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 Finding frequent itemsets is an essential researched technique and a 

challenging task of data mining. Traditional approaches for distributed 

frequent itemsets require massive communication overhead among different 

distributed datasets. In this paper, we adopt a new strategy for optimizing the 

time of communications/synchronizations from large datasets and, we 

present a novel algorithm for discovering frequent itemsets in different 

distributed datasets on the slave sites called finding efficient distributed 

frequent itemsets (FEDFI). The proposed algorithm is capable of generating 

the important frequent itemsets by applying an efficient technique for 

pruning the candidate itemsets. The experimental results confirm that our 

algorithm FEDFI performs better than Apriori and candidate distribution 

(CD) algorithms in terms of communication and computation costs. 
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1. INTRODUCTION 

Data mining or KDD (knowledge discovery in databases) [1] is a discipline primarily concerned 

with the formulation, analysis, and implementation of processes that convert data into actionable knowledge 

[2]. Its core objective is to extract meaningful and interpretable information from databases [3]. The data 

utilized in data mining often presents challenges due to its large volume (numerous records) and high 

dimensionality (many attributes). As a result, there has been a growing focus on distributed data mining, 

which operates through distributed data analysis [4]. Distributed data mining employs a range of fast parallel 

and distributed techniques to uncover implicit and valuable knowledge [5], [6]. One of the most prominent 

techniques is association rule mining, which aims to identify significant relationships between attributes 

within the database. The generation of frequent itemsets is a fundamental and essential step in solving the 

association rule mining problem. 

The Apriori algorithm, introduced by Agrawal [7], is a foundational and pioneering algorithm for 

mining frequent itemsets in transactional databases. The general concept of this algorithm involves iteratively 

scanning through itemsets level by level. At each level k, a set of candidate itemsets of size k is generated by 

joining the frequent itemsets identified in the previous iteration. This set of candidate itemsets is then pruned 

based on a statistical metric called support. Several variations of the Apriori algorithm are discussed in [8], [9] 

to mitigate its limitation of multiple scans over the entire transaction database, also the weaknesses of the 

original Apriori algorithm are cited in [10], highlighting its inefficiency in terms of time and space to search 

for frequent itemsets. 
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Many distributed algorithms have been developed for frequent itemset mining in distributed 

environments, designed to provide substantial computational power. These include algorithms such as CD 

(candidate distribution) [11], DMA (distributed mining algorithm) [12], FDM (fast distributed mining) [13], 

ODAM (optimized distributed association mining) [14], and DDM (distributed decision minner) [15]. These 

algorithms, which utilize the data parallelism paradigm, differ in their techniques for pruning new candidates 

or whether they employ candidate counting techniques. 

In contrast, algorithms based on task parallelism, such as DD (data distribution) [11], IDD 

(intelligente data distribution) [16], HPA (hash-based parallel mining of association rules) [17], and others. 

They partition both the candidates and the database among processors. They differ in their methods for 

dividing candidates and the database. Some other algorithms cannot be classified into either of the two 

paradigms such as the CaD (candidate distribution) [11] algorithm, it represents a hybrid approach combining 

elements of both CD and DD. It focuses on distributing candidates to ensure consistency between the 

itemsets that are calculated and the transactions used for these calculations. By distributing transactions and 

candidates based on their prefixes, CaD enables each site to process data independently. In SH (skew 

handling) [18], candidate itemsets are not derived a priori from previous frequent itemsets. Instead, they are 

generated independently by each site by scanning its local partition of the database. The hybrid distribution 

(HD)algorithm [16] is a hybrid approach that integrates IDD and CD methods. The P sites are partitioned into 

groups of equal size, with each group functioning as a super-site. The IDD algorithm is employed within 

each group, while the CD algorithm is used for interactions between the groups. Zaki et al. [19] propose a set 

of algorithms (PAR-Eclat, PAR-MaxEclat, and PAR-MaxClique) that use database partitioning and calculate 

different candidate itemsets. The algorithms all assume that the database is in vertical format (tid-lists for 

each item), unlike horizontal partitioning. However, these algorithms encounter several challenges, including 

synchronization issues, communication overhead, load balancing problems, and a high frequency of data 

scans, which adversely affect their performance. 

