Indonesian Journal of Electrical Engineering and Computer Science
Vol. 37, No. 2, February 2025, pp. 801~810
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v37.i2.pp801-810 a 801

A deep learning model with an inductive transfer learning

for forgery image detection

Prabhu Bevinamarad!, Prakash H. Unki?, Venkatesh Bhandage®
' Department of Computer Science and Engineering, BLDEA’s V.P. Dr. P.G. Halakatti College of Engineering and Technology
(Affiliated to Visvesveraya Technological UniversityBelagavi), Vijayapur, India
2Department of Information Science and Engineering, BLDEA’s V.P. Dr. P.G. Halakatti College of Engineering and Technology
(Affiliated to Visvesveraya Technological UniversityBelagavi), Vijayapur, India
3Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education,

Manipal 576104, Karnataka, India

Article Info

ABSTRACT

Article history:

Received Apr 16, 2024
Revised Sep 25, 2024
Accepted Sep 30, 2024

Keywords:

Copy-move forgery

Deep learning

Image tampering
Image-splicing

Inductive transfer learning

Due to the availability of affordable electronic devices and several advanced on-
line and offline multimedia content editing applications, the frequency of image
manipulation has increased. In addition, the manipulated images are presented
as evidence in courtrooms, circulated on social media and uploaded upon au-
thentication to deceive the situation. This study implements a deep learning (DL)
framework with inductive transfer learning (ITL) by using a pre-trained network
to benefit from the discovered feature maps rather than starting from scratch
and fine-tuning the process to check and classify whether the suspected image
is authenticated or forged effectively. To experiment with the proposed model,
we used both Columbian uncompressed image splicing detection (CUISD) and
the CoMoFoD dataset for training and testing. We measured the model’s per-
formance by changing hyperparameters and confirmed the better selection of
values for the hyperparameter to yield compromised results. As per the evalu-
ation results, our model showed improved results by classifying new instances
of images with an average precision of 89.00%, recall of 86.43%, F1-score of
87.32, and accuracy of 87.72% and consistently performed better compared to
other methods currently in use.
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1. INTRODUCTION

Today, multimedia content has become a significant part of various automated digital systems, such
as user authentication, and online user document verification. Multimedia defines digital content that includes
audio, video, images, and combinations. Combining these automated digital systems and various multimedia
data has created state-of-the-art technologies that provide various digital services to humankind to replace tra-
ditional methods and increase productivity. On the other hand, the increased sophistication of image editing
tools, forgery applications, and artificial intelligence (AI) algorithms caused a swift upsurge in digitally ma-
nipulated counterfeits in internet crime worldwide [1]]. For instance, criminals carry out criminal activities and
pose a significant threat to internet users by tampering with images and videos. They create altered images
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to misrepresent their meaning with malicious intentions and fake evidence or documents to present in court-
rooms without significantly leaving visual clues to be detected by the naked eye. There are many different
ways to manipulate multimedia content, and such instances of digitally fabricated photos from the past have
been preserved in Farid’s collection of web pages [2]. Think of copy-move image forgery as one of the forgery
examples; in this case, some copied parts are placed at another location within the same image. The two im-
age sources are combined to form a forgery image in image splicing. Similar tampering is also performed
in the case of audio and video data [3]-[5]. In all these types of multimedia tampering, image tampering has
gained much attention due to the availability of cameras with excellent resolution, state-of-the-art photo-editing
applications, and advanced software tools.

The first block-based forgery detection approach was introduced in [6]]. Since then, various image
tampering detection techniques have been developed, incorporating diverse feature extraction and matching
methods. With the increasing popularity of deep neural network frameworks, there have been efforts to utilize
convolutional neural networks (CNNs) to enhance forgery image detection. This section summarizes the latest
image tampering detection approaches in recent years.

