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Video feature extraction is pivotal in video processing, as it encompasses the
extraction of pertinent information from video data. This process enables a
more streamlined representation, analysis, and comprehension of video content.
Given its advantages, feature extraction has become a crucial step in numer-
ous video understanding tasks. This study investigates the generation of video
representations utilizing three-dimensional (3D) convolutional neural networks
(CNNp5s) for the task of video summarization. The feature vectors are extracted
from the video sequences using pretrained two-dimensional (2D) networks such
as GoogleNet and ResNet, along with 3D networks like 3D Convolutional Net-
work (C3D) and Two-Stream Inflated 3D Convolutional Network (I3D). To as-
sess the effectiveness of video representations, Fl-scores are computed with
the generated 2D and 3D video representations for chosen generic and query-
focused video summarization techniques. The experimental results show that
using feature vectors from 3D networks improves F1-scores, highlighting the
effectiveness of 3D networks in video representation. It is demonstrated that 3D
networks, unlike 2D ones, incorporate the time dimension to capture spatiotem-
poral features, providing better temporal processing and offering comprehensive
video representation.
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1. INTRODUCTION

Video feature extraction is a foundational aspect of computer vision, designed to overcome the chal-
lenges presented by the intricate and extensive nature of video data. Its purpose is to facilitate analyses that are
not only more efficient but also more interpretable and accurate. Effective comprehension of videos demands
representation at multiple levels, necessitating an appropriate video representation. Effective video process-
ing relies on video feature extraction for the following reasons: (i) reducing the complexity of video data
for more manageable analysis, (ii) simplifying the interpretation of underlying information for both humans
and deep learning models, (iii) condensing meaningful information while retaining essential characteristics,
(iv) enhancing the model’s ability to generalize patterns for accurate predictions, and (v) efficient utilization of
computational resources by focusing on relevant aspects.
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Video feature extraction involves selecting and/or combining variables to generate feature vectors.
Feature vectors of a video are numerical representations that capture various attributes and characteristics of
the video content in a structured format. These vectors can encapsulate various visual, spatial, temporal,
motion, and audio attributes of the video content. These vectors facilitate effective analysis, understanding,
and processing of videos in numerous applications. Feature extraction efficiently reduces the volume of data
that needs processing while maintaining accuracy in representing videos.

The combination of video segmentation and feature extraction is instrumental in mitigating computa-
tional overhead by streamlining the preprocessing across all frames in the video. When analyzing videos for
computer vision tasks, a variety of features play a pivotal role. The different video features utilized for video
understanding are illustrated in Figure[I] These diverse features contribute to a holistic comprehension of video
content, facilitating various applications within the field of computer vision [[].

Spatial Features: Extracted from still video frames. The spatial features distinguish be-

| tween static and dynamic contexts encompassing the position of objects. They explore the
object’s relative spatial area and semantic relationships with other objects in each video
frame.

p
Temporal Features (Optical Flow): Involves the extraction of action or object movement.
— Optical flow represents the motion pattern of an object across consecutive frames requiring

the estimation of per-pixel motion between them.

. J
Video ( N
Features Textual Features: Focuses on the detection and recognition of textual content within video

frames categorizing texts as scene text or caption text [2].

Trajectory Extraction: A dense representation of video obtained through optical flow algo-
— rithms allows for the extraction of dense trajectories [3]]. These trajectories provide valuable

information characterizing the appearance and motion of objects.
J

p
Content-based Feature Extraction: Involves the extraction of feature vectors based on the
L{ video’s context and tailored to the specific task at hand such as video summarization or
video captioning.

Figure 1. Types of video features

Features can be extracted using both classical methods that rely on local, hand-crafted features and
advanced techniques involving deep neural networks, as detailed in section 2. This research explores the uti-
lization of three-dimensional convolutional neural networks (3D CNN5) to enhance video representations. A
comparative analysis is conducted on conventional video summarization and query-focused video summariza-
tion techniques. Our contributions are as follows: i) the video features are extracted utilizing pretrained 3D
CNNs (C3D and inflated 3D (I3D)); ii) the specific baseline algorithms for generic and query-focused video
summarization are chosen and the F1-scores for generated video presentations are computed; and iii) the perfor-
mance is evaluated by comparing pretrained two-dimensional (2D) and 3D convolutional networks for feature
extraction in terms of calculated F1-scores.

Given its numerous advantages, feature extraction stands as a fundamental process in numerous re-
search applications, such as:

— Video classification: it is the task of assigning one or more global labels to the video. The proper extraction
of features from the input video leads to the prediction of accurate frame labels that describe the entire
video [4].

— Action recognition: the action recognition in videos aims to infer the actions of one or persons in the
video. The spatial and long-range temporal feature extraction is necessary for human activity or action
recognition [S].

