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 During the past years, the convergence of machine learning (ML) 

technologies with renewable energy sectors has become a significant key 

area of innovation as a key area of innovation, enhancing the efficiency and 
predictability of sustainable energy sources. ML algorithms, adept at 

handling complex data, have become essential in forecasting energy outputs 

from variable sources like solar and wind. This integration has led to the 

development of smarter, more adaptive grid systems, capable of efficiently 
managing the variability of renewable energy sources. This review paper 

focuses on several key areas: firstly, it provides a summary of related work, 

specifically focusing on ML in the renewable energy field. Secondly, it 

delves into ML models and evaluation metrics used for solar and wind 
energy forecasting. Thirdly, it analyzes 21 studies published from 2019 to 

2023, primarily centered on solar energy (60%) and wind energy (40%), 

with an emphasis on various forecasting horizons, highlighting the results of 

the ML algorithms used and the performance metrics to evaluate their 
effectiveness. Finally, it identifies gaps and opportunities in this field. The 

state-of-the-art review and its findings can offer a solid foundation for future 

research initiatives. 
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1. INTRODUCTION 

The evolution of electromobility, along with developments in agriculture and farming, 

telecommunications, and other domains, has led to an increased demand for electricity from renewable 

energy sources [1]. This growing need is a reflection of the global transformation towards cleaner, more 

sustainable energy forms. In recent years, renewable energy research and development has grown 

significantly due to the demand for sustainable energy solutions [2]. 

However, the adoption of renewable energy is very challenging, primarily due to the variability and 

unpredictability associated with weather conditions. Wind energy, for example, is highly dependent on 

weather patterns, which can be challenging to forecast with accuracy [3]. Also, the production of solar energy 

is affected by weather patterns such as seasonal changes in sunlight, cloud cover, and others [4]. These 

challenges present obstacles to integrating the power grid with renewable energy systems. 

To meet the instability caused by weather patterns of renewable energy sources, it becomes essential 

for photovoltaic (PV) systems and wind farms to provide advanced electricity generation forecasts [5]. 

Traditional forecasting methods, which employed for decades, depend on statistical and physical approaches [6], 

https://creativecommons.org/licenses/by-sa/4.0/
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often fail to handle the complex and nonlinear data of renewable energy characteristics [7]. In the last few 

years, machine learning (ML) has emerged as an effective solution in the renewable energy industry. ML 

models can handle and learn from vast quantities of data, including time series, meteorological, and 

geographical data. This makes ML a suitable solution for addressing the challenges in renewable energy data 

analysis, basically enhancing the efficiency and integration of renewable energy systems. Numerous studies 

have reviewed the literature on ML models in the renewable energy sector. Table 1 (in Appendix) [8]-[18] 

summarizes selected related works spanning from 2019 to 2023. 

The novelty of this work lies in its focused review of recent advances in ML methods for forecasting 

solar and wind power, offering a perspective on the integration of artificial intelligence in enhancing the 

predictability and efficiency of RE systems. By extracting deep information from 21 carefully selected 

papers, this study provides an analysis of the performance, challenges, and opportunities of various ML 

models in the context of renewable energy forecasting. Additionally, the examination of forecasting horizons 

highlights the adaptability and effectiveness of these models across various temporal scales. 

The structure of this paper is as follows: section 2 explores the materials and methods. In this 

section, we provide in-depth explanations of the ML algorithms, the metrics used to evaluate forecasting 

performance, and the different forecasting horizons employed in the reviewed studies. We also outline the 

methodology used for selecting relevant research articles for the literature review. In section 3 is dedicated to 

the discussion of the results. 

 

 

2. MATERIALS AND METHODS 

2.1.  Machine learning 

ML, a branch of artificial intelligence, involves the use of algorithms to uncover hidden patterns 

within data. It was first defined in 1959 by Arthur Samuel as the “field of study that enables computers to 

learn without explicit programming” [19]. ML algorithms are typically categorized into three main types: 

supervised learning, unsupervised learning, and semi-supervised learning. Figure 1 illustrates the different 

categories of ML algorithms. 

 

 

 
 

Figure 1. Categories of ML algorithms 

 

 

In this review, we focus on supervised learning, specifically on regression problems, as shown in 

Table 2 (in Appendix) [21]-[37]. This focus is relevant in the context of renewable energy, such as solar and 

wind power, where ML models are used to forecast energy output. Regression models are applied to predict 

continuous values based on historical and environmental data, an essential step in optimizing the efficiency 

of renewable energy systems. 

