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 Machine learning (ML) and advanced neural network methodologies like 

deep learning (DL) techniques have been increasingly utilized in developing 

intrusion detection systems (IDS). However, the growing quantity and 

diversity of cyber-attacks pose a significant challenge for IDS solutions 

reliant on historical attack signatures. This highlights the industry's need for 

resilient IDSs that can identify zero-day attacks. Current studies focusing on 

outlier-based zero-day detection are hindered by elevated false-negative 

rates, thereby constraining their practical efficacy. This paper suggests 

utilizing an autoencoder (AE) approach for zero-day attack detection, aiming 

to achieve high recall while minimizing false negatives. Evaluation is 

conducted using well-established IDS datasets, CICIDS2017 and 

CSECICIDS2018. The model's efficacy is demonstrated by contrasting its 

performance with that of a one-class support vector machine (OCSVM). The 

research underscores the OCSVM's capability in distinguishing zero-day 

attacks from normal behavior. Leveraging the encoding-decoding 

capabilities of AEs, the proposed model exhibits promising results in 

detecting complex zero-day attacks, achieving accuracies ranging from 93% 

to 99% across datasets. Finally, the paper discusses the balance between 

recall and fallout, offering valuable insights into model performance. 
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1. INTRODUCTION 

Critical to addressing the exponential increase in cyber-attacks [1], [2] is the deployment of 

intrusion detection systems (IDS) capable of identifying zero-day cyber-attacks. Machine learning (ML) 

methodologies have been widely employed in developing resilient IDS [3], [4] solutions. As depicted in 

Figure 1, IDS stands as a vital component of modern cybersecurity [5], fortifying networks against escalating 

digital risks. However, contemporary IDS systems excel in detecting known attacks but struggle with 

identifying novel zero-day attacks [6] due to reliance on predetermined patterns and signatures. Additionally, 

elevated false-positive rates limit their effectiveness and practicality in real-world deployments. 

Consequently, a notable portion of zero-day attacks evade detection, exacerbating their repercussions such as 

denial of service and theft of customer information. According to Ali et al. [7], a zero-day attack is a traffic 

pattern that is of interest and often lacks matching patterns in malware or network attack detection elements. 

Sakthimurugan et al. [8] delve into the real-world ramifications of zero-day attacks. Their research is 
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centered on examining the impact and prevalence of these attacks. The authors emphasize that zero-day 

attacks are considerably more widespread than anticipated. Their analysis of 18 attacks reveals that 11 were 

previously unidentified. Their discoveries indicated that zero-day attacks may endure over a substantial 

period, with an average of 10 months, before detection. This prolonged presence allows them to compromise 

systems over the said period. Moreover, Zoppi et al. [9] cite a statistical investigation revealing that 62% of 

attacks are detected only after systems have been successfully compromised. Furthermore, the count of zero-

day attacks in 2023 surpasses that of the preceding three years [10]. 

One primary research avenue for detecting zero-day attacks revolves around identifying outliers, 

which are instances that deviate from normal network traffic. However, the main limitation of current 

detection techniques based on outliers lies in their relatively low accuracy rates, stemming from both high 

false positive rate (FPR) and false negative outcomes. As mentioned earlier, the elevated false-negative rates 

(FNR) make the setup vulnerable to attacks [11], whereas the elevated FPR unnecessarily burden 

cybersecurity operation centers, with only 32% of investigated intrusions proving to be genuine. Essa and 

Bhaya [12] underscore the limitations posed by false negatives in IDS development, notably their adverse 

impact on IDS effectiveness. 

 

 

 
 

Figure 1. Components of intrusion detection system 

 
 

Hairab et al. [13] introduced a system tailored to identify previously unseen attacks within 

interconnected device networks. Their approach relies on a distributed detection mechanism. They utilized 

artificial neural networks for supervised anomaly-based ML, attaining a detection rate of 94% on the NSL-

KDD dataset. However, the study's limitation is the relatively small dataset used for supervised learning.  

Sun et al. [14] introduced a Bayesian probabilistic approach with the objective of detecting zero-day attack 

pathways. They represented attacks within a structure resembling a graph and presented a prototype aimed at 

identifying these attacks. Duong and Hai [15] proposed a semi-supervised ML approach for zero-day attack 

detection utilizing the NSL-KDD dataset. They utilized a K-means clustering model to remove outliers 

during training, aiming for a training dataset with only benign network traffic. Despite feature discrepancy, 

their method achieved a 91% detection accuracy. 

