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 With the increasing amount of photovoltaic (PV) generation, accurate solar 

radiation forecasting is essential to the safe operation of power systems. This 

work examines many machines learning (ML) techniques that use both 

exogenous and endogenous inputs to forecast sun radiation. In order to find 

pertinent input parameters and their values based on previous observations, 

the forecasting models’ performance is assessed using metrics like mean 

absolute error (MAE), mean squared error (MSE), R-squared (R2), and root 

mean squared error (RMSE). Accurate power output forecasting is becoming 

more and more necessary as the need to switch to renewable energy sources 

(RES) like solar and wind power grows. There is a clear demand for more 

reliable solutions because current models frequently struggle with temporal 

complexity and noise. A revolutionary deep learning-based technique 

designed especially for green energy power forecasting was developed in 

response. The study uses time series smoothing and the autoregressive 

integrated moving average (ARIMA) model for casing in order to create a 

solid basis for analysis and modeling that is free of noise and outliers.  

The proposed method aims to address the limitations of existing forecasting 

methods and promote the creation of more accurate and reliable forecasts in 

the field of renewable energy. 
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1. INTRODUCTION 

In the global shift to renewable energy sources (RES), solar energy consumption has grown in 

significance and sustainability. As of 2022, solar energy accounted for 12.8% of global energy capacity, 

according to figures from the International Energy Agency. By 2027, it is expected to have overtaken all 

other energy sources, accounting for 20% of global energy capacity [1]–[5]. Solar radiation has a lot of 

potential, but grid integration and energy management are severely hampered by its erratic and variable 

nature. For both short- and long-term planning, accurate photovoltaic (PV) electricity generation projection is 

essential. PV output is influenced by the amount of solar radiation reaching the PV cells, which in turn is 

affected by weather conditions such as temperature, wind speed, and cloud cover. These variables complicate 

energy system planning and management. 

Accurate and trustworthy PV output projections are becoming more and more necessary as solar 

energy use rises. Market participation, grid integration, system stability, energy management, and research 
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and development projects are just a few of the applications that depend on accurate forecasting. Recently, 

machine learning (ML) methods have gained prominence in PV forecasting due to advancements in 

processing power, offering the potential for more accurate and efficient forecasting models [5]–[10]. 

Historically, statistical time-series models like autoregressive integrated moving average (ARIMA), 

SARIMA, and exponential smoothing approaches have been used to forecast power generation from RES. 

These methods, which primarily address short-term forecasting needs, use historical power data to identify 

seasonal and temporal trends. However, they fall short in capturing the complex and nonlinear interactions 

between various factors, such as weather patterns and fluctuations in power supply, that influence power 

generation. Additionally, the assumptions of stationarity and linearity inherent in these methodologies may 

not apply to the dynamics of solar power generation. Despite these limitations, their simplicity and ease of 

use have maintained their appeal [10]–[15]. 

The limitations of traditional statistical methods raise concerns about their suitability for solar power 

forecasting. There is a pressing need for more sophisticated and accurate forecasting techniques that can 

account for the complexities inherent in renewable energy dynamics. Advancing beyond conventional 

approaches is imperative to meet the evolving demands for reliable and accurate power forecasting [16]–[18]. 
This essay provides an in-depth analysis of improving solar radiation forecasting using ML 

algorithms. A detailed research methodology outlines the step-by-step development of the study. The initial 

stage involves exploring the principles of ARIMA modeling and conducting a thorough literature review to 

establish ARIMA as a benchmark model for assessing various strategies and predicting renewable energy 

generation. The second section examines the state of RES utilization in selected countries and their 

approaches to transitioning toward sustainable energy systems. This background sets the stage for the 

subsequent analysis. In the third stage, ARIMA models are constructed for two different time series hourly 

and monthly data at two different locations, followed by corresponding forecasts. The last phase entails a 

thorough examination of the information and the development of perceptive judgments [19]–[21].  

