
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 38, No. 1, April 2025, pp. 107~119

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v38.i1.pp107-119  107

Journal homepage: http://ijeecs.iaescore.com

A HBMO-based batch beacon adjustment for improving the

Fast-RRT

Heru Suwoyo1, Yingzhong Tian2, Andi Adriansyah1, Julpri Andika1
1Department of Electrical Engineering, Faculty of Engineering, Universitas Mercu Buana, Jakarta, Indonesia

2School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

Article Info ABSTRACT

Article history:

Received Apr 24, 2024

Revised Oct 10, 2024

Accepted Oct 30, 2024

 Fast-RRT improves on the original rapidly-exploring random trees (RRT) by

incorporating two main stages: improved-RRT and fast-optimal. The

improved-RRT stage enhances the search process through fast-sampling and

random steering, while the fast-optimal stage optimizes the path using fusion

and path arrangement. However, path fusion can only be optimal when the

newly found path is unique and different from previous paths. This

uniqueness rarely occurs in cases with narrow corridors, so path fusion only

provides suboptimal conditions. To address this, the study explores using

honey bee mating optimization (HBMO) to optimize or replace the fusion

stage. HBMO helps determine new beacon coordinates, which are nodes

between the start and goal points along the path, through a batch beacon

adjustment approach. The results show that integrating HBMO into Fast-

RRT improves its optimality, with a 21.85% reduction in path cost and a

5.22% decrease in completion time across environments with varying

difficulty levels. This hybrid algorithm outperforms previous methods in

terms of both path optimality and convergence rate, demonstrating its

effectiveness in enhancing Fast-RRT’s performance.

Keywords:

Fast-RRT

Global path planning

HBMO

Mobile robot

Path planning based-hybrid

algorithm

This is an open access article under the CC BY-SA license.

Corresponding Author:

Julpri Andika

Department of Electrical Engineering, Faculty of Engineering, Universitas Mercu Buana

Jakarta, Indonesia

Email: julpri.andika@mercubuana.ac.id

1. INTRODUCTION

Not only behavior-based movement [1]-[3], simultaneous localization and mapping (SLAM) [4], [5]

and path tracking [6]-[8], path planning is also an issue that must be considered to make robots able to

navigate autonomously in unknown environment [4], [9]. Searching and sampling-based path planning

algorithms serve as two major approaches in robotics and artificial intelligence, each having distinct

characteristics. Search-based algorithms such as A* [10] and Dijkstra [11], [12] prioritize the search for

optimal paths through systematic exploration of the search space, ensuring completeness and optimality.

They are efficient in smaller, static environments where the right solution is paramount. In contrast,

sampling-based methods such as rapidly-exploring random trees (RRT) [13] and probabilistic roadmaps

(PRM) [14] focus on exploring feasible regions of space through random sampling, making them particularly

adept in high-dimensional and dynamic environments. While it does not guarantee optimality, it offers

scalability and adaptability, making it suitable for scenarios with complex obstacles or constantly changing

terrain. The choice between the two depends on factors such as environmental dynamics, computing

resources, and the desired balance between optimality and efficiency. Many researchers and practitioners

utilize sampling-based path planning methods to increase optimality while taking advantage of the speed

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 107-119

108

available in finding solutions. Sampling-based algorithms, such as RRT and its variants, prioritize efficiency

by exploring the configuration space through random sampling and incremental tree growth.

Although RRT may not guarantee an optimal solution in its basic form, researchers have developed

techniques to increase its optimality without reducing its speed. For example, algorithms such as RRT-

Connect [15]-[17]. RRT-Connect carries a two-way approach in finding paths between start points and end

points in the search space. By initializing an exploration tree from a starting point, RRT-Connect iteratively

performs a random expansion, adding new points connected to nearby points in the tree. This process

continues until the path reaches the end point, then the reverse process is carried out from the end point to the

start point. By combining the two trees from opposite directions, RRT-Connect creates sufficient connection

paths between the start and end points in the search space.

Although it does not guarantee an optimal path, this approach is efficient in exploring the search

space and often provides solutions in a short time. In response to these limitations, rapidly-exploring random

trees star (RRT*) [13], [18] was introduced, improving the algorithm with a different approach. RRT*

combines a random exploration approach with a node evaluation and reconnection process to improve the

quality of the resulting paths.

Additionally, RRT* dynamically updates existing paths by considering the total cost from the

starting point to each node in the exploration tree. Thus, RRT* enables the search for more efficient and

potential paths to reach optimal solutions in various motion planning problems. However, the non-specific

direction of exploration means that RRT* has the potential to conduct sampling in places that have actually

never been touched or even have no significance for excessive exploration. This makes the convergence

speed slow and needs attention. Referring to this limitation, RRT* was improved with a hybrid approach that

utilizes the artificial potential field method [19]-[21]. The use of APF in RRT* is intended to produce more

targeted exploration within a given environment [20], [21]. The integration of the two aims to accelerate

convergence towards a solution by reducing the number of iterations required, as well as reducing execution

time to reach the optimal path. The APF algorithm is known for its simplicity and powerful mathematical

analysis, despite its limitation to state spaces of up to five dimensions due to its inability to operate in local

minima environments. Apart from that, Quick-RRT* has also been introduced with the motivation of an

exploration method with good convergence speed [9], [22]. Quick-RRT* integrates the concept of triangle

inequality to speed up the process of determining nodes and connections in exploration trees. By using

triangle inequalities, Quick-RRT* can reduce the number of distance evaluations between existing nodes,

resulting in faster path finding. This approach optimizes search steps by prioritizing expansion to nodes that

have the greatest probability of directing a path to the destination point.

Therefore, Quick-RRT* significantly speeds up the motion planning process, making it an attractive

option in situations where speed of execution is an important factor. Furthermore, based on the benefits of

both APF- and Quick-based methods, a hybrid approach such as PQ-RRT* is proposed, combining the

strengths of each to achieve improved performance in planning tasks [23], [24]. Although Quick-RRT* can

speed up the motion planning process by using the concept of triangle inequality to prune the evaluation of

distances between vertices, aggressive pruning can result in suboptimal paths [25]. This process can eliminate

nodes that are important for creating a better path, and result in solutions that are further from optimal. In

addition, the sensitivity to parameters and the difficulty of adjustment also makes the implementation

complexity also increase. Therefore, other methods are introduced with a focus on maintaining speed and

optimality as ideally as possible.

Different from the previous one, this method was built by considering the RRT as a base. The

scientific reason is the desire not to rely on repeated search processes as in RRT*. This method is called Fast-

RRT [26], [27]. Although there is no reconnection process in this method, sampling is adopted from the

improved-RRT. The improvement in question is the addition of fast-sampling and random-steering processes.

Fast-sampling is a way of generating random nodes without repetition in the touched area. Meanwhile,

random steering is applied to control the generation of random nodes in the direction towards the target point.

