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 Managing unbalanced datasets is a significant challenge in intrusion 

detection, since uncommon assaults are often obscured by the bulk of 

regular network traffic. In order to mitigate the effects of class imbalance 

and improve intrusion detection system (IDS) performance, it is necessary to 

use a variety of imbalanced learning algorithms. Methods of data 

augmentation such as adaptive synthetic sampling (ADASYN) and synthetic 

minority oversampling technique (SMOTE) are useful in addressing class 

imbalance. This paper introduces a novel technique to data resampling 

where decision tree-generated decision boundaries are used to conduct 

ADASYN on complicated and unusual samples. When this method’s 

efficacy was evaluated using the standard NSL-KDD dataset, the accuracy 

of the unusual class u2r was increased to 42% and, for r2l it was improved to 

83%, respectively. The UNSW-NB 15 dataset has been used for further 

validation of the method, and its statistical significance has been asserted by 

comparing the suggested method to other oversampling techniques. 
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1. INTRODUCTION 

Rapid technological advancements coupled with an increasing reliance on networked computer 

systems have led to a startling increase in cyberthreats and attacks. Intrusion detection systems (IDS) are vital 

to the protection of computer networks because they can identify and stop these constantly changing threats. 

But it might be difficult for conventional IDS techniques to identify new and advanced threats, especially 

when dealing with unbalanced network data. A common and important problem in intrusion detection is data 

imbalance, which presents a lot of difficulties for machine learning systems. Machine learning algorithms 

find it challenging to correctly categorise and identify possible intrusions due to the unequal distribution of 

classes in intrusion detection datasets [1]. 

Because of this, ML algorithms could find it difficult to recognise and forecast the minority class 

with sufficient accuracy, which further increases the false-negative rate and reduce their overall efficacy in 

identifying intrusions. In real-world applications, when the minority class reflects infrequent occurrences like 

network assaults or unauthorised access attempts, this problem is more troubling. By raising the detection 

rate of minority classes, imbalanced learning in IDS has shown potential in resolving this problem [2]. Either 

the learning algorithm itself or the training data samples may be altered to address data imbalance at the data 

level. Two methods are available to data-driven techniques to achieve class distribution balancing: 

oversampling and undersampling. To create a balanced dataset, oversampling duplicates or synthesises 

instances of minority classes. Techniques like synthetic minority oversampling technique (SMOTE), adaptive 
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synthetic sampling (ADASYN), and random oversampling may be used to accomplish this. Alternatively, to 

get a balanced dataset, undersampling decreases the occurrences of the majority class. Undersampling 

methods include tomek links and random undersampling. Even though these methods are straightforward and 

simple to use, if they are not used carefully, they might result in overfitting and redundancy [3]. 

Algorithm-based methods modify the learning algorithm to increase its sensitivity to cases of minority 

classes. While threshold shifting modifies the classification threshold to favour occurrences of minority classes, 

cost-sensitive learning allocates distinct misclassification costs to various classes. Additionally, ensemble 

methods may be used to enhance classification performance. This approach battles with extreme imbalance and 

significant computing costs, but it works with any algorithm that doesn’t modify the data. 

Additionally, researchers suggested hybrid strategies like SMOTEBoost, RUSBoost, and SMOTE-

ENN, which blend algorithm-based and data-driven methods to maximise each one’s benefits [4]–[6]. 

Although these hybrid algorithms involve sophisticated implementation and parameter optimisation, they 

increase the performance of the classifier. 

Empirical studies in the literature support the use of oversampling rather than undersampling 

because they enhance model generalisation over unseen data and retain information seen in minority samples 

[7], [8]. The most widely used oversampling technique, SMOTE [9], creates synthetic instances by 

interpolating between a chosen instance and its neighbour after determining the k-nearest neighbours of 

minority class examples. Until the appropriate balance is reached, this procedure is repeated. Despite being a 

popular method for handling unbalanced data, SMOTE has the following drawbacks [10]: 

a) Synthetics that could be artificial and inaccurately depict the actual distribution of the minority class. 

b) The unrealistic assumption that there is a linear decision boundary between classes. 

c) Noisy instances may be included in nearest neighbours, which causes noise to be included in synthetic 

samples. 

d) Because there are limited samples, it may not function effectively when handling exceedingly unusual classes. 