This systematic approach guarantees a thorough examination of ARIMA modeling, its applicability for 

forecasting solar radiation, and its consequences in relation to the larger framework of policies for the 

development of renewable energy [22]–[26]. 

 

 

2. MACHINE LEARNING APPROACHES FOR SOLAR RADIATION FORECASTING 

A number of important elements need to be taken into account when using ML techniques for solar 

radiation forecasting in order to improve the models’ efficacy and accuracy. Key among these is the selection 

of relevant variables to measure, which can include meteorological data such as temperature, humidity, wind 

speed, and sunshine duration. Choosing the right variables ensures that the model captures all relevant 

influences on solar radiation. The duration for which data is recorded continuously also impacts model 

performance. Longer periods of data collection provide a more comprehensive understanding of seasonal and 

temporal variations in solar radiation, which can improve forecasting accuracy. Additionally, establishing the 

appropriate time resolution is crucial; data should be collected at intervals that balance detail and 

manageability. For example, high-frequency data may capture short-term fluctuations better but require more 

processing power. 

Several important measures are frequently used to assess how well ML models anticipate solar 

radiation. The average absolute difference between expected and actual values is calculated using mean 

absolute error (MAE), which provides a straightforward indicator of prediction accuracy and interpretability. 

The average squared difference between expected and actual values is measured by mean squared error 

(MSE), which gives larger errors more weight and sheds light on the overall performance of the model.  

The coefficient of determination, or R-squared, measures how much of the variance in the dependent variable 

can be predicted from the independent variables, indicating how well the model explains the data.  

When combined, these indicators offer a thorough assessment of the model’s performance, pointing out both 

its predicting strengths and shortcomings. They are crucial for refining models to ensure they deliver reliable 

and actionable insights in solar radiation forecasting shown in Figure 1. 

 

 

3. ARIMA METHOD 

Approach stochastic process models fall under the broad field of ARIMA models. These models are 

expansions of integrated ARMA (autoregressive moving average) models. Component (I) to deal with non-

stationary problems in the data. Two main parts make up ARMA models for time series: regression analysis 

(AR): regression modeling based on the time series’s lagged values is used in this component. Moving 

average (MA): this part combines the prior error terms linearly to describe the error term. Application of 

ARMA modeling approaches is made easier by the integration component in ARIMA models, which plays a 
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crucial role in converting non-stationary time series data into stationary ones. This integration process helps 

in capturing the underlying patterns and trends within the data, making ARIMA models a powerful tool for 

time series analysis and forecasting. 

 

yt=∑ ɸ
𝑝
𝑖=1 iyt-i +∑ 𝜃

𝑞
𝑗=1 jet-j (1) 

 

 

 
 

Figure 1. Process flow diagram for load forecasting 

 

 

4. ERROR METRICS AND COMPUTATIONAL PERFORMANCE 

Model accuracy is frequently assessed using metrics such as MAE and root mean squared error 

(RMSE). Nevertheless, there is a scale-dependency in these metrics, which makes the conclusions 

inconsistent between time series of different magnitudes. The mean absolute scaled error (MSE), an accuracy 

statistic, was established in order to alleviate this issue. By scaling the error in relation to a naive forecast,  

the MSE offers a more consistent assessment that facilitates insightful comparisons across various time series 

datasets. 

 

MSE=
𝑀𝐴𝐸

𝑀𝐴𝐸𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒,𝑛𝑎𝑖𝑣𝑒
 (2) 

 

where MAE, a frequently used accuracy statistic, stands for mean absolute error. 

 

MAE=
1

𝑁
∑ |𝑦�̂�[𝑡] − 𝑦𝑖 

𝑁−1
𝑖=0 [𝑡]| (3) 

 

A statistical indicator of how much of the variability in a dependent variable can be accounted for 

by the independent variables in a regression model is the coefficient of determination, also known as  

R-squared (R²). It serves as a barometer for the model’s adherence to the data. The R2 statistic, which 

provides information on how well the model captures the patterns in the data, is computed by dividing the 

explained variance by the overall variance. 