One advantage of improved RRT in fast-RRT is that it can speed up exploration even in environments with

narrow passageways thanks to its fast-sampling and random steering. Fast-sampling, on the other hand,

removes the chance that the first path found is not the best one because it restricts sampling to unexplored

areas. Furthermore, 𝑋𝑛𝑒𝑤 obtained will have very limited connection options to other nodes in 𝑇 in the

absence of wiring such as RRT*. As a result, the newly created path will typically resemble the previous

𝑇𝑜𝑝𝑡. This has an impact on the path fusion process, which ought to be at its best when the newly formed path

differs from the old one as well. Therefore, the RRT* wiring process is used in this study. In addition,

Fast-RRT also introduces the path-optimal stage which contains a sequential process between the fusion and

tuning paths as an effort to maintain the optimality of the path formed. Thus, Fast-RRT has better

performance when compared to RRT or RRT* in terms of convergence speed and optimality.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A HBMO-based batch beacon adjustment for improving the Fast-RRT (Heru Suwoyo)

109

However, in reality Fusion will only produce new paths that are less than optimal and slow down

planning time. Therefore, there needs to be development of Fast-RRT with objectivity to replace the fusion

stage. In this research, the honey-bee mating optimization (HBMO) [28]-[32] method was involved. Its

involvement is to connect random nodes around the nodes on the path resulting from the initial Fast-RRT

stage with reference to the shortest distance. As an optimization method, HBMO can be applied in

determining the optimal solution, both minimum and maximum, by considering the objective function or a

single numerical quantity. So, this is enough to prove that HBMO has a high level of feasibility to represent

the expected solution. Although there are many variants of the method, such as simulated annealing (SA)

[31], grey wolf optimization (GWO) [33]-[36], artificial bee colony (ABC) [29], [37], [38], particle swarm

optimization [39]-[42], and genetic algorithm (GA) [29], [35], [36], HBMO has capabilities that cannot be by

other methods.

To maximize the optimality of the results, HBMO is essentially used to control the position of nodes

other than the goal and start contained in 𝑇𝑜𝑝𝑡. Updating these positions are used to obtain the optimal path,

𝑇𝑜𝑝𝑡, which is 𝑇𝑖𝑛𝑖𝑡 . 𝑇𝑜𝑝𝑡 is made up of beacon nodes that link 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙 . It is evident that this path has

fewer beacon nodes than all the nodes in 𝑇𝑖𝑛𝑖𝑡 , except for 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙, since it creates a collision-free

direct connection between nodes and the farthest nodes. Then, in the HBMO optimization process, the

number of beacon nodes, 𝑁, is considered as a decision variable. Due to their small number, HBMOs should

optimize their locations by shifting them to pertinent areas. For every beacon node, this displacement is

constrained by the radius 𝑟. The only other requirements for this decision variable are to maintain a

connection without running into any environmental obstacles. Furthermore, the fitness function used is the

path cost, which determines the total connection distance from 𝑥𝑠𝑡𝑎𝑟𝑡 − 𝑥𝑔𝑜𝑎𝑙through the beacon nodes,

considering that the path from the beacon node connection represents a candidate solution. Therefore, it is

evident that this kind of optimization refers to minimizing the search space within a time constraint to

generate optimal paths.

The HBMO generation is controlled based on the number of samples left over after reaching the

designated maximum sampling based on this time restriction. This kind of HBMO deployment pattern

enables the beacon node to move to a new location and possibly establish a direct connection with another

beacon node that is the farthest away. At the conclusion of the process, path optimization is done once more

before the final path is decided to break the cycle of finding the best path. Referring to a search cycle like

this, this method was later named HBMO-optimized Fast-RRT* with the latest form being the creation of

Fast-RRT which adds a rewiring process, and the implementation of HBMO after path optimization has been

carried out. The performance of the proposed method for solving a global path planning are compared to its

predecessor, namely RRT* and Fast-RRT, in terms of optimality and convergence rate. And according to the

comparative result, the proposed method shows a significant improvement.

The rest of this paper is organized as follows: the material and methods are presented in section two.

It covers the problem statement, Fast-RRT, and HBMO; the proposed method is presented in section three

including the pseudocode and flowchart; the result and discussion is discussed in section four; and section

five presents the conclusion.

2. METHOD

In this section, the materials and methods involved in this research are presented. It includes the

problem statement, brief review on Fast-RRT, and honey bee mating optimization. They are presented to

provide more clarity on the methods that have been developed in the next section.

2.1. Problem statement

Let 𝑋 ∈ ℝ𝑛 is representation of state space for a path planning problem, with 𝑛 ∈ 𝑁 is space dimension,

thus 𝑋 = {𝑋𝑜𝑏𝑠, 𝑋𝑓𝑟𝑒𝑒} is state space with 𝑋𝑜𝑏𝑠 ∈ 𝑋 refers to obstacle coordinates and 𝑋𝑓𝑟𝑒𝑒 ∈ 𝑋 refers to the free

space. Moreover, if the start node 𝑥𝑖𝑛𝑖𝑡 ∈ 𝑋𝑓𝑟𝑒𝑒 and goal node 𝑥𝑔𝑜𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒 are given, then referring to 𝑋𝑜𝑏𝑠, the

path planning algorithm has to find the ideal path from-to those nodes, denoted as 𝜎 = [0, 𝑇] → 𝑋𝑓𝑟𝑒𝑒 with

𝜎(0) = 𝑥𝑖𝑛𝑖𝑡 and 𝜎(𝑇) = 𝑥𝑔𝑜𝑎𝑙 where 𝑋𝑔𝑜𝑎𝑙 = {𝑥 ∈ 𝑋|𝑥 − 𝑥𝑔𝑜𝑎𝑙| < 𝑟} for 𝑟 is radius around 𝑥𝑔𝑜𝑎𝑙.

2.2. Fast-RRT

In general, Fast-RRT consists of two main steps in solving global path planning problems, namely

Improved-RRT and Fast-Optimal. Respectively, they are used to find feasible paths and to optimize paths by

combining current and previous paths. Both are executed sequentially to determine the best path. This can be

seen in Algorithm 1.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 107-119

110

Algorithm 1. Fast-RRT
Input: 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝

Output: A path 𝑇 connecting 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙

for 𝑖 = 1: 𝑁
𝑇𝑖𝑛𝑖𝑡 ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇(𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝)

if 𝑇𝑖𝑛𝑖𝑡 is found

𝑇𝑜𝑝𝑡 ← 𝑓𝑎𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑇𝑖𝑛𝑖𝑡, 𝑇𝑜𝑝𝑡)
endif

endfor

Both the improved-RRT and fast-optimal stages each have two sub-step descriptions which make

them different from their predecessor, namely RRT. In improved-RRT there is fast sampling which is

designed not to repeat sampling in areas that have already been explored, and random steering which is used

to change the relationship between two nodes if there is a collision with an obstacle in the environment. The

representative algorithm for improved-RRT can be seen in Algorithm 2.

