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Abstract 
In view of the limitations that the optimal examining item do not have dynamic real-time speciality 

and can’t reflect the actual state of devices in the traditional preventive maintenance(PM) model of 
repairable devices, in this paper a real-time control project on the checking rate of PM is proposed based 
on the state of devices. The differential equations used to describe the dynamic behavior of the system are 
established, and some performance indexes of maintenance systems including the steady-state 
availability, and the mean time to failure (MTTF), and as well as the average time of staying in each state 
are calculated. The control strategy on the checking rate is then proposed and the adaptability and the 
stability of the corresponding control system are analyzed. The essence of the method is to achieve the 
expected steady-state behavior by controlling the dynamic behavior of the system, which will ensure 
reliable completion of the task and reduce the maintenance cost meantime. Researches indicate that the 
proposed method is very effective to improve the utilization of devices and provide theoretical support for 
the practical applications.  
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1. Introduction 

The equipment maintenance is the important safeguard to keep it in a good state. To 
improve its utilization and prolong its service life, the maintenance transformation to aim at 
precise guarantee objectively requires that relevant system in operation must be changed from 
fixed periodic preventive maintenance (PM) to dynamic maintenance strategy based on 
equipment actual state [1].  

At present, preventive maintenance strategy has regular maintenance and maintenance 
based on state (CBM) [2-6]. The shortcoming of regular maintenance is that the optimal 
examining times or frequency will not change once determined in advance. It isn’t dynamic and 
real-time and can’t reflect the actual state of equipment. And among the CBM models, the 
information data is difficult to collect, and the actual state of equipment is difficult to estimate 
and the model to be resolved is more complicated, so that they are difficult to be practically 
applied.  

In view of the above issues, the paper starts from analyzing the state of maintenance 
system, and then establishes the dynamic equations used to describe the operation process of 
the system, and analyzes the behaviour of the system based on state transition matrix. The 
performance indexes of maintenance system that include the steady-state availability, the mean 
time to failure (MTTF) and the average time of staying in each state are given out. The checking 
rates are selected as control variable and control the dynamic behaviour of the system to 
achieve the expected steady-state aims. In the end, the adaptability and the stability of the 
corresponding control system are analyzed.  

 
 

2. Model Description 
In order to establish the lifecycle model of repairable devices, we do the following 

assumptions [7-8]. 
Hypothesis 1: Whether device is in working state or storage state, it is not existed for 

the failure that can’t be detected out.  
Hypothesis 2: The probability of device from state Si at time t  to state Sj at time t t   
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is only proportional to the time interval t , the transfer rate is a constant which does not depend 
on the time t and t .  

Hypothesis 3: Maintenance will not change failure rate of the devices.  
Hypothesis 4: PM will not cause the failure of system—during PM system can still work 

normally. 
Based on above assumptions, the lifecycle model of repairable device can be denoted 

using the state transition diagram as shown in Figure 1. Its symbolic meaning is below.  
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Figure 1. State Transition Diagram of Repairable Devices 
 
 
In Figure 1, S1 denotes that device is in good state in the warehouse; S2 denotes that 

device is in working state; S3 denotes that device is in preventive maintenance state; S4 denotes 
that device is in corrective maintenance state. iμ  is the maintenance rate of device. Among 

them, 1μ  is the maintenance rate of device in preventive maintenance state; 2μ is the 

maintenance rate of device in corrective maintenance state; 1 1
μρ  is the transfer rate from 

preventive maintenance state to storage state; 11(1 )ρ μ  is the transfer rate from preventive 

maintenance state to working state; 2 2
μρ  is the transfer rate from corrective maintenance state 

to storage state ; 22(1 )ρ μ  is the transfer rate from corrective maintenance state to working 

state. iλ  is the state transition probability during the time interval [ t , t t  ]. Among them, 1λ  is 
the probability from working state to storage state; 2λ  is the probability from storage state to 

working state. Let 3 1 1v uλ    , 4 2 2v uλ    , 1v  and 1u  denote respectively the failure rate and the 

checking rate of the stored device, 2v  and 2u  denote respectively the failure rate and the 

checking rate of the working device.  
 

 
3. Reliability Analysis 

According to Figure 1 and reliability theory [9-10], we have:  
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where 1( )x t  denotes the probability of being in the state S1 at time t , and 2( )x t  denotes the 

probability in S2, and 3( )x t  is the probability in S3, and 4( )x t  is the probability in S4.  