Numerous iterations of SMOTE have been proposed to overcome these problems and improve the 

task’s performance for the imbalanced data classification throughout the years [11]. This study emphasises 

on SMOTE variants that utilise decision boundaries as an approach for oversampling because they allow 

generation of artificial samples that are compatible with the original data distribution. Decision boundary-

based oversampling techniques generate synthetic samples which are accurate and illustrative of the minority 

class. Different classes in a dataset are categorised using decision boundaries. Various SMOTE adaptations 

have emerged to tackle imbalanced classification issues and enhance decision boundary precision. 

While ADASYN [12] focusses on building synthetic samples in areas with fewer minority class 

instances to address class overlapping, Borderline-SMOTE [13] aims to enhance classification accuracy for 

borderline cases by targeting the minority class’s decision boundary. This is further refined by safe-level 

SMOTE [14], which takes into account the safe-level ratio to prevent producing noisy samples. Through sample 

weighting and geometric analysis, MWMOTE [15], and G-SMOTE [16] enhance decision boundary 

management in an indirect manner. On the other hand, K-means SMOTE [17] specifically uses clustering to 

generate artificial samples across a range of decision boundary areas. To enhance the effectiveness of the 

classifier, SVM-SMOTE [18] uses support vector machines to generate artificial samples close to the SVM-

defined decision boundary. More recent techniques include sophisticated methods using neural networks and 

algorithms inspired by nature, as well as decision boundary computation-based oversampling [19], which 

creates synthetic samples by examining border regions. Various neural network adaptation techniques are used, 

such as Siam-IDS [20], which adapts neural networks to handle sample distances during the training phase; [21] 

adds misclassification cost at testing phase; SASMOTE [22], which integrates attention mechanisms for high-

quality sample generation. Furthermore, by improving minority class representation across several sources, 

federal-based [23] and meta-learning-based [24] SMOTE techniques solve class imbalance in remote databases. 

Precise decision boundaries are essential for decision-based SMOTE variations to function well. 

Boundaries that are unclear or noisy might impair synthetic samples and lower performance. In high-

dimensional data contexts, some versions, such as SMOTE-DL [25], need variable selection in order to 

provide an unbiased classification. An overview of SMOTE approaches is included in Table 1, with an 

emphasis on the main techniques and difficulties. 

The performance of the primary classifier and its adeptness to capture the decision boundaries are 

the main factors determining how effective these changes are. Furthermore, generation of artificial samples 

based on decision boundaries demands extreme caution towards introduction of noise and artefacts to the 

dataset. High-dimensional domains further challenge the establishment of substantial decision limits. 

Furthermore, as the artificial samples lie close to the decision boundary, these methods were unable to 

adequately examine the minority class’s whole space, missing important patterns or variances. 

In light of these drawbacks, the goal of this study is to provide an algorithm for adaptive decision 

boundary-based oversampling that avoids outliers and covers the whole minority space. In order to address 

unbalanced categorisation, it seeks to aid in the creation of synthetic minority class samples that are more relevant 
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and accurate. By taking into account each minority sample separately, the suggested methodology seeks to solve 

the issue of inadequate samples. The decision tree, which has the innate capacity to partition feature space, is 

suggested as the underlying classifier. Pruning decision trees prevents overfitting and causes early termination. 

Targeted adaptive sampling based on decision boundary closeness can manage the complicated datsets. 

The remaining half of this work is structured as follows. The suggested approach is presented in 

section 2, and the experimental findings are discussed in depth in section 3. This paper’s study is concluded 

in section 4, which also addresses potential future directions. 
 
 

Table 1. Comparison of decision-based SMOTE variants 
Sample generation principle Smote variants Description Limitations 

Decision boundary-based Borderline SMOTE, 

SMOTEBoost, SVM-SMOTE 

Generate samples near decision 

boundaries to balance classes. 