 

2.2.  Machine learning algorithms used in solar and wind energy 

Previously, we identified that predicting power output in renewable energy systems fundamentally 

constitutes a regression problem. Table 2 (in Appendix) presents common models used in selected studies. 
 

2.3.  Measurements of forecasting performance 

Measurements of performance refers to a set of statistical tools and methods used to evaluate and 

quantify the effectiveness of a model in representing real-world phenomena [38]. As previously mentioned, 

forecasting solar and wind energy falls under the category of supervised learning, particularly focusing on 

regression problems. Therefore, our focus will be on evaluating performance metrics specific to supervised 

learning methods. Table 3 presents common performance metrics used in selected studies. 
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Table 3. Common performance metrics used in selected studies 
Metric Formula Components 
MAE 1

𝑁
∑ ∣ 𝑦𝑖 − 𝑦�̂� ∣

𝑁

𝑖=1

  

 

𝑁 is the number of observations. 

𝑦𝑖 is the actual value. 

𝑦�̂� is the predicted value. 

�̅�𝑖 is the mean of the actual values. 
MSE 1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

  

RMSE 

√
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)2

𝑁

𝑖=1

  

Mean bias error (MBE) 1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

𝑁

𝑖=1

 

Mean absolute percentage 

error (MAPE) 
100

𝑁
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
|

𝑁

𝑖=1

 

R2-score (coefficient of 

determination) 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2𝑁
𝑖=1

 

Normalized mean absolute 

error (nMAE) 
𝑀𝐴𝐸

�̅�
 

Normalized root means 

square error (nRMSE) 
𝑅𝑀𝑆𝐸

�̅�
 

Normalized mean bias 

error (nMBE) 
𝑀𝐵𝐸

�̅�
 

Normalized mean absolute 

percentage error (nMAPE) 
𝑀𝐴𝑃𝐸

�̅�
 

 

 

2.4.  Forecasting horizons 

Forecasting horizons refer to the time periods over which predictions are made, ranging from a few 

minutes to several months or even years. In the field of renewable energy, particularly for solar and wind 

power, the length of the forecasting horizon plays a crucial role in determining the accuracy and effectiveness 

of the predictions [17]. Forecasting horizons are typically classified into different categories based on the 

prediction duration, such as short-term, medium-term, and long-term forecasting. Table 4 provides an 

overview of forecasting horizons used in renewable energy prediction. 
 

 

Table 4. Forecasting horizons in renewable energy forecasting [17] 
Type Description 

Short-term Few minutes or hours up to 72 hours ahead 
Medium-term From around 72 hours to a few weeks ahead 

Long-term From several weeks to several months or even years ahead 
 

 

2.5.  Method 

The process followed to find pertinent research articles involves four stages: choosing keywords and 

selecting a database, setting criteria for filtering the search, selecting research articles, and conducting a 

manual screening. Figure 2 illustrates the proposed approach. 
 

 

 
 

Figure 2. Methodology process 
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2.5.1.  Choosing keywords and selecting a database 

The selection of the Scopus database for sourcing articles was based on its reputation for delivering 

data of superior quality. Scopus provides a comprehensive collection of diverse publications, encompassing 

article and conference papers, books, and various websites across key disciplines [39]. Numerous query 

strings were employed to identify publications relevant to our topic, including terms like “machine learning”, 

“forecasting”, “prediction”, and others related to renewable energy such as “renewable energy”, “solar 

energy”, “wind energy”, “power prediction” and others. Using these targeted keywords, we collected a large 

number of papers. 

 

2.5.2. Setting criteria for filtering the search 

In the process of refining our search for relevant research articles, specific criteria were established 

to filter the results, ensuring both relevance and quality. Firstly, the document type was restricted to journal 

articles, a choice made to focus on peer-reviewed academic research. Regarding the publication year, we 

narrowed our scope to articles published between 2019 and 2023. This time frame was selected to capture the 

most recent developments and trends, ensuring that the analysis is based on up-to-date information and 

modern research findings. Lastly, language was a critical filter, we limited our search to articles written 

entirely in English. These criteria were essential in simplifying the search and obtaining the most relevant 

and high-quality papers. 