In the literature, many approaches focused on improving distributed algorithms for mining frequent 

itemsets in distributed environments. In this context, Mudumba and Kabir [20] proposed a novel approach for 

mining association rules independently from multiple data sources. This method integrates frequent patterns 

derived from each data source to identify frequent patterns applicable across a distributed environment. 

Furthermore, the model can be extended to generate rules with specified targets. The model improves 

transparency and memory efficiency in association rule generation. Additionally, it reveals significant 

relationships, allowing decision-makers to access frequent patterns from individual data sources as well as 

the overall dataset across the environment. 

Nguyen et al. [21] presented three novel strategies designed to greatly improve the efficiency of 

multi-level high-utility itemset mining through multi-core processing. They also proposed two new 

algorithms, MCML+, and MCML++, which leverage these strategies. By fully utilizing the available 

processor cores, these approaches achieve superior performance in multi-level high utility itemset (HUI) 

mining. 

Fernandez-Basso et al. [22] provide an overview of the most representative algorithms for 

association rule mining, particularly those designed for processing very large datasets. Recognizing the 

limitations of Hadoop compared to Spark, they developed new efficient frequent itemset algorithms for big 

data using distributed computation. Additionally, they introduced a new association rule-mining algorithm in 

Spark and compared these proposed algorithms with existing ones, varying the number of transactions and 

items. 

Diop et al. [23] introduced the first pattern-on-demand approach for extracting patterns in a 

transactional distributed database. This approach involves extracting patterns instantly when the analyst 

requires them. They proposed a generic algorithm called distributed database sampling (DDSampling), which 

randomly selects a pattern from a distributed database based on an interestingness measure that combines 

frequency and length-based utility functions, including length constraints. 

This study investigated the effects of mining frequent itemsets in distributed datasets with minimum 

communication overhead by developing a novel algorithm for frequent itemset mining, called FEDFI 

(finding efficient distributed frequent itemsets), with an appropriate communication model, referred to as 

master/slaves. While earlier studies have explored the impact of mining distributed frequent itemsets from 

the parallelization of mining algorithms [24], which involve performing distributed computations on a single 

database or intentionally distributing the data to expedite processing. This approach aims to address the 

challenges identified in existing distributed algorithms. The focus is on reducing communication and 

synchronization costs between different sites, which are critical for evaluating the performance of distributed 

algorithms. Furthermore, the work contributes to minimizing data scans by reducing the number of 

candidates generated for global information computation in a distributed setting. Our FEDFI algorithm 

employs three core techniques to facilitate the search for frequent itemsets: the first technique identifies the 

frequent 1-itemsets and 2-itemsets using a 2-dimensional matrix, while the remaining itemsets are derived 
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through Trie construction followed by a final validation of frequent itemsets. To evaluate the effectiveness of 

our approach, we compared our algorithm with the Apriori and CD algorithms in terms of communication 

and computation costs. The choice of the CD algorithm for comparison is due to its foundational role in 

distributed algorithms, it is a simple parallelization of Apriori. It operates in a distributed context where each 

site processes its local portion of the transaction database, calculates local supports, and shares them with 

other sites for global support computation. 

This paper is structured as follows. Section 2 outlines the methodology of the work by presenting 

the adopted communication model and the proposed algorithm. The experimental results and a discussion of 

the performance of the FEDFI algorithm on various datasets are given in Section 3. Finally, section 4 

concludes this paper. 