Noisy samples if 

boundary is unclear 
Density/distribution-based ADASYN, MWMOTE, G-

SMOTE 

Use sample density and distribution to 

create new instances. 

May amplify noise in 

sparse datasets 

Clustering-based KMeans-SMOTE Clusters minority samples before 

generating synthetic examples. 

Struggles with 

complex boundaries 

Deep learning-based Smote-DL Utilizes deep learning models to 

capture complex decision boundaries. 

Computationally 

intensive 
Attention/hybrid methods SASMOTE, Federal-based 

SMOTE 

Leverages attention mechanisms or 

federated learning principles for 

synthetic sample generation. 

Resource-intensive, 

data harmonization 

issues 

 

 

2. RESEARCH METHOD 

This work presented the proximity-adaptive synthetic minority over-sampling technique 

(PASMOTE) as a solution to the several shortcomings of SMOTE. This research used two widely used 

intrusion datasets, NSL-KDD and UNSW_NB_15, for its trials. An expansion of KDD Cup 99, NSL-KDD 

fixes some fundamental problems with its predecessor [26]. There is one normal class and four kinds of 

attacks: denial of service (DoS), probe, remote-to-user (r2l), and user-to-root (u2r). Though, there are many 

different types of assaults available in these attack classes, there is an imbalance in the number of instances 

of uncommon attack classes such as user-to-root and remote-to-user, compared to typical occurrences.  

The 20% training and test+ dataset files are used in the experiment. Table 2 displays the number of samples 

in each data set to help understand the frequency distribution in the various classes. 
 

 

Table 2. Distribution of frequencies in NSL-KDD datasets 
Data file used Class distribution count 

Normal Dos Probe u2r r2l 

train 20% 13449 9234 2289 11 209 

test+ 9711 7458 2421 341 2754 

 
 

The UNSW-NB15 dataset has been used for the proposed approach’s validation and comparison with 

alternative oversampling techniques. This dataset combines recent synthetic assaults in networked systems with 

modern regular attacks [27]. This dataset has been labelled and consists of nine assault types with 49 attributes 

total, including the label. The training and testing sets of the dataset include 175341 and 82332 samples, 

respectively. The unequal distribution of classes in the two sets is seen in Figure 1, which further emphasises the 

experiment’s significance. Since unusual attack worms make up a relatively small portion of the total 

distribution, they are difficult to identify, hence this research aims to enhance their detection.  

Python programming was used to carry out the experiment on the well-known Google Colab IDE. 

Initially, both datasets were tuned for the study. There are 42 characteristics and 1 class label in NSL-KDD. 

Three of these features-the flag, the service, and the protocol type-are purely nominal. These attributes were 

converted to their numerical equivalents in order to maximise the learning process for the models.  

The numerical characteristics were then normalised using min-max normalisation to maintain the relative 

disparities between data points and guarantee that the range of values stays constant. Using formula (1),  

the data point X is rescaled to the range [a, b], usually [0,1]. 
 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
× (𝑏 − 𝑎) + 𝑎 (1) 

 

where, Xmin represents the minimum value of the attribute, Xmax is the maximum value of the attribute, 

Xscaled denotes the rescaled value and the new range id defined as a – b (commonly 0 to 1). 
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Figure 1. Distribution of samples in the UNSW-NB15 training and testing dataset 
 
 

Every one of the 49 characteristics in the UNSW-NB15 dataset underwent the same kind of 

pretreatment. 47153 missing data led to the elimination of the service, and as the label is employed in binary 

investigations, it was destroyed. The categorical features attack (attack_cat), protocol (proto), and service 

(attack_cat) were converted using label encoders. Next, min-max scaling was used on each and every 

numerical characteristic. The problem was converted into a binary class problem and the rarest class worms 

and normal samples were extracted in order to confirm the statistical significance of the results. 

To balance the NSL-KDD training dataset, the recommended PASMOTE technique Figure 2 was 

used. It selectively samples instances from both minority and normal classes to facilitate the training of a 

classifier and, thereby clarifying the decision borders and boundaries. These results are further used to 

produce fake samples during the resampling process. 
 