 

2.5.3. Selecting research articles 

For our analysis, we carefully chose articles that were specifically focused on solar and wind energy, 

with an additional emphasis on their relationship with ML. This precise criterion was crucial to ensure that 

our review remained focused on the intersection of RE and technological advancements in ML. Table 5 

presents the articles selected for this study. 

 

 

Table 5. Papers selected for review 
Year Ref Sources of energy 

2019 [40]-[44] Solar 

[44], [45] Wind 

2020 [46], [47] Solar 

[48], [49] Wind 

2021 [50], [51] Solar 

[52], [53] Wind 

2022 [54], [55] Solar 

[56], [57] Wind 

2023 [58], [59] Solar 

[60] Wind 

 

 

2.5.4. Manual screening 

Continuing with our research process, the upcoming section will display in-depth results from our 

manual screening. This part of our study is dedicated to closely examining the articles we initially chose, 

specifically concentrating on the results of their relevance to solar and wind energy and their connection  

with ML. 

 

 

3. RESULTS AND DISCUSSION 

In this section, we will detail the studies chosen from the earlier section. We start by describing the 

comparison criteria outlined in Tables 5 and 6 (in Appendix): 

 Models: the forecasting models used in each study. 

 Dataset: the data utilized for training, testing, and evaluating each model. 

 Features: the input variables used in the model training process.  

 Targets: the predicted outcomes from the models.  

 Forecasting horizon: the time span the predictions cover.  

 Metrics: the evaluation techniques employed to measure and improve the model’s effectiveness.  

 Best model: the model that achieved the highest performance in the test set. 

V1: global horizontal irradiation, V2: temperature, V3: wind speed, V4: relative humidity,  

V5: atmospheric pressure, V6: diffuse horizontal irradiance, V7: timestamp, V8: precipitation, V9: wind 

direction, V10: PV surface temperature, V11: radiation, V12: beam normal irradiance, V13: clear-sky global 

horizontal, V14: solar power, V15: vapor pressure, V16: rainfall type, V17: sky type, V18: elevation,  
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V19: weekly index, V20: dust accumulation, V21: cloud (and others related to cloud cover), V22: PV power 

output, V23: concentrated solar radiation, V24: non-concentrated solar radiation, V25: daily average wind 

speed, V26: daily average sunshine duration, V27: daily average temperature, V28: Azimuth,  

V29: declination angle, V30: maximum power of the cell, V31: Ultraviolet, V32: dew point temperature. 

The results presented in Table 6 demonstrate the diversity of ML models used in these studies  

[40]-[44], [46], [47], [50], [51], [54], [55], [58], [59]. This diversity reflects the varied datasets employed in 

each study, indicating that no universal model is suitable for all cases. In the context of identifying the best 

model for each study, we found that decision tree (DT), particularly random forest (RF), demonstrated better 

accuracy, with 42.9%, followed by artificial neural network (ANN) and K-nearest neighbor (K-NN) with 

14.3% each, and support vector regression (SVR), extreme learning machine (ELM), LightGBM, and Ridge 

with 7.1% each. These results suggest that RF, ANN, and K-NN are more suitable for handling complex data 

and uncovering hidden weather patterns in datasets. We conclude that future work should focus on combining 

these models into a hybrid model, which could be important for achieving better accuracy. Figure 3 presents the 

distribution of the top-performing models in selected studies. 

In the realm of features used in each study, there is significant variation, but some are commonly 

selected. Global horizontal irradiation and temperature were used in 12.1% of the studies, wind speed and 

relative humidity in 7.6% each, and Atmospheric pressure in 6.1%. Diffuse horizontal irradiance, timestamp, 

and precipitation appeared in 4.5% of the studies each, while wind direction, PV surface temperature, and 

radiation were included in 3.0% each. The other features were used in 1.5% of the studies each. We conclude 

that future work should prioritize the refinement of features through the use of feature selection techniques. 

Figure 4 presents the distribution of the features in selected studies. 

 

 

  
 

Figure 3. Distribution of the top-performing models in 

selected solar energy studies 

 

Figure 4. Distribution of features in selected solar 

energy studies 
 

 

Identifying the forecasting horizon is an important step in renewable energy prediction.  

Studies [40]-[44], [46], [47], [51], [54], [55], [58], [59] focus on short-term prediction, while only study [50] 

addresses medium-term and long-term forecasting. These findings highlight a gap in medium-term and long-

term forecasting, suggesting that future work should focus on these areas. Figure 5 presents the distribution 

of forecasting horizons in selected studies. 
 