Conducting the Laplace transformation on (1), then we have: 
  

11 1 2 3 42 3 1 1 2 21

22 1 2 3 42 41 1 2 21

3 1 2 31 2 1

4 1 2 41 2 2
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Theorem 1: As the checking rate is constant, the steady-state availability of the system 

is:  
 

11 2
0 1 2

2 3 42 1 1 2

lim ( ) ( ) ( )
t

μ μ dA A t x x
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Where 1 1 2 3 2 2 1 11 2 1 2u v u vρ ρ ρ ρd λ λ λ       , 2 1 21 1 2 2 2 1 1 2 2 12 2u u u u u v u v u vρ ρd λ λ      , 

3 1 21 2 2 1 1 2 2 1 1 21 1v v v u v v u v u vρ ρd λ λ      , 24 1 2 1 21 1 1 2 2u u v vρ ρ ρ ρλ λd       .  

Proof: From (3), we can have: 
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From (3) and (5), then: 
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Then, 
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2
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According to Laplace transformation, and we have: 
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Combining (7), (8) and (9), we can obtain: 
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According to (4), the system steady-state availability can be proven, immediately.  

Theorem 2: As the checking rate is constant, the mean time to failure (MTTF) of the 
system is:  
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Where 1 1 2 4 1 21 1u uρ ρh λ λ λ       , 2 1 2 3 2 11 1u uρ ρh λ λ λ     .  

Proof: Let S4 be the absorbing state, and 1 2 3( ) ( ) ( ) ( )R t x t x t x t   , 2 0μ  , and then,  
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Then the formula (10) can be obtained, immediately.  

Theorem 3: As the checking rate is constant, the total average time that system stay in 
state S1 and state S2 before entering the absorbing state is:  
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Proof: Let X  be the total time of staying in state S1 and S2 before entering the 

absorbing state. To get the distribution of X , we must deduct the time of staying in state S3. 
According to the physical meaning of derivative, let the derivative on t  in the differential 
equation of state S3 be zero [11], then: 
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After Laplace transformation we have: 
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Writing as matrix formula, and then:  
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Then we can get:  
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After related parameters are substituted into the formula above, the formula (11) is proven. 
 
  
4. Control Strategy Design 

To make the dynamic behavior of the system achieve the expected steady-state aim, 
we may control the checking rates of maintenance system, which are the inverse of mean time 
between checks. This control mode is different from the traditional methods [12]. 
According to (1) and (2), we have:  
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Writing (17) as  the Matrix form, then: 
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Projecting the system (1) onto a plane of 1x  and 2x , we then have:  
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As 1x  or 2x  tends to zero, to ensure the boundness of ( )tu , where  T1 2( ) ( ) ( )t u t u tu , 
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we divide the area of 1x  and 2x  into four sets which are denoted with ① ~ ④ as shown in 
Figure 2, where 0 1   .   

 
 

 
 

Figure 2. Valid Areas of Control Variable 
 
 

Theorem 4: In the area ①, 1 1x    , 2 1x    , and 1 2 1x x  . We do the rule 

control for ( )tu  below.  
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( )I K  is nonsingular and 1( )( ) I K I K  is convergent, I  is unit matrix.  

Under the action of the control rule (4.4), the steady-state availability of the system is: 
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In the area ②, in order to ensure that 1( )u t  is bounded, we let 1( )u t  be constant, but 

2 ( )u t  remain unchanged. So, the control rule for ( )tu  is:  

 

 

 

2 4 111 12 13
11

2 1 2 4 2 1 2 421 21 22 22 23 23 21 22 23
2

1
( )

( )=
1( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

a a x a x b
u t x

t
u t a k x t a k x t a k x t b k x k x k x

x t

     
  
             

u  (24) 

 
So, the dynamic behavior of the system becomes  
 

m2 m2
d ( )

( )
d

t
t

t
 

x
A x b  (25) 

 
Where, 
 

 2 4 112 13 12 13
1

m2 21 22 23

31 32 33

1
a x a x b a a

x
k k k

k k k

     
 

   
 
 
 

A , 
1 1

m2 1 2 421 22 23

1 2 431 32 33

=

μρ

k x k x k x

k x k x k x

 
   
   

b  

 

31k , 32k  and 33k  match (23). In order to ensure that the system is asymptotically steady, m2A  

matches that m2( )I A  is nonsingular and 1
m2 m2( )( ) I A I A  is convergent.  