 

 

2. METHOD 

2.1.  Model of communication 

Some distributed algorithms for frequent itemset mining require each site Si to broadcast the locally 

computed supports to all other sites at each iteration k, resulting in significant overhead [25]. The CD 

algorithm, being the foundational algorithm, consists of three phases. In phase 1, the local supports for the 

itemsets in each site’s local partition are calculated. In phase 2, the sites synchronize and each site exchanges 

the local supports of all itemsets with all other sites to compute the global supports of the itemsets. In phase 3, 

the globally frequent itemsets are identified and generated independently at each site. The CD algorithm 

repeats until no more itemsets can be generated. At each iteration, the same set of frequent itemsets is 

identified, leading to redundant calculations of their global supports at each site. This results in an increased 

number of communications and/or synchronizations needed for global information computation in a 

distributed environment. To mitigate this issue, we propose adapting the master/slaves model to significantly 

reduce the number of communications and synchronizations between sites, thereby minimizing redundant 

calculations for candidate itemsets. 

The master processor segments the entire database into clusters and assigns these clusters to slave 

processors, as detailed in [25]. Vasoya and Koli [26] demonstrated that implementing a master/slave system 

significantly improved time and space complexity, facilitating optimal resource utilization in a distributed 

environment. In our work, the database is horizontally partitioned among the slave sites, each of which 

handles the processing for its data segment. The master site coordinates between the slave sites, reducing the 

number of messages exchanged. During each iteration kk, the slave sites send messages to the master site, 

which then replies with messages to all slave sites. Figure 1 shows the master/slave communication model. 

 

 

 
 

Figure 1. The model of master/slave communication 

 

 

2.2.  Proposed approach 

The distribution aspect can be described as follows. Suppose that DB is a dataset of transactions 

partitioned horizontally and correspondently {DB1, DB2, …, DBn} on P sites {S1, S2,…. Sn} in a distributed 

system. D is the total database size, and di is the size of each partition DBi for i=1, ..., n. 

The support(X) is known as the global support counter in the entire DB and can be defined as, 

 

𝑋. 𝑠𝑢𝑝 =  
𝑐𝑎𝑟𝑑(𝑋)

𝑇𝐺
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where card(X) is the number of records in the whole DB containing X and TG is the total number of records 

in the database DB. The  Supporti(X) is known as the local support counter in DBi  and can be defined as, 

 

𝑋. 𝑆𝑢𝑝𝑝𝑖  =  
𝑐𝑎𝑟𝑑(𝑋)

𝑇𝑖
    

 

where card(X) is the number of records in  DBi containing X and  Ti is the total number of records in the 

database DBi. 

Let minimum support Supmin defined by the user, X is globally frequent if X.sup≥Supmin× D, 

correspondently, X is locally frequent at site Si, if X. suppi ≥  Supmin ×  di. 

Our FEDFI algorithm consists of two fundamental phases: the initialization phase and the execution 

phase. During the initialization phase, the master site partitions the horizontal database across all sites 

equitably by dividing the number of transactions by the number of sites. We are given a horizontal 

transaction database β illustrated below in Figure 2, where I as a group of items, the alphabet I= {a, b, c, d, e} 

(with m=5 elements), and Tid as a set of transactions, Tid= {1, 2, 3, 4, 5, 6} with a minimum support 

threshold (Supmin =2). The horizontal transaction database is fragmented and distributed on two slave sites 

as shown in Figure 3. 

The execution phase begins with converting the horizontal database into a vertical data format for 

each slave site, generating a list of Tids for all items in I. This method involves a single pass through the 

horizontal transaction database to identify the transaction Tids for each item in I, which is then used to 

construct the vertical transaction database. The primary distinction between vertical and horizontal data lies 

in the structure of transactions. In horizontal data, a transaction includes the Tid and the Itemset, whereas in 

vertical data, each transaction is identified by the Itemset, enabling the support count for any frequent itemset 

to be calculated through the intersection of TidSets. This vertical transaction database comprises a list of all 

1-itemsets and their corresponding Tids for each slave site. Figure 4 illustrates the conversion of two slave 

sites in a vertical transaction database. 