 

 
 

Figure 5. Distribution of forecasting horizons in selected solar energy studies 
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V1: wind speed, V2: wind direction, V3: timestamp, V4: wind power, V5: Atmospheric pressure,  

V6: temperature, V7: average of wind speed, V8: standard deviation of wind speed, V9: wind components, 

V10: wind norm, V11: longitude, V12: latitude, V13: height, V14: roll, V15: pitch, V16: yaw, V17: satellite 

count, V18: towing speed, V19: control line length, V20: maneuver type, V21: number of satellites,  

V22: theoretical power, V23: localization of wind turbines, V24: relative humidity, V25: Metmast weather 

measurements, V26: windfarm curtailment, V27: aggregate power, V28: number of turbines online,  

V29: turbine power, V30: turbine weather, V31: blade angle, V32: turbine curtailment. 

The results presented in Table 7 in Appendix demonstrate the diversity of ML models used for wind 

energy forecasting in these studies [44], [45], [48], [49], [52], [53], [56], [57], [60]. Similarly, to solar energy 

forecasting studies, this diversity demonstrates that no universal model is suitable for all cases. The choice of 

the most appropriate model depends on the specific application and the data from the local climatic zone. 

Among the best models identified in each study, DT, including RF, GBM, and extreme gradient boosting 

(XGBoost), are the most frequently used, accounting for 66.7% of cases, followed by ANN, GBR, SVR, and 

voting regressor (VR), each at 8.3%. Figure 6 presents the distribution of the top-performing models in 

selected studies. 

The diversity of datasets employed in each study highlights the variety of features used across the 

studies, although some are commonly selected in wind energy forecasting. Wind speed was employed in 

12.5% of the studies, wind direction in 8.3%, wind power and timestamp in 6.3% each, and atmospheric 

pressure, temperature, average wind speed, and the standard deviation of wind speed each in 4.2%. The other 

features were used in 2.1% of the studies each. Figure 7 presents the distribution of features. 

 

 

  
 

Figure 6. Distribution of the top-performing models 

in selected wind energy studies 

 

Figure 7. Distribution of features in selected wind 

energy studies 

 

 

Similar to solar energy forecasting, determining forecasting horizons in wind energy is a crucial 

step. Studies [44], [49], [52], [53], [56], [57], [60] focus on short-term forecasting horizon, while only studies 

[44], [48] address long-term forecasting horizon. This also highlights a similar gap in wind energy 

forecasting for medium-term and long-term horizons, suggesting that future work should concentrate on these 

areas. Figure 8 presents the distribution of forecasting horizons in selected studies. 
 
 

 
 

Figure 8. Distribution of forecasting horizons in selected wind energy studies 
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Both solar and wind energy forecasting studies employ a variety of evaluation metrics, including 

MAE, root mean squared error (RMSE), R2-score, MSE, MAPE, MBE, MRE, FS, t-stat, nRMSE, nMAE, 

and nMBE to assess model performance. This diversity in metrics underscores that no single evaluation 

metric is universally applicable to all models. However, some metrics are more commonly selected than 

others: MAE was employed in 26.6% of studies, followed by RMSE in 24.6%, R2-score in 18.5%, and MSE 

in 12.3%. Less frequently used metrics include nRMSE at 4.6%, MAPE and nMAE at 3.1% each, and MBE, 

MRE, nMBE, FS, and t-stat, each at 1.5%. Figure 9 presents the distribution of evaluation metrics in selected 

studies. 

 

 

 
 

Figure 9. Distribution of evaluation metrics in selected solar and wind energy studies 

 

 

4. CONLUSION 

This paper presents a comprehensive systematic literature review on the use of ML models for 

forecasting renewable energy outputs, particularly focusing on solar and wind energy. An analysis of 21 

studies published from 2019 to 2023 demonstrated that the models employed in these research efforts can 

manage the complexities and unpredictability characteristic of renewable energy resources. It’s noted that DT 

were the most used method in forecasting renewable energy outputs. Additionally, for solar energy, the 

commonly used features are global horizontal irradiation, temperature, wind speed, relative humidity, 

atmospheric pressure, diffuse horizontal irradiance, timestamp, precipitation, wind direction, PV surface 

temperature, and radiation. For wind energy, the commonly used features include wind speed, wind direction, 

wind power, timestamp, atmospheric pressure, temperature, average wind speed, and the standard deviation 

of wind speed. Studies in both the solar and wind energy fields focus on short-term forecasting horizons. 