Thus, the steady-state value of the system is:  
 

 T
21 2 4( ) mx x x   x x x  

 
In the same way, In the area ③, we set 2 ( )u t  as constant, but 1( )u t  remain unchanged. 

So, we have:  
 

 

 

1 2 4 1 1 2 411 11 12 12 13 13 11 12 13
11

2
1 4 222 21 23

2

1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) =

( ) 1

a k x t a k x t a k x t b k x k x k x
u t x t

t
u t

a a x a x b
x

           
  
       

u  (26) 

 
So, the dynamic behavior of the system becomes:  
 

m3 m3
d ( )

( )
d

t
t

t
 

x
A x b  (27) 

 
Where, 
  

 
11 12 13

m3 1 4 221 21 23 23
2

31 32 33

1

k k k

a a x a x b a
x

k k k

 
 
      
 
 
 

A , 

1 2 411 12 13

m3 11

1 2 431 32 33

=

k x k x k x

μρ

k x k x k x

  
  
   

b  

 

31k , 32k  and 33k  match (23). In order to ensure that the system is asymptotically steady, m3A  

matches that m3( )I A  is nonsingular and 1
m3 m3( )( ) I A I A  is convergent.  

Thus, the steady-state value of the system is:  



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 9, September 2014:  6711 – 6724 

6718

 T
m31 2 4( ) x x x   x x x .  

 
In the same way, In the area ④, we set the control rule for ( )tu  as:  

 

 

 

2 4 111 12 13
11

2
1 4 222 21 23

2

1
( )

( ) =
( ) 1

a a x a x bu t xt
u t

a a x a x b
x

     
   
       

u   (28) 

 
So, the dynamic behavior of the system becomes:  
 

m4 m4
d ( )

( )
d

t
t

t
 

x
A x b  (29) 

 
Where, 
 

 

 

2 4 112 13 12 13
1

m4 1 4 221 21 23 23
2

31 32 33

1

1

a x a x b a a
x

a a x a x b a
x

k k k

     
 
       
 
 
  

A , 
1 1

m4 11

1 2 431 32 33

=

μρ

μρ

k x k x k x

 
  
   

b  

 

31k , 32k  and 33k  match (23). In order to ensure that the system is asymptotically steady, m4A  

matches that m4( )I A  is nonsingular and 1
m4 m4( )( ) I A I A  is convergent.  

Thus, the steady-state value of the system is:  
 

 T
m41 2 4( ) x x x   x x x  

 
Under the action of the control rules (20), (24), (26) and (28), the form of the motion equation of 
the system is as follows.  
 

m m
d ( )

( )
d

i i
t

t
t

 
x

A x b    ( 1, 2,3, 4)i   

 
Then, solving the above equation, we get:  
 

 m m m
0

( ) exp( ) (0) exp ( ) d
t

i i it t t     x A x A b  

 
According to miA  , we can know that the system is asymptotically steady. So,  

 

 1 1
m m m m m( ) exp( ) (0)i i i i it t    x A x A b A b  

 
Thus, the steady-state value of the system is:  

 
1

m m m( ) i i i
   x A b x  

 
Then, we have: 
 

 m m m( ) exp( ) (0)i i it t  x A x x x  
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Under the condition that the initial value (0)x  and the expected steady-state value mix  

are given out, it is quite obvious that the motion equation of the system is only related to 
mexp( )itA . So, we use the method of resolvent matrix to solve mexp( )itA [13]. Thus, we have:  

 

 1 1
m mexp( ) ( )i it L s  A I A  

 
Firstly, we conduct the following definitions. 
 