 

 

 
 

Figure 2. Horizontal transaction database β 

 

 

 
 

Figure 3. Horizontal transaction database for slave site1 and slave site2  
 

 

 
 

Figure 4. Vertical database for slave site1 and slave site2  
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To efficiently extract all globally common itemsets in a distributed context, our FEDFI algorithm 

executes three techniques to avoid repeated database scans and reduce the cost associated with generating a 

large number of candidate sets, thereby minimizing execution time. The first technique establishes the 

CountTidListt data structure (for t=1, .., n)  for each slave site to facilitate the computation of frequent  

1-itemsets and 2-itemsets, using a two-dimensional matrix of size (m×m), where m represents the number of 

items in the vertical transaction database. In the implementation, the itemsets are ordered lexicographically, 

and redundant (symmetric) elements are removed from the CountTidListt matrix, thereby reducing its size to 

½(m²+m). Furthermore, the CountTidListt data structure is employed to optimize the support calculation of 

candidate itemsets without accessing the vertical database. The CountTidListt matrix provides a projection 

of the vertical transaction database for each slave site. 

Each cell (i, j) represents the size of Tids for the Itemset consisting of elements ‘xi’ and ‘xj’. The 

frequency of 1-itemsets is determined by the size of the Tid associated with each item; frequency (xi)=size of 

(Tid (xi)), and this is reflected in the diagonal cells of the matrix. The frequency of 2-itemsets is calculated 

based on the size of the intersection of Tids for the two items; frequency (xixj) = size of (Tid (xi) ∩ Tid (xj)), 

and these values are located above the diagonal in the matrix. Figure 5 illustrates the construction of the 

CountTidList matrix for slave Site1 and slave Site2. 

The exact supports for 1-itemsets and candidate 2-itemsets are determined through direct access to 

the CountTidListt structure, and eliminate those that do not satisfy the minimum support threshold Supmin. 

Only the frequent 1-itemsets and 2-itemsets are retained. 

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑥𝑖)  =  
𝑐𝑎𝑟𝑑(𝑥𝑖)

𝑛
 =  

𝐶𝑜𝑢𝑛𝑡𝑇𝑖𝑑𝐿𝑖𝑠𝑡 (𝑖,1)

𝑛
 , | 𝑥𝑖  | = 1  

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑥𝑖𝑥𝑗) =  
𝑐𝑎𝑟𝑑(𝑥𝑖𝑥𝑗)

𝑛
 =   

𝐶𝑜𝑢𝑛𝑡𝑇𝑖𝑑𝐿𝑖𝑠𝑡 (𝑖,𝑗−(𝑖−1)) 

𝑛
, | 𝑥𝑖𝑥𝑗| = 1, 𝑛 =  | 𝛽 |  

 

Significantly, frequent 1-itemsets and 2-itemsets for each slave site can be computed in a single pass through 

the vertical database, in contrast to the Apriori method, which requires two passes. Subsequently, each slave 

site transmits its data: support of frequent 1-itemset, 2-itemset and Tids of frequent 2-itemset: (Tid (xixj)=Tid 

(xi)∩Tid (xj)) to the master site. 

The master site then constructs a global structure CountTidListG by summing the supports from the 

CountTidListt of the different slave sites, without needing access to the vertical databases or additional 

communication with the slave sites. As shown in Figure 6, the total of the support values from the matrix of 

slave site1 CountTidList1 and Slave site2 CountTidList2. The list of 1-itemsets is {a:3, b:5, c:5, e:5}, and 

the list of 2-itemsets is {ab:2, ac:3, ae:2, bc:4, be:5, ce:4}. The list of Tid for 2-itemsets includes {ab:(3,5), 

ac:(1,3,5), ae:(3,5), bc:(2,3,5,6), be:(2,3,4,5,6), ce:(2,3,5,6)}. 