Bayar and Stamm [7]] introduced a CNN with layers dedicated to suppressing the content of an im-
age and learning manipulation detection features adaptively. Ouyang et al. [8]] employs a pre-trained model
already created from an extensive database, such as ImageNet. Then it modifies the net structure slightly us-
ing tiny training copy-move samples to find copy-move image samples generated automatically by computer.
Huang et al. [9] describes a CNN that can understand features extracted from each convolutional layer and
autonomously learn features to recognize different types of image manipulation. Muzaffer and Ulutas [[10]
discusses the detection and localization of copy-move forgeries using a DL-based framework instead of con-
ventional feature extraction methods. Abdalla et al. [11] suggested a CNN model with added pre-processing
layers to detect different copy-move forgery images. The experiments demonstrate that the total validation ac-
curacy stands at 90%. Elaskily et al. [[12], mention CNN trains hierarchical features represented from an input
image to identify altered and original images. Rodriguez-Ortega et al. [13], proposed two approaches, a model
using a custom architecture and a model using transfer learning to distinguish between altered and original
images. Abbas et al. [14] proposed two lightweight SmallerVGGNet (inspired by VGGNet) and MobileNetV?2
deep learning (DL) models to classify and detect copy-move forgery and post-forgery images. Abhishek and
Jindal [15]] proposes a method based on color illumination, deep CNN, and semantic segmentation to detect and
localize image forgeries. Goel et al. [16] introduces a DL approach with a dual-branch CNN to detect passive
copy-move forgery by extracting multi-scale features using various kernel sizes. Kadam et al. [17]] presents a
lightweight model constructed using mask regional CNN (R-CNN) with MobileNet V1 to detect the forgeries
present in an image along with corresponding percentages. Fahn and Wu [18]], proposed a DL-based method
for detecting forgery images. This method utilizes discrete fourier transform and contrastive learning, enabling
the model to directly learn the differences between authentic and forged images. Mehrjardi et al. [19] presents
a DL method for image-level forgery detection by employing a pre-trained deep model and global average
pooling (GAP). Additionally, pixel-level forgery detection is achieved through heatmap activation. Similar
kinds of DL models with transfer learning and particle swarm optimization(PSO) techniques are discussed in
[201-[22]], respectively. Sadanand et al. [23]] proposed CNN with error level analysis error level analysis (ELA)
adopted to detect and accurately classify the copy-move forgery images. He ef al. [24]], proposed a method for
detecting GAN-generated forgery images by combining central difference convolution and vanilla convolution
(CDC-Mix). This approach considers the depth and width features of neural networks and analyzes the impact
of attention on network performance.

Although many DL models mentioned above have demonstrated promising results in classifying im-
ages as forged or authentic, they have some drawbacks, including the need for improved forgery image de-
tection frameworks, generalization to unseen forgeries, and the possibility that training DL models for copy-
move forgery detection will take a long time and require powerful hardware. Therefore, this paper presents a
DL-based model using inductive transfer learning and fine-tuning processes to improve the model’s ability to
detect altered images and reduce loss or misclassification. The model is trained using high-quality authentic
and forgery images with augmented forms to enhance the learning ability. The proposed work also presents
a better selection of significant hyperparameter values to enhance the training and testing performance and
attain a model generalization. Hence, our model can be integrated with various web applications, government
agencies, and social media platforms as a backend to verify the legitimacy of image data and ensure that forged
images are not circulated on social media.
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2. PROPOSED METHOD

The primary focus of our proposed methodology is to implement a reliable custom DL model using
the pre-trained network and apply the inductive transfer learning and fine-tuning process to extract relevant
and discriminative image characteristics that are well-structured and acceptable for the network to learn and
produce better classification results. Therefore, we used the MobileNet V2 model, developed at Google, and
pre-trained on the ImageNet dataset, which consisted of 1.4M images and 1,000 classes. We adopted inductive
transfer learning to take benefit of discovered feature maps rather than starting them from scratch. On the other
hand, the fine-tuning process enables the higher-order feature representations of the base model to make them
more pertinent to the particular classification task and efficiently classify the new sample images as forgery or
authenticated. Transfer learning and fine-tuning add a significant step to our proposed framework. In induc-
tive transfer learning, we frame a new fully connected layer on top of the pre-trained model and a classifier
to use the representations learned by a base network and extract significant features from a new set of query
image samples. On the other hand, the fine-tuning process unfreezes some of a frozen model base’s top layers
and jointly trains the base model’s final layers and newly added classifier layer to “fine-tune” the higher-order
feature representations of the base model to prevent any modifications to the weights of base layers during the
backpropagation phenomenon. Figure T depicts the schematic design of the suggested model.