This paper advocates leveraging unsupervised learning capabilities for outlier detection to 

effectively identify previously unknown attacks with a high rate of accuracy. The goal entails crafting an 

intrusion detection model that is efficient at identifying novel intrusions and zero-day attacks with a high 

accuracy, thereby ensuring a low fallout rate. Thus, possessing a strong ability to detect zero-day attacks can 

alleviate the challenges and concerns typically linked with novel attacks.  

This work offers three significant contributions: 

a) Introducing and deploying an innovative and efficient autoencoder (AE) framework for zero-day attack 

detection in intrusion detection system. 

b) Creating an anomaly detection model utilizing one-class support vector machine (OCSVM). 

c) Assessing the performance of the OCSVM model, utilized as a foundational outlier-based detector, 

compared with the suggested AE framework, while also comparing the proposed model with 

benchmarked algorithms. 

 

 

2. THE COMPREHENSIVE THEORETICAL BASIS 

2.1.  Autoencoder  

The model presented in this manuscript primarily leverages the features of AE. The objective is for 

the AE to operate as a lightweight anomaly detector [16], thus facilitating zero-day attack detection. AEs 

were initially introduced by Rumelhart et al. [17] to address backpropagation challenges in an unsupervised 

context by employing the input as the target. AEs are classified as self-supervised models because their input 

and output are essentially the same. Brunner et al. [18] explained that an AE is a neural network variant that, 

through training, learns to produce output resembling its input. Figure 2 depicts the basic structure of an AE.  

The setup of an AE and its latent layer count vary depending on the domain and usage context. The 

re-construction error is computed using a function that measures the disparity between the input and the 
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output, where the output is the reconstructed input [19]. Mean square error (MSE) and mean absolute error 

(MAE) are typical functions employed to compute the reconstruction error [20]. By training the AE to 

minimize reconstruction error, it enables precise differentiation between normal and malicious traffic. The 

architecture depicted in Figure 2 showcases the effectiveness of the AE model in extracting crucial 

information, leading to robust classification results [21]. 

 

 

 
 

Figure 2. Architecture of an AE 

 

 

2.2.  One-class support vector machine 

Support vector machine (SVM) is renowned as a deeply rooted and robust supervised ML method [22]. 

With the provided training data, an SVM is trained to define a hyperplane in a multi-dimensional space, 

aiming to effectively differentiate between the classes [23]. In the case of two dimensions, this hyperplane is 

represented as a line, while in three or higher dimensions, it manifests as a plane [24]. When data exhibits 

non-linear separability, a kernel is utilized to transform the input features into a higher-dimensional space, 

enabling better separation [24]. In this transformed space, a hyperplane can accurately distinguish between 

the classes [23].  

The OCSVM differs from its supervised counterpart by functioning as an unsupervised variation. It 

is characterized as a system adept at identifying "novelty" [22]. The goal of the OCSVM is to define a 

hyperplane [25], illustrated in Figure 3, that acts as a boundary. This boundary effectively encompasses all 

training data points while excluding any others. The outcome of training an OCSVM is observed as a 

boundary with a spherical shape [22]. Given its reputation as a highly established outlier-based ML 

techniques, the OCSVM serves as an optimal benchmark for assessing the effectiveness of a deep neural 

network (DNN)-based AE. 

 

 

 
 

Figure 3. Visualization of the OCSVM hyperplane 

 

 

3. RESEARCH METHOD 

The proposed detection model encompasses several stages. It begins with preprocessing traffic data, 

followed by conducting dimensionality reduction, training the detection model, identifying anomalies, and 

evaluating its performance. The architecture illustrated in Figure 4 elucidates the design of the attack 
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detection method. Initially, traffic data undergo normalization and standardization to prepare normal network 

traffic datasets. Subsequently, implementing unsupervised pre-clustering with AE produces distinct subsets 

within the initial latent layer, highlighting unique patterns while reducing dimensions. During the training 

phase, these subsets are individually processed through the same AE in latent spaces 2 to 4, and OCSVM. 

The "encoding-decoding" process in AE evaluates the average reconstruction error, determining the detection 

threshold. In the anomaly detection phase, the trained model utilizes test data to generate reconstructed 

outputs, with the reconstruction error calculated using the mean squared error. If the calculated error 

surpasses the predefined threshold, the traffic is identified as zero-day attack; otherwise, it is classified as 

normal [18]. OCSVM operates within a high-dimensional kernel space by transforming samples from 

reduced dimensions using a mapping function. 

 

 

 

 

Figure 4. Architecture of proposed autoencoder based IDS 

 

 

3.1.  Preprocessing data and reducing dimensionality 

This study makes use of benchmark datasets for intrusion detection, such as CICIDS2017 and 

CSECICIDS2018. Standard scaling techniques are employed to standardize numerical data, linearly 

transforming it. The normalized data is subsequently transformed to a range with a mean (μ) of 0 and a 

standard deviation (σ) of 1 through Z-score normalization. 