 

 
 

Figure 2. Proposed PASMOTE algorithm 
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Because decision trees naturally split the feature domain during training, they support boundary 

proximity calculation for each data point. For every data point, they compute the distances to the decision 

borders and provide useful insights into how close examples are to the decision areas. These insights may be 

used to improve oversampling tactics. Furthermore, these models automatically prioritise features according 

to how crucial they are to the categorisation process. With this data, one may evaluate whether characteristics 

are important in differentiating minority class occurrences, which might guide feature engineering or 

selection procedures in high-dimensional datasets. Compared to linear classifiers, they are also more 

successful at modelling nonlinear connections between features and the target variable, enabling the 

modelling of more complicated decision boundaries. 

For every minority class sample, the distance from the border was determined, and the samples were 

arranged according to these distances. To determine the resampling rates, threshold values may be computed 

based on the range of distances. The plan is to resample samples nearer the decision border at greater rates 

than those further away. Based on the distance threshold values, three resampling rates - 0.6, 0.4, and  

0.2 -were used for this experiment. The cubic-spline interpolation technique was used to create the synthetic 

samples. A mathematical method called cubic spline interpolation may be used to estimate a function’s 

values between known data points. To ensure smoothness and continuity, it builds a piecewise continuous 

curve out of many cubic polynomials. The process generates interpolated values between the known data 

points by iterating over each feature column and using cubic spline interpolation. Distinct values are 

randomly picked from the categorical variables (protocol_type, flag, and service) in minority class samples to 

guarantee generation of artificial samples within the original class distribution. The synthetic samples are 

represented by these interpolated numerical values and the modified category variables. Because cubic 

splines can manage sparse or irregularly spaced datasets and maintain the form and behaviour of synthetic 

data between existing data points, they are useful for handling nonlinear and complicated data interactions.  

In order to compute an interpolated value between (xi,yi) and (xi+1,yi+1), the generic equation of the cubic 

spline may be expressed as (2). 

 

𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖 (𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)3  (2) 

 

which holds true for i = 1 …, n−1, where xi ≤ x ≤ xi+1 and each cubic function’s coefficients ai, bi, ci, and di 

must be found. The training 20% NSL-KDD dataset’s sample distribution is shown in Table 3 both before 

and after resampling. 

 

 

Table 3. 20% of classes were distributed before and after resampling in NSL-KDD training 
Train 20% data file Class distribution 

Normal Dos Probe r2l u2r 

Pre-resampling 13449 9234 2289 209 11 

Post-resampling 13449 9234 2289 2603 842 

 

 

To validate the proposed technique, two classes were extracted from the UNSW-NB15 training 

dataset: normal and worms. These classes show the range of sample distribution and the maximum and 

minimum samples that support the recommended procedure’s effectiveness. The sample counts for the two 

classes were 56000 and 130, respectively, prior to distribution. Once PASMOTE was used to resample the 

minority class, the counts were altered to 56000 and 6318, respectively. To benchmark the proposed 

approach against conventional oversampling strategies, an equal number of fake samples were made from 

each of the four oversampling strategies mentioned in section 1: SMOTE, Random oversampler, ADASYN 

and, Borderline SMOTE. 

Identifying the most pertinent characteristics in the data can minimise dimensionality and boost the 

effectiveness of machine learning algorithms. This paper makes use of a feature selection technique called as 

CFS-MHA which is an ensemble of cfsSubsetEval algorithms that explore feature space using meta-heuristic 

techniques [28]. Experimental study indicates that it is successful in prioritising the most representative 

features from complex intrusion detection datasets, hence reducing the computational complexity and length 

of trained models. After applying the algorithm to 42 features in the NSL-KDD dataset, 15 relevant  

features were extracted. The features that have been selected are: service, flag, wrong_fragment,  

hot, logged_in, is_guest_login, count, same_srv_rate, diff_serv_rate, dst_host_srv_count,  

dst_host_diff_srv_rate, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate, dst_host_serror_rate, and 

dst_host_srv_serror_rate. 
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This work used a cost-sensitive random forest (RF) algorithmic adaptation to simulate the reduced 