Pre-trained weights

- Classifier Predicted
ImageNet Head [ classes
dataset

Inductive Transfer
Learning

Authentic

Target
dataset

-Convoluation layer -ReLu layer |:| Dropout layer |:| Maxpooling layer

Figure 1. Schematic design of our proposed DL model with inductive transfer learning
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2.1. Description of target dataset

To evaluate the goals of the suggested model, we have considered two popularly known and publicly
accessed datasets, i.e., CoMoFoD [25] and Columbia uncompressed image splicing detection (CUISD) [26].
The former primarily contains 200 copy-move forgery images of size 512x512 and uses visual appearance-
related post-processing attacks. As a result, 10,400 image samples, including original, forgery and ground
truth images in the CoMoFoD dataset. The latter includes 363 total image samples in the entire dataset. Out
of them, spliced images are 180 and 183 are authentic. The dimension of each image ranges from 757 x568 to
1152x768. Table[T]depicts authentic and forged image samples from two targeted datasets.

Table 1. Authentic and forged image samples from target datasets
CUISD dataset CoMoFoD

Authentic Forged Forged
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2.2. Implementation details

The proposed methodology uses Python 3.8, Keras and TensorFlow as a backend toolkit to incorporate
inductive transfer learning and fine-tuning process and replace the prior pre-trained FC layer with a new FC
layer that is framed as a model head and attached to the base of the target model. Later, the framework’s
primary layers are frozen to avoid weight updates during backpropagation. Subsequently, a dense layer with
adequate classification outputs and a softMax function is added to the global average pooling layer to create a
proper framework for accurately classifying the findings. Since our model intends to identify only two classes
(forgery or authentic), two outputs and SoftMax function are added to the dense layer. The model can handle
input images up to 300x300x 3. During preprocessing, the selected image size is reduced based on the model
input designed (300x300 pixels) and image pixel values scaled between O and 1 range. Later, the training
dataset size increased artificially by using the data augmentation technique to create altered versions of the
images to extract significant image features from all perspectives to improve learning and classification ability.
The suggested approach uses Keras’s DataGenerator class to enhance image data. In this step, every batch of
training data is randomly rotated, cropped, and resized. The implementation details in terms of pseudo-code
are presented in Algorithm 1.

Algorithm 1. Proposed forgery detection methodology

Require: Images from the dataset: D
Ensure: The input image is Forgery or Authentic

1: function RESIZE(D, [h, w, d])

2: end function

3: function SPLIT(D, ratio)

4: end function

5: function NORMALIZE(images, [0, 1])

6: end function
7: Load the target domain image dataset.
8: D < Target domain image dataset.

9: Preprocess data from both domains:
10:  images < RESIZE(D, [300 x 300 x 3])
11:  NORMALIZE(immages, [0, 1])
12: Perform data augmentation such as random rotations, flips, and shifts.
13: Split D: Divide 80% for training and 20% for validation.
14: [Dp, Dy] < spLIT(D, 0.2)
15: function MODEL(D~, Dy )

16: Load the MobileNet V2 model and modify it for inductive transfer learning
17: function LOAD_MOBILENET_V2(input_shape, num_classes, weights = imagenet)
18: Set the base model’s layers in a frozen state.

19: base_model.trainable <— False

20: Add custom top layers for transfer learning

21: x < base_model.output

22: x < GLOBALAVERAGEPOOLING2D

23: x < DENSE(128, activation =’ relu’)

24: Ypred ¢ DENSE(num_classes, activation =’ softmazx’)

25: Create transfer learning model

26: model < MODEL(inputs=base_model.input, outputs=Yp.cq)

27: end function

28: end function

29: Model < MODEL(Dt, Dy/)

30: Compile the modified MobileNetV2 model

31: result < COMPILE_TRAIN(Model, optimizer = adam, loss = binary_cross_entropy)
32: Evaluate the model and compute classification metrics.