Algorithm 2. Improved-RRT
Input: 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝

Output: A path 𝑇 connecting 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙

𝑥𝑟𝑎𝑛𝑑 ← 𝑓𝑎𝑠𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑎𝑝)
𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝑇, 𝑥𝑟𝑎𝑛𝑑)
𝑥𝑛𝑒𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑒𝑒𝑟(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑟𝑎𝑛𝑑)
𝐸𝑖 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤)
if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑀𝑎𝑝, 𝐸𝑖)

𝑇 ← 𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑥𝑛𝑒𝑤, 𝐸𝑖)
if 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙

𝑇𝑖𝑛𝑖𝑡 ← 𝑔𝑒𝑡𝑃𝑎𝑡ℎ(𝑇)
endif

endif

endfor

where, 𝐸𝑑𝑔𝑒(.) is a function to get a connection node to node, 𝑎𝑑𝑑𝑁𝑜𝑑𝑒(.) appends the node to trees 𝑇, and

𝑇𝑖𝑛𝑖𝑡 is a feasible path from 𝑥𝑖𝑛𝑖𝑡 to 𝑥𝑔𝑜𝑎𝑙 obtained by tracing all nodes based their own parent. Whereas

𝑓𝑎𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(.) is stated as shown in Algorithm 3.

Algorithm 3. Fast sampling
Input: 𝑀𝑎𝑝
Output: 𝑥𝑟𝑎𝑛𝑑

𝑥𝑟𝑎𝑛𝑑 ← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑎𝑝)
while 𝑥𝑟𝑎𝑛𝑑 ∈ 𝑋𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

𝑥𝑟𝑎𝑛𝑑 ← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑎𝑝)
endwhile

where 𝑥𝑟𝑎𝑛𝑑 in 𝑋𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 is detected by measuring each node on 𝑇 to 𝑥𝑟𝑎𝑛𝑑 . It is assumed to be detected if the

distance is less than a predefined radius. Meanwhile, randomSteer(.) is done by executing Algorithm 4.

Algorithm 4. Random steering
Input: 𝑀𝑎𝑝, 𝑇, 𝑥𝑟𝑎𝑛𝑑

Output: 𝑥𝑛𝑒𝑤

𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝑇, 𝑥𝑟𝑎𝑛𝑑)
𝐸𝑖 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟)
if 𝐶𝑜𝑙𝑙𝑖𝑠𝑜𝑛𝐹𝑟𝑒𝑒(𝐸𝑖 , 𝑀𝑎𝑝)
return 𝑥𝑛𝑒𝑤

else

𝜃 ← 𝑟𝑎𝑛𝑑(2𝜋)
𝑥𝑛𝑒𝑤 ← 𝐸𝑥𝑝𝑎𝑛𝑑(𝑥𝑛𝑒𝑎𝑟, 𝜃)
endif

where 𝜃 refers to the steering angle of 𝑥𝑛𝑒𝑎𝑟-𝑥𝑛𝑒𝑤connection, which is randomly generated in range of

[0, 2𝜋] if 𝑥𝑛𝑒𝑤 collides to the obstacle. And 𝑒𝑥𝑝𝑎𝑛𝑑(.) is a function used to refind 𝑥𝑛𝑒𝑤 according to 𝑥𝑛𝑒𝑤

and 𝜃. Furthermore, in Fast-Optimal there are also two sub steps, namely path fusion and path tuning. As the

name suggests, fusion involves two previously obtained paths with a newly obtained path, which is then

combined into a path with better quality based on the intersection point. For the record, this intersection point

is the intersection point of the two processed paths, and is obtained by finding the average position based on

two close points. The process of path fusion can be seen in Algorithm 5.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A HBMO-based batch beacon adjustment for improving the Fast-RRT (Heru Suwoyo)

111

Algorithm 5. Path fusion
Input: 𝑇𝑖𝑛𝑖𝑡, 𝑇𝑜𝑝𝑡

Output: 𝑇𝑜𝑝𝑡

for each point in 𝑇𝑜𝑝𝑡

for each point 𝑇𝑖𝑛𝑖𝑡

if ‖𝑝𝑜𝑖𝑛𝑡𝑇𝑜𝑝𝑡
, 𝑝𝑜𝑖𝑛𝑡𝑇𝑖𝑛𝑖𝑡

‖ < 𝑇ℎ𝑟

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑑𝑥𝑃𝑜𝑖𝑛𝑡𝑇𝑜𝑝𝑡
, 𝑖𝑑𝑥𝑃𝑜𝑖𝑛𝑡𝑇𝑖𝑛𝑖𝑡

endif

endfor

endfor

𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝐴 ← ‖𝑇𝑖𝑛𝑖𝑡(𝑠𝑡𝑎𝑟𝑡): 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥)‖

𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝐵 ← ‖𝑇𝑜𝑝𝑡(𝑠𝑡𝑎𝑟𝑡): 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥)‖

𝐶𝑜𝑠𝑡𝐼𝑛𝑡𝐺𝑜𝑎𝑙𝐴 ← ‖𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥): 𝑇𝑖𝑛𝑖𝑡(𝑔𝑜𝑎𝑙)‖

𝐶𝑜𝑠𝑡𝐼𝑛𝑡𝐺𝑜𝑎𝑙𝐵 ← ‖𝑇𝑜𝑝𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥): 𝑇𝑜𝑝𝑡(𝑔𝑜𝑎𝑙)‖

if 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝐴 < 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑡𝐵
SubpathA = 𝑇𝑖𝑛𝑖𝑡(𝑠𝑡𝑎𝑟𝑡): 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥)
else

SubpathA = 𝑇𝑜𝑝𝑡(𝑠𝑡𝑎𝑟𝑡): 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥)
endif

if 𝐶𝑜𝑠𝑡𝐼𝑛𝑡𝐺𝑜𝑎𝑙𝐴 < 𝐶𝑜𝑠𝑡𝐼𝑛𝑡𝐺𝑜𝑎𝑙𝐵

SubpathB = 𝑇𝑖𝑛𝑖𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥): 𝑇𝑖𝑛𝑖𝑡(𝑔𝑜𝑎𝑙)
else

SubpathB = 𝑇𝑜𝑝𝑡(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑𝑥): 𝑇𝑜𝑝𝑡(𝑔𝑜𝑎𝑙)
endif

𝑇𝑜𝑝𝑡 = [SubpathA, SubpathB]

After the fusion process is complete, the resulting path is then tuned using the path fine tuning

process. No different from the optimization process in general, this path fine tuning applies triangular

inequality to shorten the path. With this process the initial point will try to be connected to the next point.

When there is no collision with an obstacle, the starting point is connected to a further point, and so on.

However, the point connection is invalid if a collision occurs and the Subpath is the connection between the

initial point and the last point which is still free of obstacles, and the initial point is determined again. The

starting point for the second Subpath is the point connected to the starting point on the Subpath that has been

formed. Next, the process repeats, until the target point is successfully connected to the last Subpath. Finally,

the path generated by path fine tuning combines these Subpaths.