— Video understanding: is the task of recognition and localization of different actions or events occurring in
the video. As the localization is in both spatial and temporal dimensions, this task requires spatiotemporal
feature extraction [6]].
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— Video captioning: is the task of generating automatic captions for a video. This leads to efficient information
retrieval from the video in the form of text. As captioning is the textual description of the video, it needs
extraction of more complex features [7]].

— Simultaneous localization and mapping (SLAM): is a method used for autonomous vehicles that develops
a map and localizes the vehicle in the same map [8]. In SLAM, spatial and motion features need to be
extracted and matched for localization and obstacle detection.

— Video summarization: is a process of generating a temporally condensed version of the input video. Video
representations at multiple levels are necessary for spatiotemporal modelling due to long durations of
videos [9]—[11]].

These applications make video feature extraction a valuable research topic for study. The structure of
the paper is as follows: section 2 discusses the related work on video feature extraction. Section 3 elaborates
on the use of 3D convolutional networks employed for extracting video features. The experimental result and
analysis are discussed in section 4 and section 5 provides conclusions.

2. RELATED WORK

This section explores the existing video feature extraction techniques employed in summarization
methodologies in literature. Video summarization and feature extraction represent longstanding research areas
in computer vision. Video feature vectors can be extracted using classical vision techniques focusing on hand-
crafted features as well as deep neural networks [1]]. The classification of feature extraction techniques is
provided in Figure

With advancements in deep learning, video feature extraction has also leveraged these technologies.
Key trends propelling the field forward include the integration of multimodal information, the development of
self-supervised learning techniques, and the exploration of novel architectures such as transformers. The deep
learning based feature extraction techniques have outperformed the classical vision techniques. These models
are effectively utilized in various research domains [[1]]. The merits of deep learning based techniques include:
— Extraction of complex and abstract features by feature engineering: feature engineering deals with the ex-

traction of features from natural data. The spatiotemporal models utilize state-of-the-art feature engineering
models to extract more complex features from videos.

— Feature extraction for unstructured data: deep neural networks can handle unstructured data better than
hand-crafted features by training on various abstract features.

— Unsupervised feature learning: the process of labelling the available data is expensive and time-consuming.
This process is more challenging when it is extended for videos. The traditional techniques do not perform
well on unsupervised data, but spatiotemporal models can be efficiently used with unlabelled data.

— High-quality results: the semantic relationships between objects and their motion patterns are also explored
while extracting the features using modern machine vision techniques. This leads to improvement in the
quality of results in different computer vision tasks.

Most of the summarization methods employ 2D CNNs, GoogleNet, and Residual Network (ResNet) to
extract video features. GoogleNet, also known as Inception V1, was presented in 2014 [12]]. ResNet, introduced
in 2015, brought forth the ResNet architecture [13]. In video summarization frameworks, GoogleNet and
ResNet pretrained on the ImageNet dataset [[14] are widely employed for feature extraction from input video
sequences. 2D CNNs face several challenges in video feature extraction due to their limitations in handling
temporal information:

— Lack of temporal awareness: 2D CNNs process each frame independently, missing temporal relationships
crucial for understanding motion and events.

— Handling motion: they struggle with dynamic content and the complexity of integrating optical flow.

— Spatiotemporal features: they capture only spatial features, lacking the rich spatiotemporal context needed
for tasks like action recognition.

— Multi-modal integration: combining visual features with audio and text is challenging without inherent
temporal modeling.

This study proposes the use of 3D CNNss for video feature extraction to overcome these limitations.
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(Histogram of Gradient (HOG) and Histogram of Optical Flow (HOF): These )
— encoding techniques are used to extract features for the most common tasks
of object detection and activity recognition.

p
Space-Time Interest Points (STIP): The space-time interest points can be
used to model spatiotemporal features and dynamic motion patterns.

Classical
Vision
Techniques

Scale-Invariant Feature Transform (SIFT): The local still image spatial cues
— in videos can be captured by using the classical image based descriptors such
as SIFT.

Dense Trajectory: The dense trajectory approach can be used to model local
spatial cues and global motion cues such as motion.
-

J

Video

Feature (Convolutional Neural Network (CNN): The 2D and 3D CNNs are effectively )
Extraction — used for extracting spatiotemporal features and short-term motion cues from
| raw video data.

p
Recurrent Neural Network (RNN): The RNNs are also used to extract short-
term and long-term motion patterns from videos.

.

Deep

Learning —
based

Techniques

rLong Short-Term Memory (LSTM): The long-term motion cues can be mod-
elled using LSTMs.
L

(Generative Adversarial Neural Network (GAN): The spatiotemporal features
can be extracted from videos using GANS.
.