The AE, a neural network designed for unsupervised learning and dimensionality reduction, handles 

input normal traffic data via its encoder network. Every layer employ weights and biases to modify the data 

into a representation of lower dimensionality, ultimately resulting in the latent layer generating an encoded 

representation. The complete network, including both the encoder and decoder, experiences end-to-end 

training through the utilization of backpropagation and gradient descent algorithms. Through this 

unsupervised learning process, a compressed representation of the input data is obtained, effectively 

capturing its fundamental features. Having been trained on unlabeled data, the AE's encoded representation 

acts as a lower-dimensional and pre-clustered variant of the original normal data, thereby enabling efficient 

analysis and anomaly detection. 

 

3.2.  Detecting zero-day attacks with AE 

The AE, a neural network trained without supervision, extracts hierarchical features to enhance 

classification. By leveraging the latent space 1 within the AE for dimensionality reduction, this study 

constructs an AE model to effectively capture data features across clustering subsets. Training the AE 

reduces the reconstruction error, enabling precise discrimination between normal and malicious traffic. The 

architecture depicted in Figure 4 showcases the effectiveness of the AE model in extracting vital information 

to achieve robust classification results. 

During the training phase, the AE model processes batches of normal traffic data with the objective 

of minimizing the reconstruction error. The detection threshold dynamically adjusts based on the cumulative 

loss incurred during the model's training process. The process iterates for a designated number of epochs, 

yielding the trained AE model and detection threshold as outputs. During the detection phase, the trained AE 

model is assessed using the test dataset to detect anomalies. The reconstruction error for each data point is 

determined by comparing the original and reconstructed data. Data points exceeding the detection threshold 

in reconstruction error are classified as zero-day attack; otherwise, they are labeled normal. The output 

obtained indicates the classification of each data point in the test dataset as either normal or zero-day attack. 

This testing process is crucial for evaluating the effectiveness of the trained detection model on new data, 

assisting in the identification of potential anomalies. 
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3.3.  Detecting zero-day attacks with OCSVM 

OCSVM stands out as a unique approach in one-class classification, focusing solely on a singular 

data class [22], unlike binary or multi-class methods. After training, the model determines whether a new 

sample belongs to the designated target class. OCSVM operates in a high-dimensional kernel space by 

transforming samples using a mapping function. It formulates a hyperplane to separate data from the origin, 

addressing a quadratic problem with a weight vector and margin. The hyperparameter ‘v’ controls the trade-

off, limiting the proportion of anomalies. The inclusion of non-negative slack variables allows for soft 

margins, adjusting sensitivity to outliers. The Gaussian kernel function effectively represents data, with the 

hyperparameter ‘γ’ shaping the decision boundary. Zero-day attacks are identified when new samples fall on 

the incorrect side of the hyperplane, resulting in negative values in the decision function. 
 

 

4. RESULTS AND DISCUSSION 

The suggested methods are evaluated using benchmark intrusion detection datasets, with a specific 

focus on the top four attacks as zero-day occurrences within both the CICIDS2017 and CSECICIDS2018 

datasets. The evaluation involves comparing the proposed model against standard anomaly detection 

algorithms OCSVM on un-clustered data, followed by an assessment of their performance. The Table 1 

presents the dataset utilized and the quantity of selected samples for this research. 
 

 

Table 1. Experimental samples 
 CICIDS2017 CSECICIDS2018 

Training class Benign Benign 

Testing class DoS-DDoS-Brute Force-Botnet-Benign 
Features 83 80 

Benign 2,359,087 2,374,871 

Attack 224,893 239,842 

 

 

4.1.  Performance metrics 

Evaluating the efficiency of an intrusion detection model using a confusion matrix [26] involves 

assessing accuracy, recall, and specificity. Recall, as depicted in (1), represents the accurate identification of 

positive instances. Specificity, outlined in (2), gauges the system's capability to correctly recognize true 

negative instances, serving as a comprehensive evaluation metric. Accuracy, as indicated in (3), measures the 

precision of classifications. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (1) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

 

The successful performance of the model hinges on critical factors, including the suitable 

architecture and hyperparameter configurations for the AE detection model. Extensive experimentation was 

undertaken to identify the most effective hyperparameter configurations. The AE proposed in the method 

comprises an input layer, five latent space, and an output layer. Additionally, the AE integrates three hidden 

layers, with unit sizes customized according to the loss function. This approach guarantees an optimal 

adaptation to the diverse feature dimensions within the training data. 
 