2.3. Honey bee mating optimization (HBMO)

As a potential metaheuristic algorithm, the HBMO algorithm mimics the drone, brood, and queen.

Genotype, speed, energy, and spermatheca with a certain capacity are characteristics of each queen. The

drone's sperm store, known as the spermatheca, is created during mating with the queen. Consequently, speed

and energy are initialized prior to each mating trip for queens with a specific spermatheca size. The drone

sperm is kept in the queen's spermatheca following a successful mating attempt. The remaining genes from

the queen's genome are completed later in the breeding process, and some drone genes are copied into the

parent's genotype to generate the brood. The queen chooses a drone at random from the issue choice space,

and mating flights are mapped into the HBMO algorithm. The queen's spermatheca contains the genome of

every drone that mates successfully. Additionally, in each iteration of the HBMO algorithm, all drones left

after the mating flight were destroyed to simulate drone mortality at the end of the breeding season. Model

worker bees use heuristic functions to try to enhance the quality of their brood. As a potential genetic answer,

the HBMO algorithm mimics the drone, brood, and queen. Workers' brood care is translated into an

algorithm that uses heuristic functions to improve brood. The drone's sperm store, known as the spermatheca,

is created during mating with the queen. Consequently, speed and energy are initialized prior to each mating

trip for queens with a specific spermatheca size. The drone sperm is kept in the queen's spermatheca

following a successful mating attempt. The remaining genes from the queen's genome are completed later in

the breeding process, and some drone genes are copied into the parent's genotype to generate the brood. The

queen chooses a drone at random from the issue choice space, and mating flights are mapped into the HBMO

algorithm. The queen's spermatheca contains the genome of every drone that mates successfully. Next, a

drone (solution) is chosen at random from the decision space to mate with the queen using mating flight.

Each chosen drone's genome is kept in the spermatheca of the queen. Each chosen drone's genome is kept in

the spermatheca of the queen. By using crossover and mutation operators between the queen and the solution

kept in the queen's spermatheca, diploid broodstock are produced. By using crossover and mutation operators

between the queen and the solution kept in the queen's spermatheca, diploid broodstock are produced. To

enhance the quality of the brood, the heuristic function that simulates worker bees is used. The HBMO

algorithm's flow diagram is shown in Figure 1.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 107-119

112

Figure 1. Flowchart of HBMO

3. PROPOSED METHOD

The fast-sampling and random steering found in improved-RRT in Fast-RRT have the advantage

of being able to speed up the exploration process, even in environments with narrow passageways.

However, fast-sampling, which limits sampling to areas that have not yet been explored, actually

eliminates the possibility that the initial path obtained is less than optimal. In addition, without wiring such

as RRT*, 𝑥𝑛𝑒𝑤 obtained will have very few connection options to other nodes in 𝑇. So, the new path that is

formed will tend to have similarities to the previous 𝑇𝑜𝑝𝑡. This affects the path fusion process which

should be optimal when the new path formed also has variations from the previous one. Thus, in this

research the wiring process on the RRT* is applied. In the proposed method, the implementation is carried

out after edge 𝐸𝑖 is obtained.

After 𝑥𝑛𝑒𝑤 is added to tree 𝑇 and its parent is assigned, the exploration process is repeated until the

termination criterion is met, namely when 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙 . This process then produces results in the form of the

initial path 𝑇𝑖𝑛𝑖𝑡 . Instead of applying Fast Optimal, in this research the application of the metaheuristic

Algorithm 6, HBMO, was carried out. This implementation is based on the shortcomings of path fusion

found in Fast-RRT, namely that it has the potential to not be executed because, newly varied paths are rarely

obtained by simply increasing sampling only. Another reason is that it takes quite a long time to execute the

path fusion process. Therefore, this is contrary to the initial motivation of fast sampling, which was held with

the aim of increasing the convergence rate of Fast-RRT.

Basically, HBMO is carried out to regulate the position of nodes other than the goal and start

contained in 𝑇𝑜𝑝𝑡 as an effort to increase the optimality of results. The best bee candidate, which successfully

shows the shortest path value, is assumed to be the queen in HBMO. This queen will then be mated with the

drone. The bees that are not selected as queens are assumed to be drone candidates. By utilizing roulette

wheel selection, drone candidates will be selected. Technically, this selection refers to the results of the

previous fitness calculation. The total of the overall fitness becomes the divisor, for each drone fitness. Here,

the representation value will be obtained which is then used as a reference in making the Cumulative

Probability Distribution. Then by creating a cumulative probability array, roulette wheel selection is

simulated. This cumulative probability array is a reference where each individual occupies a wheel segment

that is proportional to its selection probability. Assuming that the roulette wheel selector is a random number

from 0-1, then clearly the coordinates of the node that produces a shorter distance than the others have the

potential to be selected as a drone. After the drone is selected, the simulation of the mating process between

the drone and the queen is carried out. In this simulation, the principles of crossover and mutation are carried

out. Both processes involve changing the coordinate data into binary form. In this study, the coordinate value

was changed to 8-bit binary. In the crossover process, the good bits on the queen and drone are exchanged

using the single-point crossover method. The crossover point divides the chromosome into two parts on each

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A HBMO-based batch beacon adjustment for improving the Fast-RRT (Heru Suwoyo)

113

drone and queen. And the exchange is done on the bit collection after the crossover point. While in mutation,

which is done after the crossover is complete, the study applies bit flipping to the chromosomes of both

drones and queens. The results of the crossover and mutation processes are then called brood in Figure 1.

Next, both of them which represent the characters of the drone and queen are tested based on their fitness

values. This is to ensure that between the two there is one that is better than the queen. If not, the queen will

be the same and the drone selection is repeated. And so on, until a better brood is produced, which then

replaces the drone and queen in the next iteration/generation. This iteration is set 5 times which is equivalent

to the repetition of the random node generating process in the path optimization space, so that reposition does

not reduce the quota of the optimization itself. After the termination criteria are met, another beacon

reposition is carried out. Gradually, the random appointment of beacons that are repositioned is what makes

the proposal called the batch beacon optimization method. This process stores 𝑇𝑜𝑝𝑡 and as a note, the 𝑇𝑜𝑝𝑡 is

𝑇𝑖𝑛𝑖𝑡 which has been optimized by applying Algorithm 7. 𝑇𝑜𝑝𝑡 consists of beacon nodes connecting 𝑥𝑖𝑛𝑖𝑡 with

𝑥𝑔𝑜𝑎𝑙 . Because it implements a direct connection of nodes to the furthest nodes that is collision-free, the

number of beacon nodes of this path is clearly less than all the nodes contained in 𝑇𝑖𝑛𝑖𝑡 other than 𝑥𝑖𝑛𝑖𝑡 and