Finally, MAE, RMSE, R2-score, and MSE are the evaluation metrics most commonly used compared to 

other metrics. 

Building on the findings of this literature review, future work should focus on the utilization of 

hybrid models that incorporate DT, aiming to leverage the strengths of various modeling techniques to 

enhance forecasting accuracy. Additionally, there is a critical need for the development and application of 

advanced feature selection techniques to identify the most adequate features for specific renewable energy 

forecasting contexts. As demonstrated in this study, no single model excels in all scenarios. Moreover, while 

short-term forecasting has been the primary focus, expanding research to include medium-term and long-term 

forecasting horizons could provide significant insights and benefits. 
 

 

APPENDIX 
 

 

Table 1. Literature reviews selected on ML models in renewable energy 
Ref Year Description 

[8] 2019 The paper presents a review of ML models applied in energy systems, focusing on studies conducted between 2015 

and 2018. It classifies the models into 10 categories: DT, ensemble methods, support vector machine (SVM), 

hybrid models, ANN, deep learning (DL), ELM, multi-layer perceptron (MLP), adaptive neuro-fuzzy inference 

system (ANFIS), and wavelet neural network (WNN). The models are evaluated based on two key metrics: RMSE 

and correlation coefficient. The paper concludes that hybrid ML models offer the best performance. 
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Table 1. Literature reviews selected on ML models in renewable energy (Continued) 
Ref Year Description 

[9] 2019 The paper presents a literature review of short-term wind power forecasting, covering studies from 2017 to 2019. It 

finds that hybrid ML models, particularly those using ANN, are commonly employed. The evaluation of these 

models typically relies on MAE and root MSE. Frequently utilized climatic variables in these models include wind 

speed, ambient temperature, atmospheric pressure, and relative humidity. 

[10] 2020 The paper presents a survey focused on the application of ML models in predicting renewable energy outputs, 

covering studies from 2017 to 2019. It concludes that there is an increase in the use of hybrid ML models in solar 

and wind energy forecasting. Additionally, the decomposition method is a commonly used data pre-processing 

technique in these models. Finally, SVM and ELM often employ metaheuristics for parameter selection. 

[11] 2020 The paper presents a review of recent applications of ML and DL techniques for PV output power forecasting, 

covering studies from 2010 to 2019. It concludes that ML models are used more frequently than DL models. 

Additionally, most research focuses on forecasting power at a single location. Short-term and long-term forecasting 

horizons are the most investigated. Finally, hybrid models are considered the optimal choice for improving 

forecasting accuracy. 

[12] 2021 The paper presents a state of art on ML in various fields of solar energy. These applications include forecasting 

solar irradiance, and power production, predicting electricity prices, forecasting energy demand and others, 

covering studies from 2018 to 2021. It concludes for PV production forecasting is the most researched area with a 

focus on short-term forecasts. 

[13] 2021 The paper presents a review of the use of ML models for predicting global solar radiation by analyzing 232 studies 

focused on input parameters, feature selection, and model development. It concludes that data from surface 

observations provide the highest accuracy. Additionally, filter methods are computationally efficient but less 

accurate, while wrapper methods achieve optimal feature subsets with high computational costs, and embedded 

methods balance accuracy and computational efficiency. Also, ML models are classified into seven categories, 

including generalized, ensemble-based, cluster-based, decomposition-based, decomposition-cluster-based, 

transition-based, and post-processing-based models. 

[14] 2021 The paper presents a systematic review of ML models used for wind and solar power forecasting, focusing on 

ANN, recurrent neural networks (RNN), SVM, and ELM, covering studies from 2012 to 2020. It concludes that 

statistical methods, like ARIMA, are favored for short to medium-term forecasts due to their simplicity and 

effectiveness. Additionally, ANN is effective for nonlinear systems, RNN excels at capturing information over 

time but can suffer from gradient vanishing problems, SVM offers reliable, generalized models with lower 

mathematical complexity, but still face overfitting and require careful kernel selection and parameter optimization, 

and ELM provides fast convergence but is only suitable for simple models. Finally, hybrid ML algorithms are the 

optimal choice to enhance forecasting accuracy. 