NSL-KDD dataset. A modified technique called “cost-sensitive classification” adjusts the model’s ability to 

generalise by adding domain-specific costs and considers the true impact of misclassification errors in order 

to handle imbalanced datasets [29]. Cost-sensitive classifiers primarily concentrate on differences in class 

distributions. Included with them is a cost matrix, also referred to as a misclassification cost matrix, that 

provides a clear breakdown of the costs related to various classification errors like false positives and false 

negatives. Unlike ordinary classifiers, which strive to reduce the aggregate classification error, cost-sensitive 

classifiers intend to minimise a cost function formed from the misclassification costs shown in the cost matrix. 

RF was chosen as the primary classifier for both model training and evaluation. Due to its 

robustness, adaptability, and high projected accuracy, this well-known ensemble learning approach performs 

very well in a wide range of machine learning applications [30]. It constructs many decision trees using 

random selections of the training data, and then produces a class that is the average prediction (regression) or 

the mode of the classes (classification) of every single tree. It implies more unpredictability and boosts tree 

variation by considering just a fraction of the qualities at each split point in the decision tree. 

The UNSW-NB15 model evaluation procedure used the same RF approach to guarantee consistency 

in the results. No changes to the cost matrix were made to the program in order to emphasise that the results 

were only traceable to the recommended oversampling method and not the learning algorithm. 

The following metrics were taken into account to assess the model’s classification performance:  

a) Confusion matrix - it is a comprehensive presentation of model’s predictions in a matrix form listing the 

number of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). 

b) Accuracy - it calculates the ratio of correctly predicted instances to the total number of instances in the 

dataset to estimate the model’s performance across all classes. It is calculated as (3): 

 

Accuracy = 
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (3) 

 

c) Precision: this factor focusses on how well the model predicts good outcomes. It shows that the model 

can steer clear of erroneous positive predictions. It is computed as (4):  

 

Precision = 
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
 (4) 

 

d) Recall or sensitivity - it focusses on the model’s ability to identify all positive instances, therebyreducing 

false negatives. It is calculated as (5):  

 

Recall = 
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
  (5) 

 

e) F1-score - it is an effective metrics used with imbalnced data as it calculates the harmonic mean between 

precision and recall. It is determined as (6):  

 

F1-score = 
2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (6) 

 

f) The receiver operating characteristics (ROC) curve, a graphical depiction of the trade-off between the true 

positive rate (sensitivity) and the false positive rate (specificity), is used to assess the effectiveness of 

binary classifiers. As a scalar number, AUC provides an overview of the model’s overall performance 

within a range of threshold values varying from 0 to 1. Higher the AUC value, the better the model’s 

ability to discriminate. 

The proposed PASMOTE approach was statistically evaluated against four over samplers-SMOTE, 

ADASYN, borderline SMOTE, and random oversampler by employing three statistical tests for evaluating 

models. The experiment was conducted using the second dataset, UNSW-NB15. The cornerstone of these 

tests is the concept of the null hypothesis (H0) and the alternative hypothesis (H1). Assessing whether there 

is enough evidence to refute the null hypothesis is the goal of hypothesis testing, which determines the 

threshold for rejection depending on the degree of significance (α). Table 4 describes these tests’ primary 

features and how to utilise them to compare binary algorithms. 

Assuming the null hypothesis is true, the tests generated results in the form of a statistical value  

(T, U, and W) along with a p-value, that is the likelihood of observing a test metric that is as extreme as or 

more extreme than the one derived from the data. Since 0.05 is the threshold level of significance, p-values 

less than this may be interpreted as supporting evidence against the null hypothesis. The whole operation of 

the suggested model is shown in Figure 3. 
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Table 4. Specifics of the statistical tests used 
Criterion Paired T-test Mann-whitney U test Wilcoxon signed-rank test 