𝑥𝑔𝑜𝑎𝑙 . The number of beacon nodes 𝑁 is then considered as a decision variable in the optimization process

using HBMO. The small number makes it relevant for HBMOs to carry out optimization by moving their

locations to relevant areas. This displacement is limited by the radius 𝑟 for all beacon nodes. Apart from that,

the criteria for this decision variable are to adhere to a connection without collisions with obstacles in the

environment. Furthermore, considering that the path from the beacon node represents a candidate solution,

the fitness function used is the path cost which calculates the total connection distance from 𝑥𝑠𝑡𝑎𝑟𝑡 − 𝑥𝑔𝑜𝑎𝑙

through the beacon nodes. Thus, for the purpose of generating optimal paths this type of optimization refers

to minimizing the search space with limited time. Based on this time limitation, the HBMO generation is

regulated according to the number of remaining samples towards the specified maximum sampling. HBMO

with a deployment pattern like this allows the beacon node to shift to another area, with the potential to be

connected directly to another farthest beacon node. So as to end the cycle of determining the best path, path

optimization is carried out again at the end of the process before the final path is determined. Overall, this

proposed method can be seen in the flowchart in Figure 2.

Algorithm 6. HBMO-optimized Fast-RRT*
Input: 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝

Output: A path 𝑇𝑖𝑛𝑖𝑡 connecting 𝑥𝑖𝑛𝑖𝑡 and 𝑥𝑔𝑜𝑎𝑙

for 𝑖 = 1: 𝑁

𝑥𝑟𝑎𝑛𝑑 ← 𝑓𝑎𝑠𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑎𝑝)
𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝑇, 𝑥𝑟𝑎𝑛𝑑)
𝑥𝑛𝑒𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑒𝑒𝑟(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑟𝑎𝑛𝑑)
𝐸𝑖 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤)
if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑀𝑎𝑝, 𝐸𝑖)

𝑄 ← 𝑁𝑒𝑎𝑟(𝑥𝑛𝑒𝑤 , 𝑇, 𝑟)
𝑥𝑚𝑖𝑛 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑝𝑎𝑟𝑒𝑛𝑡(𝑄, 𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟, 𝐸𝑖)
𝑇 ← 𝐶𝑜𝑛𝑛𝑒𝑐𝑡(𝑇, 𝑥𝑚𝑖𝑛 , 𝑥𝑛𝑒𝑤 , 𝐸𝑖)
𝑇 ← 𝑅𝑒𝑤𝑖𝑟𝑒(𝑇, 𝑄, 𝑥𝑛𝑒𝑤)
if 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙

𝑇𝑖𝑛𝑖𝑡 ← 𝑔𝑒𝑡𝑃𝑎𝑡ℎ(𝑇)
𝑇𝑜𝑝𝑡 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑃𝑎𝑡ℎ(𝑇𝑖𝑛𝑖𝑡, 𝑀𝑎𝑝)

𝑇𝑜𝑝𝑡 ← 𝐻𝐵𝑀𝑂(𝑇𝑜𝑝𝑡 , 𝑀𝑎𝑝, 𝑖 + 1)
endif

endif

endfor

Algorithm 7. Optimize path
Input: 𝑀𝑎𝑝, 𝑃

Output: 𝑃𝑜𝑝𝑡

𝑃 = []
𝑥𝑐ℎ𝑒𝑐𝑘 = 𝑃1

for 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) − 1
𝐸𝑖 ← 𝐸𝑑𝑔𝑒(𝑥𝑐ℎ𝑒𝑐𝑘 , 𝑃𝑖)
if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑀𝑎𝑝, 𝐸𝑖)
continue

else

𝑠𝑢𝑏𝑝𝑎𝑡ℎ ← 𝑃1:𝑘−1

𝑥𝑐ℎ𝑒𝑐𝑘 = 𝑃𝑖−1

𝑃𝑜𝑝𝑡 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑠𝑢𝑏𝑝𝑎𝑡ℎ)
endif

endfor

𝑃𝑜𝑝𝑡 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑃𝑒𝑛𝑑)

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 107-119

114

Figure 2. Flowchart of proposed algorithm

4. RESULTS AND DISCUSSION

To verify effectiveness, the proposed method is applied to solve global path planning problems.

There are 3 types of environmental models, categorized into maze environments with wide hallways and

mazes with narrow hallways, which will be used for this trial. It is not only the success of the method that is

to be tested through this experiment and testing, but also the validity of the effectiveness of the method in

terms of optimality and convergence rate. This basis is the basis for testing which will involve comparisons

with previous methods, such as RRT-Star, Fast-RRT, and HBMO-assisted Fast-RRT. To obtain a fair

comparison and analysis, the parameterization and determination of start points, and goal points are

equalized. The starting point is placed at (5, 75) and the goal point at (75, 5) with the number of samplings

allowed set based on the complexity of the test environment. For a comparison of the performance of the

three methods for the first environment, in Figure 3.

As shown in Figure 3, the three different methods can properly solve the problem with a sampling

time of 1500. However, their sampling requirements to find the initial path are different to each other. The

RRT* requires 1203 repetitive sampling as can be seen in Figure 3(a), Fast-RRT requires 1094 as can be seen

in Figure 3(b), and the proposed method is 1009 as can be seen in Figure 3(c). This shows that the proposed

method is like Fast-RRT for the convergence rate value. This achievement is logical, because the proposed

method applies the same techniques during exploration, namely, the application of fast sampling and random

steering. However, referring to the cost path shown in Figure 3, the proposed method provides better values

than the two predecessor methods. This proves that the proposed method can provide more optimal values

even though there are sampling restrictions allowed during problem solving. As note, the red bullets are the

beacon contained by path before the optimization conducted. The green bullets are the representative beacons

after they are automatically adjusted by HBMO. According to the duration for all processes, the proposed

method also faster than other involved methods in Table 1.

Up to this point, the HBMO shows its role to improve optimality of previous path. However,

experiments on the 1st environment alone are not enough to prove that the proposed method is more

effective. Therefore, a second experiment was carried out and the results can be seen visually in Figure 4. By

continuing to use the permitted number of samples, namely 7000 times, the performance of the three methods

was compared again. In this second environment, there are a number of passages with narrower distances and

it is mandatory to pass them to be able to explore the area near the goal point. According to the required

sampling time, RRT* needs 6430 times of sampling to get the initial path, Fast-RRT needs 5463 times, and

the proposed method 5346 times. The need for larger sampling shows that the RRT* is having difficulty

carrying out exploration by relying only on uniformly generated sampling as can be seen in Figure 4(a). So, it

can be said that by maintaining the improved-RRT which includes Fast-Sampling and Random Steering,

Fast-RRT and the proposed method can show better results. Furthermore, the path generated by RRT* does

not have sufficient optimality with quite high costs. Meanwhile, in Fast RRT, the optimality of the path is

still not enough even though a large sampling has been completed. This is caused by the absence of a

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A HBMO-based batch beacon adjustment for improving the Fast-RRT (Heru Suwoyo)

115

rewiring process which can be useful for re-determining connections to nodes on the sub-path. Apart from

that, the non-optimal path is also thought to be caused by the fusion step not being able to run properly due to

the failure to get a new path that is better than the previous optimal path. Even though path optimization has

been implemented, the final optimality is still lacking and worse compared to RRT*, with path cost of

179.2243 as can be seen in Figure 4(b). It might be due to the influence of the previous optimality or no

wiring process maintaining the quality of the previously obtained path. Meanwhile, for the proposed method

in this second case, performance has shown effectiveness with a cost path of 147.4175 at the same number of

samples as can be seen in Figure 4(c).