 1 2 4 112 13
1

1
w a x a x b

x
   ,    2 1 4 221 23

2

1
w a x a x b

x
    

3 2
1 11 22 33 11 33 11 22 22 33 12 21 23 32 31 13

11 22 33 12 23 31 13 32 21 13 31 22 12 21 33 32 23 11

( ) ( ) ( )p s s s k k k s k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k

          

    
 

   3 2
2 1 122 33 22 33 22 33 12 21 23 32 13 31

1 22 33 32 23 12 23 31 21 33 13 32 21 31 22

( ) ( )

( ) ( ) ( )

p s s s w k k s w k k k k a k k k a k

w k k k k a k k k k a k k k k

          

    
 

  3 2
3 2 211 33 11 33 11 33 12 21 23 32 31 13

2 11 33 13 31 23 12 31 32 11 21 13 32 12 33

( ) ( )

( ) ( ) ( )

p s s s k k w s w k k k k k a a k k k

w k k k k a k k k k a k k k k

          

    
 

 
 

3 2
4 1 2 1 2 233 33 33 12 21 32 23 13 31

2 1 113 31 33 32 23 12 21 33 12 23 31 13 32 21

( ) ( ) ( )p s s s w w k s w k w w k a a k a a k

w a k w k k a w a a k a a k a k a

          

    
 

2
1 22 33 22 33 23 32( ) ( )q s s s k k k k k k     ,   2

2 11 33 11 33 13 31( ) ( )q s s s k k k k k k      
2

3 11 22 11 22 12 21( ) ( )q s s s k k k k k k     ,   4 21 33 23 31( ) ( )q s k s k k k     

5 31 22 21 32( ) ( )q s k s k k k    ,   6 12 33 13 32( ) ( )q s k s k k k     

7 32 11 12 31( ) ( )q s k s k k k    ,   8 13 22 12 23( ) ( )q s k s k k k     

9 23 11 13 21( ) ( )q s k s k k k    ,   1 12 33 13 32( ) ( )f s a s k a k    

 2
2 1 133 33 13 31( )f s s s w k w k a k     ,    3 132 12 31( )f s k s w a k     

4 13 22 12 23( ) ( )f s a s k a k   ,    5 123 13 21( )f s k s w a k     

 2
6 1 122 22 12 21( )f s s s w k w k a k     ,    2

1 2 233 33 23 32( )g s s s w k w k a k      

2 21 33 23 31( ) ( )g s a s k a k   ,    3 231 21 32( )g s k s w a k     

 4 213 23 12( )g s k s w a k    ,   5 23 11 21 13( ) ( )g s a s k a k    

 2
6 2 211 11 21 12( )g s s s w k w k a k     ,    1 213 12 23( )h s a s w a a    

 2 123 13 21( ) +h s a s w a a  ,    2
3 1 2 1 2 12 21( )h s s s w w w w a a     . 

 
And then, we have: 
 

1 4 7

1 1 1

2 5 81
m1

1 1 1

3 6 9

1 1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
exp( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

q s q s q s

p s p s p s

q s q s q s
t L

p s p s p s

q s q s q s

p s p s p s



 
 
 
 

  
 
 
 
 

A , 

1 1 4

2 2 2

2 2 51
m 2

2 2 2

3 3 6

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
exp( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

q s f s f s

p s p s p s

q s f s f s
t L

p s p s p s

q s f s f s

p s p s p s



 
 
 
 

  
 
 
 
 

A ,  

 
1 4 4

3 3 3

2 5 51
m 3

3 3 3

3 6 6

3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
exp( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

g s q s g s

p s p s p s

g s q s g s
t L

p s p s p s

g s q s g s

p s p s p s



 
 
 
 

  
 
 
 
 

A , 

1 1 1

4 4 4

2 2 21
m 4

4 4 4

3 3 3

4 4 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
exp( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

g s f s h s

p s p s p s

g s f s h s
t L

p s p s p s

g s f s h s

p s p s p s



 
 
 
 

  
 
 
 
 

A .  
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Based on the above discussions, under the condition that the initial value (0)x  and the 

expected steady-state value mix  are given out, we can get the motion equation ( )tx  of the 

system by combining 1
m m m( ) i i i

   x A b x  and mexp( )itA .  

 
 
5. Stability Analysis 

As the checking rate is constant, we have the linear system as follows. 
 

d ( )
( )

d

t
t

t


x
Ax   (30) 

 
Where, 
 

2 11 11 1 12 21 1 1

2 1 2 1 2 121 1 1 12

1 2 2

( )

= )(

μ μ μv uρ ρ ρρ μλ λ
μμ v μ u μρρ λ ρ ρλ

v v μ

      
         
  

A  

 
According to the linear control theory [13] and [14], if all eigenvalues of the matrix A  possess 
the negative real parts, and then system (5.1) is asymptotically steady. In other words, the 
matrix A  must match the following conditions.  