[15] 2022 The paper presents a review of methods in wind power prediction, covering studies from 2016 to 2021. It 

concludes that wind power prediction methods can be categorized into three classes based on prediction horizons: 

ultra-short-term, short-term, and long-term. Additionally, time series methods are often less effective for predicting 

wind power due to their limitations in capturing the complexity and nonlinearity of meteorological patterns. In 

opposition, DL models demonstrate superior performance by effectively managing these complexities, extracting 

critical features, and achieving high accuracy. Finally, the growing trend of hybrid models, which have improved 

the accuracy of predictions. 

[16] 2022 The paper presents a review of randomization-based ML models in renewable energy prediction. These models are 

recognized for their ability to balance predictive accuracy with computational efficiency. The review highlights the 

effective use of randomization-based ML algorithms across different renewable energy sources, such as solar, 

wind, and hydropower. Furthermore, these models consistently outperformed conventional ML methods in 

predictive accuracy. Lastly, multi-layered randomization-based models exhibited superior performance compared 

to single-layered models. 

[17] 2023 The paper presents a review of current ML approaches for solar PV power forecasting, with a focus on short-term 

predictions, examining studies from 2010 to 2020. It concludes that solar PV power output is significantly affected 

by weather factors, particularly solar irradiance and ambient temperature. Solar PV power forecasting is further 

classified into different time horizons: very short-term, short-term, medium-term, and long-term. Among ML 

models with default settings, gradient boost achieved the best performance, while RF with optimized 

hyperparameters was identified as the top performer. Finally, ML models trained on historical PV power data 

combined with predicted weather variables outperformed baseline methods. 

[18] 2023 The paper presents a review of ML and DL techniques for wind power forecasting, analyzing studies from 2010 to 

2023. It explores various strategies for regional wind power prediction, including the accumulation method, 

upscaling method, and spatial resource matching method. The review concludes that the upscaling method is 

particularly effective in minimizing data requirements and reducing computational complexity. Furthermore, DL 

models often outperform traditional ML techniques. Finally, hybrid models, especially those combining AdaBoost 

with RF or ELM with particle swarm optimization (PSO), demonstrate superior accuracy compared to standalone 

models. 

 

 

Table 2. Common models used in selected studies 
Model Short description 

Linear regression (LR) [20] A statistical method used to establish a linear relationship between a dependent variable and one 

independent variable. By employing a linear equation, this technique enables the prediction of the 

dependent variable’s value based on the independent variable. 
Multiple linear regression 

(MLR) [20] 
Extends LR to include two or more independent variables. 

Lasso regression (Lasso) [21] A type of LR that includes regularization. The regularization term added helps in shrinkage and 

variable selection. 
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Table 2. Common models used in selected studies (Continued) 
Model Short description 

Ridge regression (Ridge) 

[22] 
Similar to LR but includes a regularization term that adds a penalty to the size of coefficients to 

reduce model complexity and prevent overfitting. 
SVR [23]  A type of SVM [24] used for regression tasks. It predicts continuous values by determining the best 

hyperplane that has the height number of points within a predefined margin of tolerance, rather than 

classifying data into categories. 
DT [25] A method that splits data into branches at decision nodes, leading to possible outcomes or 

decisions. 
RF [26], [27] A method that builds multiple DTs and combines them to achieve a more accurate and stable 

prediction. 
KNN [28] A non-parametric technique employed for both classification and regression tasks, which predict 

the value of a point at the k nearest points. 
Gradient boosting machine 

(GBM) [29] 
An ensemble methods technique that sequentially constructs models, with each new one focusing 

on correcting errors from the previous ones. It merges several weak predictors to form a more 

powerful model. 
Adaptive boosting 

(AdaBoost) [30] 
An ensemble ML technique constructs a strong predictive model by iteratively combining multiple 

weak learners, specifically tuning the weights of instances based on their previous prediction errors. 
XGBoost [31] A scalable and accurate implementation of GBM, known for its performance and speed in ML 

competitions. 
Category Boosting 

(CatBoost) [32] 
An algorithm based on GBM over DTs. It’s known for its effectiveness in handling categorical data 

directly, without the need for extensive pre-processing. give a minimal short description. 
Gaussian process regression 