(a) (b)

(c)

Figure 3. The performance of (a) RRT*, (b) Fast-RRT, and (c) HBMO-optimized Fast-RRT

(a) (b)

(c)

Figure 4. The performance of (a) RRT*, (b) Fast-RRT, and (c) HBMO-optimized Fast-RRT

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 107-119

116

Table 1. Duration for solving the problem
Testing criteria RRT* Fast-RRT HBMO-optimized Fast-RRT

Duration (second) 64.4352 59.1542 58.7744
Cost path 117.6455 140.6757 112.4844

Although by referring to the results in Figure 4 the effectiveness of the proposed method can already

be proven, to increase confidence their performances are compared in term of duration need to solving path

planning, as shown in Table 2. Moreover, to again validity the effectiveness of proposed method third

experiment was conducted. Even though the starting and goal position are placed in the same position, the

complexity of environment is increased. This complexity is represented by the presence of a greater number

of narrow alleys compared to previous environments. Referring to this complexity, the number of samplings

allowed is 7000 and the performance is examined in terms of optimality and convergence rate. The

positioning of the starting and goal nodes in this third case refers to the need to test the exploration process

through a narrow passage. The results of this experiment can be seen in Figure 5. In this experiment, RRT*

requires 6870 times of sampling to get the initial path (Figure 5(a)), Fast-RRT 6136 (Figure 5(b)), and the

proposed algorithm requires 6090 times of sampling (Figure 5(c)).

Referring to Figure 5, the path cost given by the proposed method again shows the best value

compared to RRT* and Fast-RRT. Judging from the convergence rate, it has similarities with Fast-RRT

which is clearly faster in the search process. So, it can be said that the proposed method can effectively adopt

the advantages of Fast-RRT and the advantages of RRT* in unified work. The precise use of RRT* which is

operated after fast-sampling and random sampling have been carried out sequentially, has a positive impact

when environmental complexity is increased. Furthermore, by considering the optimality of RRT* which

provides more effective values compared to Fast-RRT, this precision is further justified. So, it is strong

enough to say that the optimality of a path can be increased by including a rewiring process, which is not

found in Fast-RRT. Next, to ensure that the working speed of the proposed method is also better than the

others, the duration of solving the path planning problem is given in Table 3.

Table 2. Duration for solving the problem
Testing criteria RRT* Fast-RRT HBMO-optimized Fast-RRT

Duration (second) 369.4352 253.9303 239.9303

Cost Path 156.4642 179.2243 147.4175

(a) (b)

(c)

Figure 5. The performance of (a) RRT*, (b) Fast-RRT, and (c) HBMO-optimized Fast-RRT

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A HBMO-based batch beacon adjustment for improving the Fast-RRT (Heru Suwoyo)

117

Table 3. Duration for solving the problem
Testing criteria RRT* Fast-RRT HBMO-optimized Fast-RRT

Duration (second) 356.3721 297.7423 269.4368
Cost path 135.7127 177.5168 128.222

Referring to Table 3, although there is not a significant difference in the number of samplings required

to solve the problem, Fast-RRT and the proposed method have succeeded in outperforming exploration speed.

Based on Tables 1-3, it is found that the average value of the Fast-RRT cost path reduction is 21.85% at the

level of environmental complexity tested. In addition, by looking at each decrease in the duration of the work,

namely 0.64, 5.51, and 9.51 for each complexity, both from environment 1, environment 2, and environment 3,

the average result of the decrease in completion time is 5.22%.

5. CONCLUSION

With fast-sampling, random steering and fast optimal, fast RRT offers effectiveness in terms of

convergence rate and optimality in solving path planning problems. However, Path Fusion, which is the initial

stage in fast-optimal, is very dependent on the uniqueness of the new path obtained so that fusion can then be

carried out by involving the previous path. However, in an environment with complexity represented by the

presence of narrow alleys, unique paths are rare and may not be available. This becomes even more of a

challenge when the process of rewiring is not provided. So, the fast-optimal is not strong enough to produce an

optimal path. Referring to these findings, RRT* was inserted into Fast-RRT after the random steering process

was carried out. This is intended to support obtaining sub-optimal paths before optimization is carried out. In

contrast to Fast-RRT, the optimization offered in this paper is the application of HBMO with the objective of

adjusting the beacon position to obtain lower path costs. And referring to the comparison results, the proposed

method can provide better effectiveness values in terms of convergence rate and optimality.

ACKNOWLEDGEMENTS

This research is supported by Ministry of Education, Culture, Research, and Technology of the

Republic of Indonesia through its competitive 2023’s research funding, Schema of Regular Fundamental

Research, in partnership with the Research Centre of Universitas Mercu Buana.

REFERENCES
[1] A. Adriansyah, H. Suwoyo, Y. Tian, and C. Deng, “Improving wall-following robot performance using PID-PSO controller,”

Jurnal Teknologi, vol. 81, no. 3, pp. 119–126, Apr. 2019, doi: 10.11113/jt.v81.13098.

[2] Y. Tian, H. Suwoyo, W. Wang, and L. Li, “An ASVSF-SLAM algorithm with time-varying noise statistics based on MAP
creation and weighted exponent,” Mathematical Problems in Engineering, vol. 2019, no. 1, Jan. 2019,

doi: 10.1155/2019/2765731.

[3] H. Suwoyo, C. Deng, Y. Tian, and A. Adriansyah, “Improving a wall-following robot performance with a PID-genetic algorithm
controller,” in International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, Oct. 2018,

pp. 314–318. doi: 10.1109/EECSI.2018.8752907.

[4] H. Suwoyo et al., “Maximum likelihood estimation-assisted ASVSF through state covariance-based 2D SLAM algorithm,”
Telkomnika (Telecommunication Computing Electronics and Control), vol. 19, no. 1, pp. 327–338, Feb. 2021,

doi: 10.12928/TELKOMNIKA.V19I1.16223.

[5] Y. Tian, H. Suwoyo, W. Wang, D. Mbemba, and L. Li, “An AEKF-SLAM algorithm with recursive noise statistic based on MLE

and EM,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 97, no. 2, pp. 339–355, 2020,

doi: 10.1007/s10846-019-01044-8.