(1) ( )I A  is nonsingular. 

(2) 1( )( ) I A I A  is convergent. 

As the checking rate is not constant, we have the linear time-varying system as follows. 
  
d ( )

( ) ( )
d

t
t t

t


x
A x   (31) 

 
Where,  
 

2 11 11 1 12 21 1 1

2 1 2 1 2 121 1 1 12

1 2 2

( ( ))

( ) = ( ))(

μ μ μv u tρ ρ ρρ μλ λ
μt μ v μ u t μρρ λ ρ ρλ

v v μ

      
         
  

A  

 

1( )u t  and 2 ( )u t  are bounded for [0, )t  , the real numbers 1δ  and 2δ  are existent and satisfy:  

 
110 ( )u t δ    ;      220 ( )u t δ    . 

 
In order to quote lemmas, we conduct definitions as follows. 

( )t
�

A : It denotes the matrix that is made up of the elements that are the derivative of 

everyone element on t in the matrix ( )tA .  

� : It denotes the norm of vectors or matrices.  
*A : It denotes the gone transposition matrix of matrix A .  
( )�Re : It denotes the real part.  

According to [15], [16] and [17], we have the following lemmas. 
Lemma 1: If the eigenvalue of the n order square matrix ( )tA  that are 1( )tλ , 2( )tλ ,   

( )n tλ  match: 

 

 ( ) ( ) 2 0i jt t δλ λ  Re    ( , 1, 2, , )i j n    
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And ( )t kA , then, for anyone n  order nonsingular Hamilton symmetric square matrix C , 

having Hamilton symmetric square matrix ( )tG  makes:  

 
* ( ) ( ) ( ) ( )t t t t A G G A C   (32) 

 
If  C I , then 0( )t kG ; if SC , then 0( )t k SG , where:  

 
( 2)( 1)

1 2
0

2 1
2 2

n n
n k

k
δ δ

 
    
 

  (33) 

 
Lemma 2: If the eigenvalue ( )i tλ  of the n  order square matrix ( )tA  not only match the 

conditions in lemma 1 but also match:  
 

 ( ) 0i tλ   Re   ( , 1, 2, , )i j n    

 
then ( )tG  as showed in lemma 1 is positive definite.  

Lemma 3: If ( )tA  matches the conditions in lemma 1 and 1( )t kA , then having 

Hamilton symmetric square matrix ( )tG  makes:  

(1) * ( ) ( ) ( ) ( )t t t t  A G G A I . 

(2) 2
1 0( ) 2t k kG , where 0k  as defined in Lemma 1.  

Definition 1: Let the linear time-varying system be:  
 

11
d ( )

( ) ( )
d

t
t t

t


x
A x   (34) 

 
Where,  
 

2 11 11 1 12 21 1 1

11 2 1 2 1 2 121 1 1 12

1 2 2

( ( ))

( ) = )(

μ μ μv u tρ ρ ρρ μλ λ
μt μ v μ u μρρ λ ρ ρλ

v v μ

      
         
  

A  

 

11 11( )t kA , 11 31( ) ( )t u t δ A  and the eigenvalue ( )i tλ  of the matrix 11( )tA  match: 

(1)   11( ) ( ) 2 0i jt t δλ λ  Re , ( , 1, 2,3)i j  . 

(2)   11( ) 0i tλ   Re , ( 1, 2,3)i  . 

If this system is asymptotically steady, then we call 11( )tA  a strong stable matrix and 

call the system (5.5) a strong stable system. Let 
10

3 11
01

2
1111

8
1

2

δ k
g

δδ

   
 

.  

Theorem 5: If 01 1g  , then system (5.5) is a strong stable system.  

Proof: According to Definition 1, we know that matrix 11( )tA  matches the conditions in 

Lemma 1, Lemma 2 and Lemma 3. And therefore we establish LyaPunov function as follows. 
 

