀𝑎𝑝, 𝑖 + 1) 
endif 

endif 

endfor 

 

Algorithm 7. Optimize path 
Input: 𝑀𝑎𝑝, 𝑃 

Output: 𝑃𝑜𝑝𝑡 

𝑃 = [ ] 
𝑥𝑐ℎ𝑒𝑐𝑘 = 𝑃1 

for 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) − 1 
𝐸𝑖 ← 𝐸𝑑𝑔𝑒(𝑥𝑐ℎ𝑒𝑐𝑘 , 𝑃𝑖) 
if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑀𝑎𝑝, 𝐸𝑖)  
continue 

else 

𝑠𝑢𝑏𝑝𝑎𝑡ℎ ← 𝑃1:𝑘−1 

𝑥𝑐ℎ𝑒𝑐𝑘 = 𝑃𝑖−1 

𝑃𝑜𝑝𝑡 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑠𝑢𝑏𝑝𝑎𝑡ℎ) 
endif 

endfor 

𝑃𝑜𝑝𝑡 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑃𝑒𝑛𝑑) 
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Figure 2. Flowchart of proposed algorithm 

 

 

4. RESULTS AND DISCUSSION  

To verify effectiveness, the proposed method is applied to solve global path planning problems. 

There are 3 types of environmental models, categorized into maze environments with wide hallways and 

mazes with narrow hallways, which will be used for this trial. It is not only the success of the method that is 

to be tested through this experiment and testing, but also the validity of the effectiveness of the method in 

terms of optimality and convergence rate. This basis is the basis for testing which will involve comparisons 

with previous methods, such as RRT-Star, Fast-RRT, and HBMO-assisted Fast-RRT. To obtain a fair 

comparison and analysis, the parameterization and determination of start points, and goal points are 

equalized. The starting point is placed at (5, 75) and the goal point at (75, 5) with the number of samplings 

allowed set based on the complexity of the test environment. For a comparison of the performance of the 

three methods for the first environment, in Figure 3. 

As shown in Figure 3, the three different methods can properly solve the problem with a sampling 

time of 1500. However, their sampling requirements to find the initial path are different to each other. The 

RRT* requires 1203 repetitive sampling as can be seen in Figure 3(a), Fast-RRT requires 1094 as can be seen 

in Figure 3(b), and the proposed method is 1009 as can be seen in Figure 3(c). This shows that the proposed 

method is like Fast-RRT for the convergence rate value. This achievement is logical, because the proposed 

method applies the same techniques during exploration, namely, the application of fast sampling and random 

steering. However, referring to the cost path shown in Figure 3, the proposed method provides better values 

than the two predecessor methods. This proves that the proposed method can provide more optimal values 

even though there are sampling restrictions allowed during problem solving. As note, the red bullets are the 

beacon contained by path before the optimization conducted. The green bullets are the representative beacons 

after they are automatically adjusted by HBMO. According to the duration for all processes, the proposed 

method also faster than other involved methods in Table 1. 

Up to this point, the HBMO shows its role to improve optimality of previous path. However, 

experiments on the 1st environment alone are not enough to prove that the proposed method is more 

effective. Therefore, a second experiment was carried out and the results can be seen visually in Figure 4. By 

continuing to use the permitted number of samples, namely 7000 times, the performance of the three methods 

was compared again. In this second environment, there are a number of passages with narrower distances and 

it is mandatory to pass them to be able to explore the area near the goal point. According to the required 

sampling time, RRT* needs 6430 times of sampling to get the initial path, Fast-RRT needs 5463 times, and 

the proposed method 5346 times. The need for larger sampling shows that the RRT* is having difficulty 

carrying out exploration by relying only on uniformly generated sampling as can be seen in Figure 4(a). So, it 

can be said that by maintaining the improved-RRT which includes Fast-Sampling and Random Steering, 

Fast-RRT and the proposed method can show better results. Furthermore, the path generated by RRT* does 

not have sufficient optimality with quite high costs. Meanwhile, in Fast RRT, the optimality of the path is 

still not enough even though a large sampling has been completed. This is caused by the absence of a 
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rewiring process which can be useful for re-determining connections to nodes on the sub-path. Apart from 

that, the non-optimal path is also thought to be caused by the fusion step not being able to run properly due to 

the failure to get a new path that is better than the previous optimal path. Even though path optimization has 

been implemented, the final optimality is still lacking and worse compared to RRT*, with path cost of 