2.3. Model training and testing

The training and testing experiments are simulated using 290 and 400 (including original and forgery)
images from both datasets. Some authentic images from the CoMoFoD dataset are added to the CUISD dataset
to increase the number of authentic images during training sessions. The dataset is divided into 80:20 ratios
for training and testing. A predetermined set of initial hyperparameter values is kept constant during initial
experimentation to assess the training and testing outcome. The parameters include input image size of 300
x 300, initial weight set to “ImageNet,” 40 epochs, and batch size=32 with early stopping based on minimum
validation loss with the patience of 10. The optimizer is set to "Adam,” with a learning rate of 0.000001.
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Later, during the simulation, experiments are repeated by setting a different value for the epoch, batch size and
learning rate to identify the significant value at which the proposed DL model achieves a better classification
result. Figure 2| depicts the training and validation accuracy and the loss curves obtained during the training
and validation phase.

As per the graphs in Figures [2{a) and [2b) for training and validation over 40 epochs. The accuracy
of the training and validation varies from 0.78 to 0.92. The training accuracy starts around 0.85. Exhibits
significant fluctuations throughout the epochs. The accuracy does not show a clear increasing trend and varies
between 0.80 and 0.88. The validation accuracy starts high, around 0.92, but drops slowly in the first few
epochs to below 0.80. After the initial drop, it stabilizes and fluctuates around 0.88 to 0.90. It appears rela-
tively stable but with noticeable fluctuations compared to the accuracy of the training. On the other hand, the
training and validation loss for epochs 0 to 40 varies between a loss of 0.22 and 0.38. The training loss starts
around 0.35 and shows a general decreasing trend with some fluctuations. The loss decreases to approximately
0.25 by the end of the 40 epochs. The validation loss starts high, around 0.38, but decreases rapidly in the first
few epochs to around 0.30 and continues to decrease gradually with some fluctuations and shows improvement
overall, reaching approximately 0.22 by the end of the 40 epochs.
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Figure 2. Accuracy and loss curve (a) training and validation accuracy and (b) training and validation loss

In summary, the training accuracy shows high variability and gradually exhibits an upward trend,
indicating little inconsistent learning. The validation accuracy starts high, drops initially, and stabilizes with
fluctuations. The fluctuations in accuracy suggest potential issues with the model’s stability or overfitting. The
training loss decreases over time, indicating that the model is learning. The validation loss decreases overall,
suggesting that training improves the model’s performance on unseen data.

3.  MODEL EVALUATION AND RESULT DISCUSSION

The experimental trials were conducted on an Intel core i7 5.1GH, 64-bit processor with 16 GB
RAM and a 4 GB GPU to train and test the model. This section includes a description of evaluation metrics,
evaluation of the suggested model and a discussion of the evaluation results.

3.1. Evaluation metrics

To understand the effectiveness of our model, we have adopted evaluation metrics precision (P), recall

(R), harmonic mean (F1-score), and accuracy (Acc). The (1), (2), (3), and (4) define the computation of these
evaluation metrics.
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Where, true positive (1'") relates to how many forgery images are correctly classified as a forgery, false positive
(FT) refers to how many authentic images are inaccurately discovered as forged images, true negatives (77)
refers to how many authentic images are accurately determined as authentic, and false negative (F' ) refers to
incorrectly identifying the count of forgery images as authentic.