Nature of test Parametric Non-parametric Non-parametric 
Type of data Presumptively distributed 

disparities 

Comparing two independent samples 

using a ranking system 

Comparison of two matched 

samples based on ranks 

Test statistics T-statistic U statistic (rank sum) W statistic (sum of signed ranks) 
Applicability Used to compare matched 

sample means 

Used to compare the median of two 

independent samples’ distributions 

Used to compare the two matched 

samples’ distributions (median) 

Sample size Calls for a big sample size Robust in relation to sample size Robust in relation to sample size 
Null hypothesis 

(H0) 

There is no discernible change 

in the paired means 

The distributions of the two samples are 

identical 

There is no distinction between 

the paired observations 

Alternative 
hypothesis (H1) 

Notable variation between the 
paired means 

Variations in the distribution between 
the two samples 

Dissimilarity between the two 
observations 

 

 

 
 

Figure 3. Working of proposed model 

 

 

3. RESULTS AND DISCUSSION 

To determine the model’s accuracy and generalisation potential, evaluation of the model’s 

performance on different test data must be used. Three methods have been used in this work to investigate 

the model. Approach I used the first training dataset, which had unequal class distributions with all 42 

characteristics, to train the model using the default hyperparameter. Using CFS-MHA, Approach II extracted 

10 representative features from the unbalanced training set. Approach III used PASMOTE to oversample the 

training dataset, extracted 15 characteristics by feature selection, and created the assessment model.  

The NSL-KDD test+ dataset was then used to compare the three methods and gauge the model’s 

performance. The effectiveness of all three of these strategies on the minority classes u2r and r2l is seen in 

Table 5. 

 

 

Table 5. Outcomes of methods tried for minority classes in the NSL-KDD exam+ 
Approach # of features  U2r samples R2l samples 

Overall accuracy Accuracy Precision Recall Accuracy Precision Recall 

I 41 70.73 0.00 0.00 0.00 0.001 1.00 0.001 
II 10 71.31 0.18 0.80 0.18 0.08 0.60 0.08 

III 15 78.76 0.42 0.53 0.42 0.83 0.48 0.83 
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The results demonstrate that Approach I performed well on the dataset overall, with an overall 

accuracy of 70.73%, which is pretty high. Nevertheless, the performance is appalling for the minority classes 

(u2r and r2l). In particular, it is unable to accurately identify instances of this class, as seen by its 0% 

accuracy, precision, and recall when it comes to detecting u2r assaults. With respect to R2L assaults, its 

accuracy is somewhat higher (1.00) but its recall is very low (0.001%), indicating that it detects the bulk of 

R2L incidents incorrectly while accurately identifying relatively few. According to method II, the accuracy is 

improved to 71.31% overall by limiting the number of characteristics to 10, which is a little improvement 

over way I. Although there has been some progress, u2r detection levels are still rather low. Similarly, recall 

and accuracy of r2l detection significantly increase, but overall performance remains subpar. The technique 

with the best overall accuracy (78.76%) is technique III, which has 15 characteristics. This represents a 

substantial improvement over the earlier approaches. Compared to earlier methods, U2r detection exhibits a 

discernible improvement in accuracy, precision, and recall. Compared to Approach II, r2l detection exhibits a 

significant gain in accuracy and recall, but at the expense of somewhat lower precision. When it came to 

overall accuracy and advancements in identifying minority classes (U2R and R2L assaults), Approach III 

outperformed the other two. The results were contrasted with state-of-the-art studies in the literature to assess 

the effectiveness of this strategy even further. Table 6 presents the findings. 

 

 

Table 6. Comparing the suggested method with the most recent research 
Author Year Technique Imbalanced approach Classification 

strategy 
Results 

u2r r2l 

Precision Recall Precision Recall 

Douzas  

et al. [17] 

2020 Siam-IDS Adaptive neural network 

approach that uses 
Euclidian distance to 

calculate sample 

similarity 

DNN, CNN 10.11 56.72 57.94 33.25 

Farquad 

and Bose 

[18] 

2021 GAN-based 

Oversampling 

Produced artificial 

samples using Generative 

Adversarial Networks 

Used a three-

layered, cost-

sensitive ANN 

1 94 0 0 

KNN based 

oversampling 

KNN interpolated 

between the minority 

samples that were already 
there. 