*( )=V ,tx x Gx  

 
Where ( )tG  is determined by Lemma 3, and is positive definite by Lemma 2. So, we have:  

 
( )>0V ,tx  
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According to Lemma 3, we get:  
 

*
11 11( ) ( ) ( ) ( )t t t t  A G G A I  

01( )t g
�

G  

 
The derivative of ( )V ,tx  on t  is:  

 

* * * * *
11 11

2 2 2* * *

d ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d

( ) ( ) ( ) ( ( ) 1)

V ,t
t t t t t t t t

t

t t t t

       

           

�

 

   

x
x G x x G x x G x x A G G G A x

x I G x x x G x x G x x G x

 

 

If 01 1g  , then 
d ( )

0
d

V ,t

t


x
, we can easily know that system (5.5) is asymptotically steady.  

Definition 2: Let the linear time-varying system be:  
 

 11 1 1
d ( )

( ) ( ) ( )
d

t
t ε t t

t
 

x
A U x   (35) 

 

Where 1 2 2

0 0 0

( ) = 0 ( ) 0

0 0 0

t u t u

 
   
  

U , 1 1( )t mU , 11( )tA  is a strong stable matrix, 1 1( )ε tU  is a 

disturbance matrix about 11( )tA , and 1ε  is disturbance coefficient. This system is called a 

disturbance system of strong stable system. Let 11 1 012g m k , where 
5

11
01

11 11

2
1

2

k
k

δ δ
   
 

.  

Theorem 6: If 
01

1
11

1 g
ε

g


 , then system (5.6) is asymptotically steady.  

Proof: According to Definition 1, we know that matrix 11( )tA  matches the conditions in 

lemma 1, lemma 2 and lemma 3. So, we establish LyaPunov function as follows. 
 

*( )=V ,tx x Gx  

 
Where ( )tG  is determined by Lemma 3.  

Known from the proof process in Theorem 5,  
 

( )>0V ,tx  

 
*

11 11( ) ( ) ( ) ( )t t t t  A G G A I  

01( )t g
�

G  

 
The derivative of ( )V ,tx  on t  is:  

 

 
 

* * * * * *
11 11 1

2* * * *
1 1

* *
1

d ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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If 
01

1
11

1 g
ε

g


 , then 

d ( )
0

d

V ,t

t


x
, it is known that system (5.6) is asymptotically steady.  

Definition 3: Let the linear time-varying system be 
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d ( )

( ) ( )
d

t
t t

t


x
A x     (36) 

 
Where, 
  

2 11 11 1 12 21 1 1

12 2 1 2 1 2 121 1 1 12
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μ μ μv uρ ρ ρρ μλ λ
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v v μ
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         
  

A  

 

12 12( )t kA , and 12 42( ) ( )t u t δ A . Setting 
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4 12
02

2
1212

8
1

2

δ k
g

δδ

   
 

. The eigenvalue ( )i tλ  of the 

matrix 12( )tA  match:  

(1)   12( ) ( ) 2 0i jt t δλ λ  Re , ( , 1, 2,3)i j  . 

(2)   12( ) 0i tλ   Re , ( 1,2,3)i  . 

Theorem 7: If 02 1g  , then system (5.7) is a strong stable system.  The proof is similar 

to Theorem 5, and so the proof process can be ignored.  
Definition 4: Let the linear time-varying system be:  

 

 12 2 2
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d
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t ε t t

t
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A U x     (37) 

 

Where, 
1 1

2
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( ) = 0 0 0

0 0 0

u t u
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 
 
  

U , 2 2( )t mU , 12( )tA  is a strong stable matrix, 2 2( )ε tU  is a 

disturbance matrix about 12( )tA , 2ε  is disturbance coefficient. Let 12 2 022g m k , where 
5

12
02

12 12

2
1

2

k
k

δ δ
   
 

.  

Theorem 8: If 
02

2
12

1 g
ε

g


 , then system (5.8) is asymptotically steady.  

The proof is similar to Theorem 6, here the proof process is ignored.  
 
 
6. Conclusion 

In this paper, the dynamic behavior of maintenance system based on state transition is 
analyzed, the differential equations that are used to describe the dynamic behavior of the 
system is established, and the performance indexes of the system are calculated and given out. 
We control the dynamic behavior of the system to achieve the expected steady-state 
performance by selecting checking rate as control variable. And its adaptability and the stability 
of the corresponding control system are analyzed. The results indicate that the method is more 
objective and accurate than the traditional method so as to be able to provide the theoretical 
support for management problems of the large complex equipment by using this method.  
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