[6] S. G. Tzafestas, Introduction to mobile robot control. Elsevier, 2013. doi: 10.1016/C2013-0-01365-5.
[7] M. R. H. Al-Dahhan and M. M. Ali, “Path tracking control of a mobile robot using fuzzy logic,” in 13th International Multi-

Conference on Systems, Signals and Devices, SSD 2016, IEEE, Mar. 2016, pp. 82–88. doi: 10.1109/SSD.2016.7473656.

[8] D. Fethi, A. Nemra, K. Louadj, and M. Hamerlain, “Simultaneous localization, mapping, and path planning for unmanned vehicle
using optimal control,” Advances in Mechanical Engineering, vol. 10, no. 1, Jan. 2018, doi: 10.1177/1687814017736653.

[9] I. B. Jeong, S. J. Lee, and J. H. Kim, “Quick-RRT*: triangular inequality-based implementation of RRT* with improved initial

solution and convergence rate,” Expert Systems with Applications, vol. 123, pp. 82–90, Jun. 2019,
doi: 10.1016/j.eswa.2019.01.032.

[10] Q. Zhou and G. Liu, “UAV Path Planning Based on the Combination of A-star Algorithm and RRT-star Algorithm,” Proceedings

of 2022 IEEE International Conference on Unmanned Systems, ICUS 2022, pp. 146–151, 2022,
doi: 10.1109/ICUS55513.2022.9986703.

[11] M. A. Khan, “A comprehensive study of Dijkstra’s algorithm,” SSRN Electronic Journal, 2023, doi: 10.2139/ssrn.4559304.

[12] M. A. Javaid, “Understanding Dijkstra algorithm,” SSRN Electronic Journal, 2013, doi: 10.2139/ssrn.2340905.
[13] I. Noreen, A. Khan, and Z. Habib, “A comparison of RRT, RRT* and RRT*-Smart path planning algorithms,” IJCSNS

International Journal of Computer Science and Network Security, vol. 16, no. 10, pp. 20–27, 2016, [Online]. Available:

http://cloud.politala.ac.id/politala/1. Jurusan/Teknik Informatika/19. e-journal/Jurnal Internasional TI/IJCSNS/2016 Vol. 16 No.

10/20161004_A Compar ison of RRT, RRT and RRT - Smart Path Planning Algorithms.pdf

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 107-119

118

[14] Z. Lee and X. Chen, “Path planning approach based on probabilistic roadmap for sensor based car-like robot in unknown

environments,” in Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, IEEE, 2004,
pp. 2907–2912. doi: 10.1109/ICSMC.2004.1400774.

[15] D. Zhang, Y. Xu, and X. Yao, “An improved path planning algorithm for unmanned aerial vehicle based on RRT-Connect,” in

Chinese Control Conference, CCC, IEEE, Jul. 2018, pp. 4854–4858. doi: 10.23919/ChiCC.2018.8483405.
[16] J. Chen, Y. Zhao, and X. Xu, “Improved RRT-connect based path planning algorithm for mobile robots,” IEEE Access, vol. 9,

pp. 145988–145999, 2021, doi: 10.1109/ACCESS.2021.3123622.

[17] R. Mashayekhi, M. Y. I. Idris, M. H. Anisi, I. Ahmedy, and I. Ali, “Informed RRT∗-Connect: an asymptotically optimal single-

query path planning method,” IEEE Access, vol. 8, pp. 19842–19852, 2020, doi: 10.1109/ACCESS.2020.2969316.

[18] K. Naderi, J. Rajamaki, and P. Hamalainen, “RT-RRT∗: a real-time path planning algorithm based on RRT∗,” in Proceedings of

the 8th ACM SIGGRAPH Conference on Motion in Games, MIG 2015, New York, NY, USA: ACM, Nov. 2015, pp. 113–118.
doi: 10.1145/2822013.2822036.

[19] A. H. Qureshi and Y. Ayaz, “Potential functions based sampling heuristic for optimal path planning,” Autonomous Robots,

vol. 40, no. 6, pp. 1079–1093, Aug. 2016, doi: 10.1007/s10514-015-9518-0.
[20] D. Wu, L. Wei, G. Wang, L. Tian, and G. Dai, “APF-IRRT*: an improved informed rapidly-exploring random trees-star

algorithm by introducing artificial potential field method for mobile robot path planning,” Applied Sciences (Switzerland), vol. 12,

no. 21, p. 10905, Oct. 2022, doi: 10.3390/app122110905.
[21] X. Xinying, X. Jun, and X. Keming, “Path planning and obstacle-avoidance for soccer robot based on artificial potential field and

genetic algorithm,” in Proceedings of the World Congress on Intelligent Control and Automation (WCICA), IEEE, 2006,

pp. 3494–3498. doi: 10.1109/WCICA.2006.1713018.
[22] I. B. Jeong, S. J. Lee, and J. H. Kim, “RRT*-Quick: a motion planning algorithm with faster convergence rate,” in Advances in

Intelligent Systems and Computing, vol. 345, 2015, pp. 67–76. doi: 10.1007/978-3-319-16841-8_7.

[23] Z. Yu and L. Xiang, “NPQ-RRT ∗: an improved RRT ∗ approach to hybrid path planning,” Complexity, vol. 2021, no. 1,

Jan. 2021, doi: 10.1155/2021/6633878.
[24] Y. Li, W. Wei, Y. Gao, D. Wang, and Z. Fan, “PQ-RRT*: an improved path planning algorithm for mobile robots,”

Expert Systems with Applications, vol. 152, p. 113425, Aug. 2020, doi: 10.1016/j.eswa.2020.113425.

[25] F. S. Elkazzaz, M. A. H. Abozied, and C. Hu, “Hybrid RRT/DE algorithm for high performance UCAV path planning,” in ACM
International Conference Proceeding Series, New York, NY, USA: ACM, Dec. 2017, pp. 235–242.

doi: 10.1145/3171592.3171618.

[26] Q. Li, J. Wang, H. Li, B. Wang, and C. Feng, “Fast-RRT*: an improved motion planner for mobile robot in two-dimensional
space,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 17, no. 2, pp. 200–208, Feb. 2022,

doi: 10.1002/tee.23502.

[27] Z. Wu, Z. Meng, W. Zhao, and Z. Wu, “Fast-RRT: a RRT-based optimal path finding method,” Applied Sciences (Switzerland),
vol. 11, no. 24, p. 11777, Dec. 2021, doi: 10.3390/app112411777.

[28] S. Biswas and S. Acharyya, “Parameter estimation of gene regulatory network using honey bee mating optimization,” in

Proceedings - 4th International Conference on Emerging Applications of Information Technology, EAIT 2014, IEEE, Dec. 2014,

pp. 3–8. doi: 10.1109/EAIT.2014.42.

[29] O. Bozorg‐Haddad, M. Solgi, and H. A. Loáiciga, Meta‐Heuristic and evolutionary algorithms for engineering optimization.