179.2243 as can be seen in Figure 4(b). It might be due to the influence of the previous optimality or no 

wiring process maintaining the quality of the previously obtained path. Meanwhile, for the proposed method 

in this second case, performance has shown effectiveness with a cost path of 147.4175 at the same number of 

samples as can be seen in Figure 4(c). 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 3. The performance of (a) RRT*, (b) Fast-RRT, and (c) HBMO-optimized Fast-RRT 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 4. The performance of (a) RRT*, (b) Fast-RRT, and (c) HBMO-optimized Fast-RRT 
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Table 1. Duration for solving the problem 
Testing criteria RRT* Fast-RRT HBMO-optimized Fast-RRT 

Duration (second) 64.4352 59.1542 58.7744 
Cost path 117.6455 140.6757 112.4844 

 

 

Although by referring to the results in Figure 4 the effectiveness of the proposed method can already 

be proven, to increase confidence their performances are compared in term of duration need to solving path 

planning, as shown in Table 2. Moreover, to again validity the effectiveness of proposed method third 

experiment was conducted. Even though the starting and goal position are placed in the same position, the 

complexity of environment is increased. This complexity is represented by the presence of a greater number 

of narrow alleys compared to previous environments. Referring to this complexity, the number of samplings 

allowed is 7000 and the performance is examined in terms of optimality and convergence rate. The 

positioning of the starting and goal nodes in this third case refers to the need to test the exploration process 

through a narrow passage. The results of this experiment can be seen in Figure 5. In this experiment, RRT* 

requires 6870 times of  sampling to get the initial path (Figure 5(a)), Fast-RRT 6136 (Figure 5(b)), and the 

proposed algorithm requires 6090 times of sampling (Figure 5(c)). 

Referring to Figure 5, the path cost given by the proposed method again shows the best value 

compared to RRT* and Fast-RRT. Judging from the convergence rate, it has similarities with Fast-RRT 

which is clearly faster in the search process. So, it can be said that the proposed method can effectively adopt 

the advantages of Fast-RRT and the advantages of RRT* in unified work. The precise use of RRT* which is 

operated after fast-sampling and random sampling have been carried out sequentially, has a positive impact 

when environmental complexity is increased. Furthermore, by considering the optimality of RRT* which 

provides more effective values compared to Fast-RRT, this precision is further justified. So, it is strong 

enough to say that the optimality of a path can be increased by including a rewiring process, which is not 

found in Fast-RRT. Next, to ensure that the working speed of the proposed method is also better than the 

others, the duration of solving the path planning problem is given in Table 3. 
 

 

Table 2. Duration for solving the problem 
Testing criteria RRT* Fast-RRT HBMO-optimized Fast-RRT 

Duration (second) 369.4352 253.9303 239.9303 

Cost Path 156.4642 179.2243 147.4175 

 
 

  
(a) (b) 

 

 
(c) 

 

Figure 5. The performance of (a) RRT*, (b) Fast-RRT, and (c) HBMO-optimized Fast-RRT 
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Table 3. Duration for solving the problem 
Testing criteria RRT* Fast-RRT HBMO-optimized Fast-RRT 

Duration (second) 356.3721 297.7423 269.4368 
Cost path 135.7127 177.5168 128.222 

 

 

Referring to Table 3, although there is not a significant difference in the number of samplings required 

to solve the problem, Fast-RRT and the proposed method have succeeded in outperforming exploration speed. 

Based on Tables 1-3, it is found that the average value of the Fast-RRT cost path reduction is 21.85% at the 

level of environmental complexity tested. In addition, by looking at each decrease in the duration of the work, 

namely 0.64, 5.51, and 9.51 for each complexity, both from environment 1, environment 2, and environment 3, 

the average result of the decrease in completion time is 5.22%. 

 

 

5. CONCLUSION  

With fast-sampling, random steering and fast optimal, fast RRT offers effectiveness in terms of 

convergence rate and optimality in solving path planning problems. However, Path Fusion, which is the initial 

stage in fast-optimal, is very dependent on the uniqueness of the new path obtained so that fusion can then be 

carried out by involving the previous path. However, in an environment with complexity represented by the 

presence of narrow alleys, unique paths are rare and may not be available. This becomes even more of a 

challenge when the process of rewiring is not provided. So, the fast-optimal is not strong enough to produce an 

optimal path. Referring to these findings, RRT* was inserted into Fast-RRT after the random steering process 

was carried out. This is intended to support obtaining sub-optimal paths before optimization is carried out. In 

contrast to Fast-RRT, the optimization offered in this paper is the application of HBMO with the objective of 

adjusting the beacon position to obtain lower path costs. And referring to the comparison results, the proposed 

method can provide better effectiveness values in terms of convergence rate and optimality. 
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