The second technique of our algorithm aims to identify the set of K-itemsets (k≥3) within the slave 

site databases. To reduce the exchange of distributed calculations for frequent itemsets between these 

databases, the master site iteratively generates the list of k-itemsets (k≥3) by constructing a Trie. At the first 

level of the Trie, the nodes are composed of the set of frequent 2-itemsets obtained from the first technique, 

along with their TidSets, which are ordered lexicographically. 
 

 

 
 

Figure 5. CountTidList matrix for slave site1 and slave site2 
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Figure 6. Calculate the Sum of CountTidListG for slave site1 and slave site2 

 

 

To generate candidate (k+1)-itemset nodes for the next level, the algorithm employs a self-join of 

the (k-1)-itemsets generated in the previous level, ensuring that (k−1) items of the two k-itemsets are 

identical. Additionally, the algorithm determines the Tids of (k+1)-itemsets by intersecting the Tids of the 

two k-itemsets that share the same (k−1) items. The algorithm continues to construct nodes at each level 

along with their Tids until no further nodes can be generated, thereby concluding the search for frequent  

k-itemsets with their TidSets using the Trie structure. Finally, the approximate support of the set of candidate 

k-itemsets is determined by counting the size of the TidSets for each node generated in the Trie structure. 

In Figure 7, we illustrate the second technique using the previous example from database β. For 

instance, at level 1 of the Trie, the two nodes "ab" and "ac" have the same (k-1) item "a", so a link will be 

created to a node "abc" by identifying the TidSet through the intersection of their Tids (Tid(ab)∩Tid(ac)=35). 

This process continues up to level 3 (node "abce": frequent 4-itemset with Tid: 35). Since there is only one 4-

item node, no more nodes can be generated. The approximate support of node "abc" is equal to the size of 

Tid (35): 2. The set of candidate k-itemsets generated, along with their approximate support, is as follows: 

{abc: 2, abe: 2, ace: 2, bce: 3, abce: 2}. This was derived from the Trie structure without any exchanges with 

slave site1 and slave site2. 

 

 

 
 

Figure 7. Illustration of Trie structure for k-itemsets (k≥3) 

 

 

The master site sends the set of candidate k-itemsets to the slave sites to determine the exact support 

for each k-itemset. Therefore, a third refinement technique is necessary to validate the support values. Each 

slave site must scan its local data to determine the support for each K-itemset. At this stage, The FEDFI 

algorithm determines the exact support of K-itemsets based on the SupportMin metric introduced in our 

paper [27]. This metric is used for pruning candidates without accessing the database. It estimates the actual 

support of itemset X based on the minimum supports of its (k-1) subsets identified in the previous iteration. 

This value represents the minimum possible support for a K-itemset X. At this point, the FEDFI algorithm 

aims to determine the exact support of the K-element sets by focusing on transactions that include the (k-1) 

subsets of the K-itemset that contain the minimum support. This method significantly reduces the number of 

transactions required to accurately determine the supports of the itemsets. 

For example, at slave site1, the support for the subsets of the itemsets "abc" is as follows: "ab": 1, 

"ac": 2, and "bc": 2, which have already been calculated using the CountTidList structure. Thus, the exact 

support of the itemset "abc" is determined within the transactions of the subsets that have the minimum 

support of "ab". The transactions for the itemset "ab" have been previously defined from the vertical 

database. Consequently, the exact support for "abc" is found in transaction Tid=3, consequently the exact 

Support of "abc" is equal to 1. Subsequently, the slave sites send to the master site the k-itemsets with their 
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exact support to calculate the global supports and identifies the frequent itemsets by discarding those that not 

satisfy the specified minimum support threshold (Supmin). 

It is widely recognized that the Apriori algorithm requires a comprehensive scan of all transactions 

in a database to mine frequent k-itemsets. In contrast, our refinement technique scans the database only for 

transactions associated with the subsets of an itemset that have the minimum support threshold. This method 

significantly reduces the number of database accesses required to identify frequent k-itemsets. 