(GPR) [33] 
A non-parametric kernel-based probabilistic model based on Gaussian Processes and is used for 

predicting continuous output variables. 
Light gradient boosting 

machine (LightGBM) [34] 
An implementation of the GBM framework, it’s known for its speed and performance, especially 

with large datasets and on limited computing resources.  
ANN [35] A ML model composed of interconnected nodes or neurons, mimicking the human brain to model 

complex patterns and solve prediction problems. 
Multilayer perceptron (MLP) 

[36] 
A type of ANN commonly used in ML for both classification and regression tasks. It is composed 

of an input layer, one or more hidden layers, and an output layer. In an MLP, an activation function 

is applied to the weighted sum of the inputs, enabling the model to learn and make predictions. 
ELM [37] A type of ANN used in ML for classification, regression, and feature selection tasks. Similar to 

MLP, ELM assigns random input weights to the hidden layer, which are then kept fixed throughout 

the training process. This approach allows ELM to efficiently handle a variety of predictive tasks 

with faster training times compared to traditional neural networks. 
 
 

Table 6. Results of ML models in solar energy forecasting 

Ref 
Forecasting 

horizon 
Models Dataset Features Targets Metrics 

Best 

model  

[40] Short-term ANN, RF, 

scaled 

persistence 

PROMES laboratory 

located in the south of 

France at Odeillo. 

V1, V6, V12 Global 

horizontal 

irradiation, 

Beam 

normal 

irradiance, 

Diffuse 

horizontal 

irradiance 

MAE, 

RMSE, 

nRMSE, 

nMAE 

RF 

[41] Short-term 68 ML models 

(LR, SVR, 

LASSO, 

XGBoost, RF, 

and GBM) 

National solar radiation 

database (NSRDB) 

V1, V13 Global 

horizontal 

irradiation 

nRMSE, 

nMBE, FS 

(Forecast 

Skill) 

RF 

[42] Short-term LR, SVR, 

ANN, DT, k-

NN, AdaBoost, 

RF 

Yeongam PV power plant 

in South Korea and Korea 

meteorological 

administration (KMA) 

V2, V3, V4, 

V5, V7, V9, 

V11, V14, 

V15, V16, 

V17, V18, 

V19 

Solar power MSE, 

RMSE, R2-

score 

RF 

[43] Short-term LR, GPR, 

ANN, M5P 

tree 

PV system at Qatar 

University 

V1, V2, V3, 

V4, V10, 

V20 

PV power 

output 

MAE, 

MSE, 

RMSE, R2-

score 

ANN 

[44] Short-term RF, GBM, 

XGBoot 

Global ensemble forecast 

system (GEFS), provided 

by the National Oceanic 

and Atmospheric 

Administration (NOAA) 

V2, V4, V5, 

V8, V11, 

V21 

Solar power MAE RF 

[46] Short-term SVR, RF, LR, 

MLP 

A 1.22 MW PV system 

installed at the University 

of Queensland (UQ), 

Brisbane, Australia 

V7, V22 PV power 

output 

MAE, 

MRE 

RF 
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Table 6. Results of ML models in solar energy forecasting (Continued) 

Ref 
Forecasting 

horizon 
Models Dataset Features Targets Metrics 

Best 

model  

[47] Short-term SVR, ANN, K-

NN 

Experimental rig by the 

authors 

V7, V10, 

V23, V24 

PV power 

output 

MBE, 

RMSE, R2-

score, t-

statistics (t-

stat) 

SVR, 

k-NN 

[50] Medium-

term, long-

term 

LR, DT, SVR, 

RF, MLP, 

polynomial 

regression 

Historical weather data 

and actual PV power 

output from the desert 

knowledge Australia 

Centre 

V1, V2, V4, 

V6, V8 

PV power 

output 

MAE, 

MSE, R2-

score 

RF 

[51] Short-term ELM, ANN Karaman province 

obtained from Turkey 

General Directorate of 

State 

V25, V26, 

V27 

Solar 

radiation 

MSE, 

RMSE, R2-

score 

ELM 

[54] Short-term 24 ML models 

(LR, Lasso, 

Ridge, SVR, 

KNN, RF, 

GBM, 

XGBoost, 

LightGBM, 

and others) 

Official measurements of 

16 ground-mounted PV 

plants operated by MVM 

Green Generation Ltd in 

Hungary 

V1, V2, V3, 

V28, V29 

PV power 

output 

RMSE Ridge 

[55] Short-term k-NN, MLR, 

DT 

Meteorological data from 

King Abdullah City for 

Atomic and Renewable 

Energy (KACARE) 