2 78 23 10 

Fu et al. 

[31] 

2022 DLNID ADASYN was used for 

oversampling 

Bi-LSTM - 24 - 65.76 

Wu et al. 

[32] 

2022 Enhanced RF K-means combined with 

SMOTE 

Improved RF 

using a 

similarity 
matrix 

26.50 26.50 30.63 30.63 

Yoon and 

Kim [33] 

2023 SMOTE SMOTE was used to 

examine the effect of 
feature reduction. 

RF 83 7 27 28 

Arık and 

Çavdaroğlu 
[34] 

2023 ROGONG-

IDS 

To achieve balance, 

oversampling SMOTE 
and under sampling Near-

Miss were combined. 

XGBoost - 10 - 39 

Kaur and 
Gupta 

2024 Proposed 
approach I 

Absence of feature 
selection and 

oversampling technique 

RF 0 0 1.0 0.001 

Kaur and 
Gupta 

2024 PASMOTE 
(Proposed 

approach III) 

Using decision-boundary 
proximity and changing 

sampling threshold values 

to achieve oversampling 

Cost-conscious 
RF 

53 42 48 83 

 

 

The comparison results demonstrate how much work is still being done in the area of unbalanced 

learning in intrusion detection using the NSL-KDD dataset. Even while several of the examined articles 

report superior overall accuracy, their biases in favour of the majority class are the main reason for their 

success. Douzas et al. [17], Farquad and Bose [18] demonstrate increased recall rates for u2r samples; 

nonetheless, their accuracy rates pale in comparison to the suggested methodology. On the other hand, while 

[33] have greater accuracy rates, their recall level is just 7%, whereas the suggested method’s recall level is 

42%. The literature suggests that adaptive algorithms with cost weight adjustments have also been 

extensively studied for managing imbalances; nevertheless, the suggested method, PASMOTE with cost-

sensitive learning, performs better than the state-of-the-art techniques [18], [32]. 
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The training dataset of UNSW-NB15 was initially oversampled using all the five oversamplers: 

SMOTE, ADASYN, borderline SMOTE, random oversampler, and PASMOTE. RF classifier served as the 

foundational classifier for both training and assessment. K-fold cross validation was carried out, with a value 

of k equal to 10, in order to provide accurate performance estimates and to generalise the model to 

encompass all cases throughout the training phase. Table 7 presents the confusion matrix values calculated 

using the five distinct oversampling techniques. 

The performance metrics for class label worms calculated on these five models are shown in Table 8. 

The findings clearly reveal that PASMOTE has the greatest recall value 0.73 and precision of 0.82 leading to 

an elevated AUC value of 0.86 and a balanced F1-score 0.77. The random oversampler has a good recall but 

a poor accuracy. Although borderline SMOTE has a larger probability of false positives due to its poorer 

accuracy, it performs well in recall, suggesting improved detection of attack episodes. Similar performance is 

shown by ADASYN and SMOTE, indicating a comparable trade-off between recall and accuracy. 

The ROC curve for these models is shown in Figure 4 so that the true positive and false positive 

rates over a range of threshold values can be seen. AUC values that are closer to 0.5 indicate random 

chances, while those that are closer to 1,0 indicate perfect discrimination. As a result, models nearer the top-

left corner of the graph outperform other models. The notion that PASMOTE outperforms other current state-

of-the-art techniques is supported by the roc curve findings. 
 