Later, the adequately trained model is tested with 58 unseen forged images and 80 unseen authentic
images from both datasets. Classification results are presented in the confusion matrix depicted in Figure|3|for
CUISD shown in Figure [3(a) and CoMoFoD shown in Figure [3(b) dataset respectively. Performance metrics
computed using TP, TN, FP, and FN yield the following results: for CoMoFoD, precision is 83.87%, recall is
92.86%, F1-score is 88.14%, and accuracy is 87.93%; for the Columbia Uncompressed Image Splicing dataset,
precision is 94.12%, recall is 80%, F1-score is 86.49%, and accuracy is 87.5%. The detected results showing
the actual label, the predicted label, and the image name are detailed in Table [2| for CUISD and CoMoFoD
dataset respectively.
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Figure 3. Confusion matrix for test sets from (a) CUISD and (b) CoMoFoD dataset
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3.2. Discussion of results over target dataset

The observed results are compared with other state-of-the-art reference models to assess how well
our model works. Table [3] provides a detailed summary of reference model specifications and corresponding
accuracies, and Figure [] illustrates the performance comparison in terms of precision shown in Figure f(a),
recall shown in Figure [@{b), F1-score shown in Figure f(c), and accuracy shown in Figure [@(d). As per the
results, the dual branch CNN [16] achieves the highest performance with an F1 score of 94 and a perfect recall,
making it ideal for tasks where missing any positive instance is unacceptable. Our model, DL with ITL stands
out for its high precision of 89.00 and competitive F1 score of 87.32, indicating its effectiveness in scenarios
where precision is as important as recall. MobileNet V1 shows the lowest F1 score at 64.20, suggesting it
is less effective than other models. MobileNet V2 [14] performs better, with an F1 score of 84.40, indicating
improvements over V1. CNN variants [11]] and [20] show varied performance, with [11]] achieving an F1 score
of 88.35 and [20] scoring 82.00, reflecting recent improvements in CNN design and optimization. The CNN
with ELA performs well, with an F1 score of 85.90 and the second-highest precision of 88.10, showcasing
advancements in ELA techniques. The performance metric F1 score balances precision and recall. The dual
branch CNN [[16]] achieved the highest F1 score of 94, indicating superior overall performance. On the other
hand, our model, with an F1 score of 87.32, is competitive and higher than most other models except [11]] and
[16] and achieved the highest precision of 89.00, indicating fewer false positives. Hence, our model demon-
strates strong performance across all metrics, excelling in precision and competitive recall, making it a robust
choice for image forensic applications.

Table 2. Visualization of detection results obtained for CUISD and CoMoFoD dataset

CUISD dataset CoMoFoD dataset
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Table 3. Comparison of model specification and accuracy with reference models
Reference models [in] [17] [14] [16] [20] 23] Ours
Model name CNN MobilNet VI~ MobilNet V2  Dual branch CNN CNN CNN with ELA DL with ITL
CASIA V1.0, CoMoFoD
Dataset used Composite Composite Composite MICC- F2000 Composite CASIA V2.0 and and
MICC CUISD
Input image size 64x64 512x512 224x224 700x700 128x128 128x128 300x300
Training set size 1254 2505 2260 1700 2232 3772 552
Testing set size 537 318 565 150 1488 943 138
No. of epoch 7 with 240 100 100 30 30 40
90 iterations
Overall accuracy 90% NA 85.6% 96% 87% 81.1% 87.72%
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Figure 4. Comparison of performance metrics: (a) precision, (b) recall, (c) Fl-score, and (d) accuracy with
reference models

4. CONCLUSION

Computer vision-based image authentication has many cutting-edge applications across various fields,
including banking, forensics, and medicine. The proposed methodology has tried to deliver the system to
accurately classify the authentic and forgery images for both CUISD and CoMoFoD datasets. Our model
implements a DL concept with inductive transfer learning and a fine-tuning mechanism to efficiently utilize the
feature maps from the pre-trained model and classify forgery images. According to the evaluation’s findings,
the suggested model yields an average detection accuracy of around 87.72% and precision of 89.00%, recall
of 86.43%, and Fl-score of 87.32. The comparative study in the results and discussion section shows that it
performs better than other models. Currently, the proposed model can only confirm image authenticity without
marking the exact location of the tampering present in an image. In addition, the proposed DL model requires
extensive input data for the training with an enhanced system consisting of GPU configuration to generate
good results. Usually, a system with inadequate resources takes more time and produces poor classification
results. Hence, considering these two issues mentioned above, the present work would be extended by training
large and diverse image datasets to increase recall and other performance metrics and highlight the forgery
image regions.
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