The proposed method is illustrated in Figure 8, which details the methodology employed by the 

FEDFI algorithm and its key components. The master site is responsible for partitioning and distributing the 

database horizontally and equitably across all sites, as well as converting each local database to a vertical 

format. This work is achieved by applying three major techniques for mining distributed frequent itemsets: 

generating the CountTidList matrix structure for each Slave site and computing the global support for 1-

itemsets and 2-itemsets at the master site. The set of candidate k-itemsets (k≥3) and their supports are 

determined using the Trie structure. The master site then distributes the candidates to the slave sites for 

further refinement of the k-itemsets (k≥3). Based on the results provided by the slave sites, the master site 

verifies whether the k-itemsets are globally frequent and displays the results for all frequent k-itemsets. 

 

 

 
 

Figure 8. The main process of the proposed FEDFI 

 

 

In this method, our FEDFI algorithm develops a master/slave (sites) communication model by 

partitioning the database across all sites in an equitable manner, dividing the number of transactions by the 

number of sites. Conversely, in the basic CD data parallelism algorithm and the basic DD task parallelism 

algorithm, partitioning is based on a random distribution of data by performing a horizontal division of the 

data (using an "all-to-all" broadcast approach). However, it suffers from generating a large number of 

candidates, leading to increased communication overhead. 

In the CD algorithm, sites synchronize after computing the local support of candidates, and each site 

exchanges the local support of all candidates with all other sites to calculate the global support. In the DD 

algorithm, each site processes the received partitions to obtain global support for the entire database. After 

that, each site calculates the frequent itemsets from its candidate set, exchanges these frequent itemsets with 

all other sites to obtain the complete set of frequent itemsets, and then generates the new candidates, 
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partitions them, and distributes them across all sites. Consequently, our model greatly reduces the number of 

communications necessary for the distributed computation of global frequent itemsets compared to the 

conventional parallel/distributed algorithms previously described. 

The CD algorithm focuses on the Apriori algorithm to extract frequent k-itemsets. By applying the 

Apriori algorithm to our master/slaves model with the example above, we find the following results: 

− In the first iteration, both slave sites calculate the local supports of the candidate 1-itemsets 

(C1(s1)={a,b,c,d,e}, C1(s2)={a,b,c,d,e}) and send these calculations to the Master site. 

− The master site merges the received candidates (C1 (s1) and C1 (s2)), determines the frequent 1-Itemsets 

F1, computes the candidates C2, and sends them back to slave sites 1 and 2. 

− This process is repeated for iterations 2, 3, and 4 with the respective candidates C2={ab, ac, ae, bc, be, 

ce}, C3={abc, abe, ace,bce}, and C4={abce}. 

The Apriori algorithm thus performs four iterations to calculate frequent itemsets, resulting in four 

phases of communication between the master site and the slave sites. In contrast, our algorithm requires only 

two accesses to the local database in the first technique of the execution phase to obtain the frequent 1-

itemsets and 2-itemsets and in the third technique during the refinement phase to validate the supports of the 

k-itemsets (k≥3). Therefore, our FEDFI algorithm requires only two exchanges between the master site and 

the slave sites to compute all the frequent itemsets. 

 

 

3. RESULTS AND DISCUSSION 

This section presents both the experimental results and a discussion of the performance of the 

FEDFI algorithm, benchmarked against Apriori and CD algorithms. We evaluated the algorithms using two 

datasets: T40l10D100K and Chess. The experiments were conducted in a distributed environment using a 

master/slaves scheme, where datasets were partitioned horizontally across multiple slave sites. The primary 

objective is to assess the efficiency, scalability, and communication overhead associated with the FEDFI 

algorithm, and how these aspects compare to those of the Apriori and CD algorithms. 

 

3.1.  Dataset overview  

The datasets used were selected to provide a range of complexities: 

− T40l10D100K: sourced from FIMI [28] and studied by Fournier-Viger et al. [29], this large-scale dataset 

contains 1,000 distinct items and 100,000 transactions. It presents a high-dimensional challenge that tests 

the scalability and communication efficiency of mining frequent itemset algorithms. 