Wiley, 2017. doi: 10.1002/9781119387053.
[30] M. Gavrilas, G. Gavrilas, and C. V. Sfintes, “Application of honey bee mating optimization algorithm to load profile clustering,”

in CIMSA 2010 - IEEE International Conference on Computational Intelligence for Measurement Systems and Applications,

Proceedings, IEEE, Sep. 2010, pp. 113–118. doi: 10.1109/CIMSA.2010.5611759.
[31] K. L. Du and M. N. S. Swamy, Search and optimization by metaheuristics. Cham: Springer International Publishing, 2016.

doi: 10.1007/978-3-319-41192-7.

[32] Z. Zhou, B. Yuan, P. Xiao, and C. Zhang, “A Modified honey bees mating optimization algorithm for assembly line balancing
problem,” in 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, IEEE, Dec. 2017, pp. 1–7.

doi: 10.1109/SSCI.2016.7850274.

[33] Q. Gu, X. Li, S. Jiang, and H. Mora, “Hybrid genetic grey wolf algorithm for large-scale global optimization,” Complexity,
vol. 2019, no. 1, Jan. 2019, doi: 10.1155/2019/2653512.

[34] J. Liu, X. Wei, and H. Huang, “An improved grey wolf optimization algorithm and its application in path planning,” IEEE Access,
vol. 9, pp. 121944–121956, 2021, doi: 10.1109/ACCESS.2021.3108973.

[35] N. Mittal, U. Singh, and B. S. Sohi, “Modified grey wolf optimizer for global engineering optimization,” Applied Computational

Intelligence and Soft Computing, vol. 2016, pp. 1–16, 2016, doi: 10.1155/2016/7950348.
[36] J. Zhao and Z. M. Gao, “An improved grey wolf optimization algorithm with multiple tunnels for updating,” Journal of Physics:

Conference Series, vol. 1678, no. 1, p. 012096, Nov. 2020, doi: 10.1088/1742-6596/1678/1/012096.

[37] H. Suwoyo, M. H. I. Hajar, P. Indriyanti, and A. Febriandirza, “The use of fuzzy logic controller and artificial bee colony for
optimizing adaptive SVSF in robot localization algorithm,” Sinergi (Indonesia), vol. 28, no. 2, pp. 231–240, Apr. 2024,

doi: 10.22441/sinergi.2024.2.003.

[38] C. Chen, H. Du, and S. Lin, “Mobile robot wall-following control by improved artificial bee colony algorithm to design a
compensatory fuzzy logic controller,” in ECTI-CON 2017 - 2017 14th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information Technology, IEEE, Jun. 2017, pp. 856–859.

doi: 10.1109/ECTICon.2017.8096373.
[39] J. A. Abdor-Sierra, E. A. Merchán-Cruz, F. A. Sánchez-Garfias, R. G. Rodríguez-Cañizo, E. A. Portilla-Flores, and V. Vázquez-

Castillo, “Particle swarm optimization for inverse kinematics solution and trajectory planning of 7-dof and 8-dof robot

manipulators based on unit quaternion representation,” Journal of Applied Engineering Science, vol. 19, no. 3, pp. 592–599, 2021,
doi: 10.5937/jaes0-30557.

[40] S. Agrawal and V. Shrivastava, “Particle swarm optimization of BLDC motor with fuzzy logic controller for speed

improvement,” in 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017,
IEEE, Jul. 2017, pp. 1–5. doi: 10.1109/ICCCNT.2017.8204006.

[41] N. Rokbani and A. M. Alimi, “Inverse kinematics using particle swarm optimization, a statistical analysis,” Procedia

Engineering, vol. 64, pp. 1602–1611, 2013, doi: 10.1016/j.proeng.2013.09.242.
[42] S. Dereli and R. Köker, “IW-PSO approach to the inverse kinematics problem solution of a 7-DOF serial robot manipulator,”

Sigma Journal of Engineering and Natural Sciences, vol. 36, no. 1, pp. 77–85, 2018.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A HBMO-based batch beacon adjustment for improving the Fast-RRT (Heru Suwoyo)

119

BIOGRAPHIES OF AUTHORS

Heru Suwoyo is a lecturer at Department of Electrical Engineering, Universitas

Mercu Buana, Indonesia. He received his Ph.D. from Department of Mechatronic Engineering,

School of Mechatronic Engineering and Automation, Shanghai University, China. His

research interest includes behavior based robotic, path planning and path tracking, mobile

robot navigation, simultaneous localization and mapping, fuzzy logic controller, probability-

based filtering method such as extended Kalman filter and smooth variable structure filter,

adaptive-filtering and population-based metaheuristic optimization such as ant colony

optimization, genetic algorithm, and particle swarm optimization. He can be contacted at

email: heru.suwoyo@mercubuana.ac.id.

Yingzhong Tian is a professor at School of Automation and Mechatronic

Engineering, Shanghai University. He is also a Director of Research in LIMAR (Lab of

Intelligent Mechanism and Advanced Robot) research team at Shanghai University. He

obtained a Ph.D. degree in Mechanical manufacture and automation in 2007 from Shanghai

University. His research interests include mobile robot, bionic robot, multi-robot systems, and

image processing. He can be contacted at email: troytian@shu.edu.cn.

Andi Adriansyah is a professor at Department of Electrical Engineering,

Universitas Mercu Buana, Jakarta. His research interest includes automatic system, autonomic

system, internet of things, mobile robot, robot movement, solar power, access rights,

acquisition cycle, activation of system, active control, active switches, adaptive neuro-fuzzy

inference system, amount of fertilizer, android application, angle difference, angular velocity,

architectural forms, artificial neural network, automated guided vehicles, automatic operation,

automatic processing, autonomic control, average response time, bill payments, and boost

converter. He can be contacted at email: andi@mercubuana.ac.id.

Julpri Andika is a lecturer at Department of Electrical Engineering, Universitas

Mercu Buana, Indonesia. He received his master degree from Department of Mechanical

Engineering, Beijing Institute of Technology, China in 2016. Besides that, he is currently

Head of Research and Community Services Department. His research interest includes arm

robotic, path planning, localization using particle filter, and cubature Kalman filter, and

mobile robot and internet of things, closed-loop controller used for behavior-based robotic

such as pid controller, fuzzy logic controller, h-infinity, and model predictive control. He can

be contacted at email: julpri.andika@mercubuana.ac.id.

http://orcid.org/0000-0002-8762-4996
https://www.scopus.com/authid/detail.uri?authorId=57208821153
http://orcid.org/0000-0003-2494-8667
https://www.scopus.com/authid/detail.uri?authorId=15836338500
http://orcid.org/0000-0002-3911-7455
https://scholar.google.com/citations?user=hW3ZdrkAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55176184000
http://orcid.org/0000-0002-0272-3865
https://scholar.google.com/citations?user=IKMZIR0AAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57202911906