 

R2 = 1 −
∑ (yi− yîk

i=1 )2

∑ (yi− y̅i k
i=1 )2

 (4) 

 

Where, y̅i -Actual values. 
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The code provided uses the Seaborn package to create a heatmap that shows the dataset Table 1 

correlation matrix. The heatmap uses color to indicate the direction and intensity of correlations to show the 

associations between various variables. Lighter hues indicate significant positive associations, while darker 

hues indicate strong negative correlations. The correlation coefficients are shown in the annotations inside 

each cell. Through the identification of patterns and correlations between variables, this visualization 

technique facilitates feature selection, detects multicollinearity, and directs additional study. In data 

exploration and modeling procedures, the heat map provides a clear summary of the relationships within the 

dataset, enabling informed decision-making Figure 2. 

 

 

Table 1. Metrics for performance evaluation 
Sl.no Metric Value 

1. MAE 272.926791 

2. MSE 450,772.835729 
3. RMSE 671.396184 

4. R-squared 0.796661 

 

 

 
 

Figure 2. Heatmap for data correlation 

 

 

5. RESULT 

5.1.  Energy prediction every month 

The code generates two insightful line plots. Figure 3 illustrates the average monthly energy 

production, with each point reflecting the mean energy output for that month. This plot effectively highlights 

seasonal trends and variations, revealing peak production months and fluctuations in energy generation.  

Such analysis is essential for understanding seasonal demand patterns, optimizing resource allocation, and 

refining energy management strategies. 

Figure 4 compares energy production with meteorological factors wind speed, sunshine duration, air 

pressure, and humidity across the dataset. Each line represents a variable’s values over time, allowing for an 

in-depth analysis of how these environmental conditions influence energy output. This multi-variable plot 

helps identify correlations and dependencies, such as how increased sunshine duration may boost energy 

production or how higher humidity might reduce output. The inclusion of a legend aids in distinguishing 

between variables, enhancing interpretability. 
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Figure 4 compares energy production with meteorological factors wind speed, sunshine duration, air 

pressure, and humidity across the dataset. Each line represents a variable’s values over time, allowing for an 

in-depth analysis of how these environmental conditions influence energy output. This multi-variable plot 

helps identify correlations and dependencies, such as how increased sunshine duration may boost energy 

production or how higher humidity might reduce output. The inclusion of a legend aids in distinguishing 

between variables, enhancing interpretability. Figure 4 compares energy production with meteorological 

factors wind speed, sunshine duration, air pressure, and humidity across the dataset. Each line represents a 

variable’s values over time, allowing for an in-depth analysis of how these environmental conditions 

influence energy output. This multi-variable plot helps identify correlations and dependencies, such as how 

increased sunshine duration may boost energy production or how higher humidity might reduce output.  

The inclusion of a legend aids in distinguishing between variables, enhancing interpretability. 

 

 

 
 

Figure 3. Predition of energy production every month 

 

 

 
 

Figure 4. Predicted production VS wind speed, sunshine, air pressure and humidity energy month 

 

 

6. CONCLUSION 

With a MAE of 272.93, MSE of 450,772.84, RMSE of 671.40, and an R-squared value of 0.7967, 

the evaluation of solar radiation forecasting algorithms demonstrates respectable predictive accuracy. These 

results highlight the potential of combining deep learning with time series smoothing and ARIMA modeling 

to enhance forecast accuracy. This hybrid approach addresses limitations of traditional models, contributing 

to better energy management and grid stability, essential for the integration of solar power into energy 

systems. Future research should focus on noise reduction, improving temporal dynamics, real-time 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 3, June 2025: 1463-1470 

1468 

forecasting, integration with other renewable sources, and scalability across diverse regions and climates.  

By advancing these fields, forecasting methods will be further improved, promoting the shift to sustainable 

energy and facilitating the smooth integration of solar energy into global energy systems. 
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