4.2.  Training and testing the detection model 

This approach entails dividing the dataset into training (70%) and testing (30%) subsets comprising 

benign data. All attack data is utilized for evaluation purposes. The model undergoes training with early 

stopping criteria to ascertain the ideal number of epochs. Rectified linear unit (ReLU) is employed as the 

activation function, while Adam optimization with a learning rate set at 0.0001 is utilized. Detection accuracy 

is evaluated by employing MSE as the loss function. Figure 5 illustrates the testing accuracy of the proposed 

approach across both datasets, emphasizing the efficacy of the model. Detection models constructed using 

both Normal and Attack data from the CICIDS2017 and CSECICIDS2018 datasets demonstrate significant 

performance across all datasets. The experimental results of the AE model, averaged across ten experiments, 

demonstrate significant performance across both datasets. 
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Figure 5. Proposed AE loss function 

 

 

4.3.  Assessing the AE on the CICIDS2017 and CSECICIDS2018 datasets 

As stated earlier, the AE is trained using 70% of the benign instances. The optimized architecture of 

the AE for the CICIDS2017 and CSECICIDS2018 datasets consists of a neural network comprising 19 

neurons in latent space 1 and 5, along with three hidden layers consisting of 14, 10, and 14 neurons. The ideal 

batch size for optimal performance is 1,024. Along with other optimized parameters such as a mean square 

error loss (MSeL) function, L2 regularization set at 0.0001 and training durations of 114 epochs for 

CICIDS2017 and 126 epochs for CSECICIDS2018 datasets, respectively. 

Table 2 provides a summary of the AE accuracy for all classes in the CICIDS2017 and 

CSECICIDS2018 datasets. Accuracy differs for benign and attack classes. For benign, it reflects specificity, 

indicating instances correctly classified as non-zero-day. For attacks, it represents recall, capturing correctly 

identified instances. 

 

 

Table 2. AE accuracy for all classes in the CICIDS2017 and CSECICIDS2018 datasets with different 

threshold values 
 CICIDS2017 CSECICIDS2018 

Threshold/attack 0.15 0.1 0.05 0.15 0.1 0.05 

Benign 0.9659 0.9529 0.9147 0.9889 0.9598 0.9248 

DoS 0.9842 0.9858 0.9887 0.9877 0.9878 0.9898 

DDOS 0.9823 0.9898 0.9899 0.9882 0.9881 0.9891 

Brute Force 0.9301 0.9648 0.9847 0.9412 0.9784 0.9878 

Botnet 0.9348 0.9788 0.9897 0.9483 0.9828 0.9897 

 

 

From Table 2, the accuracy for benign instances is 96.59%, 95.29%, and 91.47% with thresholds of 

0.15, 0.1, and 0.05, respectively. Decreasing the threshold generally increases accuracy across all classes in 

both datasets. CSECICIDS2018 and CICIDS2017 consistently shows higher accuracy at all thresholds. The 

AE effectively identifies benign instances, with accuracy ranging from 91.47% to 96.59% in CICIDS2017 

and 92.48% to 98.89% in CSECICIDS2018. Additionally, attacks such as denial-of-service (DoS), 

distributed DoS (DDoS), Brute Force, and Botnet are accurately detected, with accuracy consistently above 

90% for most thresholds and datasets. Lower thresholds (0.05) tend to yield higher accuracy for most classes, 

indicating a preference for higher sensitivity at the expense of specificity. Overall, the AE exhibits robust 

performance in detecting both benign and attack instances across various thresholds and datasets, with 

generally higher accuracy observed in the both CICIDS2017 and CSECICIDS2018 dataset. 

 

 

4.4.  Assessing the OCSVM on the CICIDS2017 and CSECICIDS2018 datasets 

The OCSVM is trained exclusively with non-malicious occurances. To facilitate this training, a 

specific 'ν' value was designated for the OCSVM. The 'ν' parameter ranges between 0 and 1, defining both 

the minimum and maximum thresholds for the number of examples identified as support vectors, including 

those that lie on the wrong side of the hyperplane. The default value for 'ν' is set to 0.5, implying that it 
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incorporates 50% of the training samples within the hyperplane. However, for the purpose of this experiment, 

several 'ν' values were selected (0.2, 0.15, 0.1). These values were chosen to evaluate and gauge the 

performance of the AE. Seventy percent of the non-attack samples are utilized to train the OCSVM model. In 

contrast to the AE model, the evaluation of an OCSVM trained model results in a binary value 0 and 1. The 

output indicates whether an occurance is classified within the SVM's fitted class. Consequently, the 

assessment of each attack relies on the number of instances predicted with a '0' output from the OCSVM. 