− Chess: also from FIMI [28], this dataset, explored by Fournier-Viger et al. [29], consists of 75 items and 

3196 transactions. It offers a more structured environment for assessing algorithm performance in 

scenarios with fewer transactions and less data complexity. 

 

3.2.  Experimental setup 

The experiments were conducted on a system with an Intel® CoreTM i7 processor at 2.80 GHz,  

4 GB of RAM, and Windows 10. We distributed the data sets to 3, 5, and 7 slave nodes (sites) to measure 

scalability and efficiency. The algorithms were implemented in Java using the NetBeans IDE. The Apriori 

and FEDFI algorithms use a bidirectional communication scheme between sites following the master/slaves 

model, whereas the CD algorithm employs the classic models of usual communication between sites. 

 

3.3.  Results 

3.3.1. Execution time analysis 

The performance of the FEDFI algorithm was compared to that of the Apriori and CD algorithms in 

terms of execution time. Figures 7 and 8 present the execution time as a function of the minimum support 

threshold for Chess and T40l10D100K datasets, respectively. 

− Chess dataset: the results for the Chess dataset, depicted in Figure 9, also indicate that FEDFI 

outperforms the other algorithms. Even in a smaller dataset with fewer transactions, the algorithm’s 

efficiency is evident. For instance, at a support threshold of 10%, FEDFI required approximately 30% 

fewer iterations than Apriori and 35% fewer than CD. This reduction in the number of iterations directly 

translates to fewer communication phases, underscoring FEDFI’s ability to scale efficiently even in less 

complex environments. 

− T40l10D100K dataset: as shown in Figure 10, the FEDFI algorithm consistently outperformed both 

Apriori and CD across all support thresholds. For example, at a support threshold of 50%, FEDFI 

completed the mining process approximately 20% faster than Apriori and 25% faster than CD. The 

primary reason for this superior performance is FEDFI’s ability to generate fewer candidate itemsets, 

which reduces the number of communication rounds between slave nodes. This reduction in 
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communication significantly lowers the overall execution time, especially for larger datasets where 

communication cost can be a major bottleneck. 

 

 

 
 

Figure 9. Comparison of runtime for Chess datasets 

 

 

 
 

Figure 10. Comparison of runtime for T40l10D100K datasets 
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3.3.2. Scalability analysis 

To evaluate the scalability of the FEDFI algorithm, we tested it with an increasing number of slave 

nodes (3, 5, and 7) and larger dataset sizes. Figure 11 illustrates how the performance of FEDFI scales with 

more slave nodes. 

− Impact of node increase: as we increased the number of slave nodes, the FEDFI algorithm continued to 

outperform Apriori and CD. At 7 nodes, FEDFI still exhibited better execution times, while Apriori and 

CD showed more noticeable increases in execution time due to higher communication overhead. FEDFI’s 

ability to minimize communication phases, even as the number of nodes rises, is a critical factor in its 

superior scalability. 

− Convergence at high node count: interestingly, as the number of nodes increased, we observed that the 

performance of all algorithms began to diverge. This is particularly noticeable at 7 nodes, where the 

communication overhead became a dominant factor. However, even at this level of parallelism, FEDFI 

maintained an edge over Apriori and CD, reflecting its more efficient data distribution and reduced need 

for communication rounds. 

 

 

 
 

Figure 11. Scalability of FEDFI by number of nodes with Supmin=20% 

 

 

3.4.  Discussion 

The results of this study highlight several important insights about the FEDFI algorithm and its 

performance in a distributed context. Efficiency gains: FEDFI’s efficiency in generating fewer candidate 

itemsets directly leads to faster execution times and reduced communication overhead. This is particularly 

evident in the T40l10D100K dataset, where FEDFI consistently outperformed both Apriori and CD. The 

ability to minimize communication rounds is a significant advantage in distributed systems, where 

communication costs can quickly escalate. Superior scalability: the scalability of FEDFI is one of its standout 

features. As the dataset size and the number of slave nodes increased, FEDFI maintained superior 

performance compared to Apriori and CD. This scalability is crucial for real-world applications, particularly 

in big data environments where datasets are often distributed across multiple sites. The algorithm’s ability to 

handle larger datasets without a significant increase in communication cost is a major strength. Comparison 

with related research: our results align with findings from prior studies, which have noted the limitations of 