 

Table 7. UNSW_NB15 dataset’s confusion matrix after balancing utilizing five tried-and-true methods 
 SMOTE ADASYN Borderline SMOTE Random oversampler PASMOTE 

Normal as normal 36968 36966 36961 36993 36993 

Normal as worms 32 34 39 7 7 

Worms as normal 17 17 16 18 12 
Worms as worms 27 27 28 26 32 

 

 

Table 8. Findings using a RF classifier on the UNSW-NB15 test set for the worm’s class 
Oversampling technique Precision Recall F1-score AUC 

SMOTE 0.46 0.61 0.52 0.81 

ADASYN 0.44 0.61 0.51 0.81 

Borderline SMOTE 0.42 0.64 0.50 0.82 
Random oversampler 0.79 0.59 0.68 0.80 

PASMOTE 0.82 0.73 0.77 0.86 

 

 

 
 

Figure 4. ROC curve for five models on UNSW-NB15 test set 
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These five models were subjected to statistical tests to see if the performance differences between 

them are statistically significant or may have happened by accident. The generalisation of these models 

outside of particular datasets is also aided by these tests. The three statistical tests covered in were used to 

evaluate the suggested model with all alternative oversampling techniques. Table 9 presents the test results 

along with their statistics and p-values. 

 

 

Table 9. Findings from statistical tests applied on UNSW-NB15 oversampled dataset 
Compared models Paired t-test Mann – Whitney U test Wilcoxon test signed rank test 

t-statistic p-value p < 0.05 t-statistic p-value p < 0.05 t-statistic p-value p < 0.05 

PASMOTE vs. SMOTE -3.54 0.0004 Yes 6857 0.043 Yes 99 0.0004 Yes 

PASMOTE vs. ADASYN -3.67 0.0002 Yes 6857 0.027 Yes 129 0.0002 Yes 
PASMOTE vs. Borderline 

SMOTE 

-4.54 0.0000 Yes 6856 0.006 Yes 97.5 0.0000 Yes 

PASMOTE vs. Random 
oversampler 

2.44 0.014 Yes 6862 0.479 No 0.0 0.0143 Yes 

 

 

The applied statistical tests demonstrate the PASMOTE model’s resilience to both skewed and 

normal distributions. Since all three tests and models have p-values less than 0.05, the chosen significance 

level for rejecting the null hypothesis, all three tests have substantially refuted the null hypothesis, which held 

that there is no statistical significance between these models. The lone exception is the Mann Whitney test, 

where less statistical significance is suggested in these models across independent samples when the p-value 

is greater than 0.05 between the proposed model and random over sampler. 

 

 

4 CONCLUSION AND FUTURE SCOPE 

The objective of this study is to increase the security of computer networks against the ever-

increasing threat of cyberattacks by advancing IDS via the proposal of an adaptive oversampling technique. 

These versions provide a viable way to overcome unbalanced data difficulties and improve decision-making 

processes in several areas by including decision limits and categorisation information into the sampling 

process. 

The suggested method showed an increase in uncommon class identification performance by using 

the boundary proximity idea in oversampling. This does a great job of capturing the nuances and complexity 

that are specific to the minority class, particularly when it comes to the decision border. The experiment 

investigated several threshold settings for the resampling procedure in order to optimise hyperparameters. 

With each cycle of oversampling, this hybrid algorithm exhibits flexibility by dynamically adjusting and 

choosing new instances for sampling. It is noteworthy that it places more emphasis on creating synthetic 

samples in areas nearer the decision border, reducing the possibility of overgeneralisation and improving the 

differentiation between classes. An intrinsic benefit of early halting and minimising overfitting and 

underfitting is provided by the use of pruned decision trees for boundary generation. Unlike SMOTE, the 

method does not choose sample points at random from the feature space, which lowers the possibility of 

adding noise to the samples that are chosen. The results of statistical testing highlight how resilient and 

generalisable this technique is over a wide range of areas. 

Even with the algorithm’s satisfactory performance, there is still room for improvement in terms of 

accurately detecting these unusual groups. It may be possible to improve the identification of these minority 

classes by fine-tuning or experimenting with other modelling strategies. It is possible to investigate the 

amount of realistic data generation in further research. Further research in the domain of decision-based 

SMOTE variants is anticipated to drive advancements in machine learning breakthroughs and result in more 

accurate and dependable prediction models as the area of unbalanced data sampling continues to expand. 

Through the use of existing tools and resources, practitioners may optimise the potential of decision-based 

SMOTE variants to enhance unbalanced data sampling and enhance machine learning model performance in 

various applications. 
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