Figure 6 presents a summary of the results obtained from the OCSVM. Upon examining the 

OCSVM results, two observations become apparent. Firstly, altering the 'ν' value does not notably impact 

detection accuracy. Secondly, the classes that exhibit high accuracy in the AE results in Table 2 are similarly 

identified by the OCSVM. Nevertheless, it does not succeed in identifying two additional categories: those 

exhibiting enhanced accuracy at lower thresholds, and those demonstrating poor detection accuracy. This 

arises from the constraints of the OCSVM algorithm, which aims to establish a spherical hyperplane to 

distinguish the benign class from others. Nonetheless, classes falling within this hyperplane are consistently 

classified as benign. This can be further visualized in Figure 7. OCSVM is particularly effective in 

identifying recognizable zero-day attacks. Yet, AE excel in handling intricate zero-day attacks, boasting 

notably superior performance rankings. 

 

 

 
 

Figure 6. OCSVM accuracy evalaution on 

CICIDS2017 

 
 

Figure 7. OCSVM accuracy evalaution on 

CSECICIDS2018 

 

 

4.5.  Performance comparison 

Figure 8 illustrates AE and OCSVM algorithm performance across varied hyperparameters on 

CICIDS2017 and CSECICIDS2018 datasets. AE's detection accuracy improves with decreasing 

hyperparameters, consistently outperforming OCSVM. AE achieves highest accuracy on CICIDS2017 

(98.88%) and CSECICIDS2018 (98.91%) with a hyperparameter of 0.05. OCSVM's accuracy also improves 

with reduced hyperparameters but remains slightly inferior to AE, notably on CICIDS2017. Its highest 

accuracies are 90.74% on CICIDS2017 and 90.76% on CSECICIDS2018 with a hyperparameter of 0.1. 

Overall, AE exhibits superior performance, with decreasing hyperparameters correlating with enhanced 

accuracy, suggesting CSECICIDS2018's potential for zero-day detection.  

The radar chart in Figure 9 compares the accuracy of various anomaly detection algorithms for zero-

day attack detection. AE leads with 98.90% accuracy, followed closely by OCSVM at 90.75%. K-nearest 

neighbors (KNN) [26] trails behind at 82.17%, indicating weaker performance compared to AE and 

OCSVM. Density-based spatial clustering of applications with noise (DBSCAN) [27] achieves 86.54% 

accuracy, falling between AE and OCSVM. Overall, AE demonstrates superior accuracy among the 

evaluated algorithms, with OCSVM, DBSCAN, and KNN following suit. 

The combined results and discussion underscore the strong performance of our detection model, 

with the AE consistently achieving high accuracy on the CICIDS2017 and CSECICIDS2018 datasets. Key 

findings indicate that our model effectively detects both benign and attack instances, maintaining accuracies 

consistently above 90% across most thresholds. Figures 5 and 6 visually support these results, providing clear 

evidence of the model's effectiveness. 

Our model demonstrates superior accuracy compared to previous studies, especially in identifying 

zero-day attacks. Although the AE outperforms the OCSVM, our study also highlights some limitations, such 

as the OCSVM's difficulty in detecting specific attack categories. Surprisingly, lower thresholds led to higher 

accuracy, indicating a trade-off between sensitivity and specificity. 
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The main objective of this study was to create an effective anomaly detection model. Our findings 

highlight the AE's crucial role in improving detection accuracy, which has important implications for future 

cybersecurity applications. Future research should focus on further optimizing hyperparameters and 

addressing the identified limitations, especially for more complex attack scenarios. 

 

 

 
 

Figure 8. Performance comparison of AE with 

OCSVM 

 
 

Figure 9. Performance comparison with 

Benchmark algorithms 

 

 

5. CONCLUSION 

The manuscript introduces an innovative approach to detect zero-day cyber-attacks using outlier-

based techniques, aiming to address limitations of existing IDS. The proposed method revolves around an 

intelligent IDS model employing AE architecture, capitalizing on its encoding-decoding capabilities. Across 

the CICIDS2017 and CSECICIDS2018 datasets, the AE model exhibits robust detection accuracy, ranging 

from 98.47% to 98.99%. Comparative analysis against OCSVM underscores the superior accuracy of the 

proposed model, accompanied by low false-positive rates. Future endeavors entail assessing these models 

with specialized network IDS datasets, such as those pertaining to IoT and critical Infrastructure networks. 

This iterative process aims to adapt and refine the approach, fostering deeper insights into zero-day attack 

detection and facilitating exploration of additional ML techniques to enhance efficacy. 
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