Apriori in distributed settings due to managing a large volume of candidate sets, particularly when dealing 

with numerous frequent itemsets, low minimum support thresholds, or extensive itemsets. Apriori's 

performance drastically decreases and becomes inefficient when the memory capacity is constrained and the 

transaction count is high. CD algorithm uses a simple communication system to exchange local supports, 

relying on a broadcast all-to-all communication model. However, it suffers from generating a large number 

of candidate sets, resulting in increased communication overhead. The performance of count distribution is 

limited, similar to Apriori, as this algorithm is based on the frequent itemset mining method. Consequently, it 

generates a substantial number of candidate sets, much like those produced by Apriori. The proposed method 

FEDFI addresses these limitations by reducing the number of candidate itemsets and communication phases 

required to generate frequent itemsets. This is especially critical for large datasets where communication 

costs can become a major bottleneck. The reduction in communication rounds observed in our experiments 

mirrors similar improvements reported in other research on distributed frequent itemset mining. 

Implications of findings: the superior performance of FEDFI suggests that it is a viable alternative to 

Apriori and CD in distributed environments. Its ability to minimize both execution time and communication 
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overhead makes it particularly suitable for large-scale, real-world applications. The scalability demonstrated 

by FEDFI also indicates that it can be effectively used in environments with a high degree of parallelism, 

where data is distributed across numerous sites. The experimental results strongly support the conclusion that 

FEDFI offers substantial improvements in both efficiency and scalability compared to the traditional Apriori 

and CD algorithms. Its ability to reduce communication phases while maintaining high performance across 

varying dataset sizes and numbers of slave nodes positions it as a highly effective solution for mining 

distributed frequent itemsets in large-scale data environments. 

 

 

4. CONCLUSION 

This research introduces a new algorithm, FEDFI, for the efficient extraction of frequent itemsets in 

a distributed context. The proposed method in this study employs a master/slave communication model, 

distinguishing between a master site and multiple slave sites. We found that the model significantly reduces 

the communication and synchronization costs required for distributed global frequent itemset computation 

compared to the communication schemes (such as broadcasting) used in previously presented 

parallel/distributed algorithms. The FEDFI algorithm relies on three techniques to extract interesting frequent 

k-itemsets. In the first step, each Slave site identifies all frequent 1-itemsets and 2-itemsets using a matrix 

derived from a vertical database. In the second technique, candidate k-itemsets and their approximate 

supports are discovered using a Trie structure, built from nodes representing the frequent 2-itemsets sent by 

slave sites to the master site. The final step is necessary to refine the approximate supports of the frequent k-

itemsets by accessing transactions of (k-1) subsets itemset that contain the minimum support threshold within 

the local database. 

Our study demonstrates that our FEDFI algorithm is more resilient than the Apriori and CD 

algorithms and confirms the main role of using the master site with the proposed technique for effective 

validation of results at each iteration of obtaining frequent k-itemsets. Our findings provide conclusive 

evidence that this approach is more efficient and effective than other distributed algorithms Apriori and CD 

regarding the number of candidate itemsets generated where data is distributed across different sites by 

reducing communication and synchronization costs between sites. Our approach is valuable for businesses 

dealing with vast amounts of data, often spread across various media. It facilitates the discovery of new 

relationships from the accumulated data, enabling the extraction of hidden, valuable insights within 

distributed databases. Future studies may explore the problem of mining distributed association rules within a 

distributed context. The goal is to propose new solutions and design a novel algorithm that is well-adapted to 

distributed environments based on our FEDFI algorithm. 
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