V1, V2, V3, 

V30 

PV power 

output 

RMSE, 

MAE, 

nRMSE, 

R2-score 

k-NN 

[58] Short-term XGBoost, 

LightGBM, 

CatBoost 

Meteorological data from 

EDP Open Data, collected 

from a weather station in 

Faro, Portugal 

V1, V2, V5, 

V6, V8, V9, 

V31 

PV power 

output 

MSE, 

RMSE, 

MAE, R2-

score 

LightG

BM 

[59] Short-term MLR, ANN Experimental set-up of 

PV panels 

V1, V2, V3, 

V4, V5, V32 

PV Power 

output 

MAE, 

MSE, 

RMSE, R2-

score 

ANN 

 

 

Table 7. Results of ML models in wind energy forecasting 

Ref 
Forecasting 

Horizon 
Models Dataset Features Targets Metrics 

Best 

model  

[44] Short-term RF, GBM, 

XGBoost 

Numerical weather 

predictions (NWP), 

provided by European 

Centre for medium-

range weather forecasts 

(ECMWF) 

V5, V6, V9 (at surface 

level and 100 m), V10 (at 

surface level and 100 m) 

Wind 

power 

MAE RF, 

XGBoost 

[45] Long-term LASSO, 

KNN, 

XGBoost, 

RF, SVR 

Five years of hourly 

wind speed observation 

values in Nigde, Cesme, 

Mamak, Bozcaada and 

Silivri in Turkey 

V7, V8 Wind 

power 

RMSE, 

MAE, 

R2-

score 

RF, SVR 

(using 

only 

daily 

wind 

speed) 

[48] Long-term DT, RF, 

AdaBoost, 

XGBoost, 

GBM 

Ghadamgah (36.104◦ 

north and 59.066◦ 

east longitude) and Khaf 

(34.567◦ north and 

60.148◦ 

east longitude) wind 

farms, Iran 

Case 1: V7, V8 (measured 

at a height of 40 meters, 

10-min sampling time) 

Case 2: V1 (measured at a 

height of 40 meters, with 

1-h, 12-h, and 24-h 

sampling times) 

Case 3: V1 (measured at 

heights of 30 meters and 

10 meters, extrapolated to 

40 meters) 

Wind 

power 

MAE, 

RMSE, 

R2-

score 

XGBoost 

[49] Short-term VR, GBM, 

DT, linear, 

Ridge, 

Lasso, 

Elastic Net, 

AdaBoost 

Experimentally-collected 

numerical and 

categorical data from 

multiple sensors on a 

kite system designed at 

Kyushu University 

V3, V11, V12, V13, V14, 

V15, V16, V17, V18, V19, 

V20, V21 

Tether 

force 

MSE, 

R2-

score 

VR 
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Table 7. Results of ML models in wind energy forecasting (Continued) 

Ref 
Forecasting 

Horizon 
Models Dataset Features Targets Metrics 

Best 

model  

[52] Short-term RF, K-NN, 

GBM, 

DTR, extra 

tree 

regression 

Yalova wind farm in 

Turkey 

V1, V2, V3, V4, V22 Wind 

power 

MAE, 

MAPE, 

RMSE, 

MSE, 

R2-

score 

GBM 

[53] Short-term RF, ANN, 

XGBoost 

Polish transmission 

system and energy 

regulatory office 

V1, V3, V4, V23 Wind 

power 

MAPE, 

RMSE,  

XGBoost 

(for 

hourly 

predictio

ns) 

ANN (for  

daily 

predictio

n) 

[56] Short-term GPR, SVR, 

RF, 

XGBoost 

Senvion MM82 wind 

turbines in France, Wind 

turbine in Turkey, and 

Kaggle dataset 

V1, V2, V4 Wind 

power 

RMSE, 

MAE, 

R2-

score 

GPR, RF, 

XGBoost 

[57] Short-term LR, SVR, 

LSTM, RF, 

GBM, 

XGBoost, 

Bayesian 

Ridge 

Different wind farms and 

Darksky 

V1, V2, V5, V6, V24, 

V25, V26, V27, V28, V29, 

V30, V31, V32 

Wind 

power 

MAE, 

RMSE 

XGBoost 

[60] Short-term GBM Wind farm located on 

Jeju Island, South Korea 

V1, V2, V3 Wind 

power 

MAE, 

RMSE, 

nMAE 

GBM 
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