( . . . A
Regularized Feature Fusion Models: The feature scores extracted from differ-
ent network layers and levels are combined using feature fusion techniques.

L J

Figure 2. Classification of video feature extraction techniques

3. METHOD

This section presents the merits of utilizing 3D convolution for video comprehension, along with the
application of 3D CNNs to capture features from video sequences in summarization algorithms. A video con-
sists of many segments, with each segment comprising shots, and these shots are composed of sequences of
frames. For a comprehensive understanding of the videos, it is necessary to learn feature representations at
different levels. To extract feature vectors at different levels, the video is divided into small, non-intersecting
shots. After segmenting the video, features are extracted using pretrained 3D convolutional networks. Figure
illustrates the extraction of video features using pretrained 3D CNN [[15].

3.1. 2D and 3D convolution

The fundamental difference between 2D and 3D convolution lies in the dimensionality of the input
data that each processes. Generally, 2D convolution is employed on two-dimensional data, like images. This
convolutional process entails moving a 2D kernel/filter across the input image, conducting element-wise multi-
plications, and subsequently aggregating the results. The convolution and pooling are performed spatially in 2D
CNNG [135]. As aresult, it does not model the temporal information. Figured]illustrates the distinction between
2D and 3D convolution. When 2D convolution is employed on an image, it yields another image as shown in
Figure ffa). Similarly, applying 2D convolution to multiple images (treating them as distinct channels) also
produces an image as the output as indicated by Figure [{(b).

3D convolution is designed for three-dimensional data, such as video sequences or volumetric data.
The 3D kernel is not only applied across height and width but also extends to the depth dimension (or time,
in the context of videos). This convolutional process traverses the complete volume of the input data. The
convolution and pooling are performed spatiotemporally in 3D CNNs. As a result, it preserves the temporal
information outputting a volume as shown in Figure [d{c).

Leveraging 3D convolutional networks for effective video ... (Bhakti Deepak Kadam)
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The advantages of 3D convolution over 2D convolution are prominent in tasks involving spatiotem-

poral data, such as video processing. The benefits of 3D CNNs include:

— Spatial-temporal features: it integrates spatial and temporal features simultaneously for a comprehensive
data representation, crucial for video sequences.

— Temporal information capture: it effectively captures temporal information by considering the time dimen-
sion, which is essential for video analysis and action recognition.

— Natural extension for video analysis: it extends CNN capabilities for video understanding by inherently
considering the temporal dimension.

— Unified framework for video processing: it provides a unified approach for processing both spatial and
temporal dimensions, simplifying architecture compared to separate 2D and 1D processing units.

— Volumetric understanding: it enables the modelling of volumetric data, offering comprehensive spatial and
temporal understanding, beneficial for 3D medical imaging and other volumetric data tasks.
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Figure 4. Comparison between 2D and 3D convolution [13]: (a) 2D convolution with an image,
(b) 2D convolution with multiple frames, and (c) 3D convolution on a video
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3.2. 3D CNNS: C3D and I3D

In video summarization methods proposed by researchers in the literature, GoogleNet is the frequently
chosen deep network for feature vector extraction. GoogleNet [12]] is 2D CNN pretrained on ImageNet dataset
[[14]. Recently, 3D CNNs, C3D, and I3D are also employed for video feature extraction. The spatiotemporal
feature extraction using a 3D CNN was proposed by researchers in 2015 [15]. C3D is a deep 3D CNN with
a homogeneous architecture containing 3 X 3 x 3 convolutional kernels followed by 2 x 2 x 2 pooling at
each layer. The C3D model offers generic feature extraction. It provides a compact representation of video
segments, generating a 4096 element vector from a 16-frame input. The model’s homogeneous architecture,
featuring small kernel sizes 3 x 3 x 3, ensures fast and efficient inference, enabling optimized implementations
on embedded platforms.

The 13D model, introduced by researchers in 2017, is a two-stream 13D ConvNet that extends 2D
CNN principles into the 3D domain [16]. By inflating 2D filters and pooling kernels into 3D, the I3D model
aims to capture spatiotemporal features from videos, leveraging successful architectures and parameters from
ImageNet. Key features include the adaptation of 2D filters to 3D, expansion of the receptive field in space and
time, and the use of two 3D streams for enhanced performance.

4. RESULTS AND DISCUSSION

This section discusses the various baseline summarization methods selected for the study, the experi-
mentation conducted, and the results obtained from these experiments. It provides an overview of summariza-
tion techniques, experimental setup including the datasets, and the evaluation metric employed to assess the
performance of the summarization methods along with the performance comparisons.

4.1. Summarization methods

The effectiveness of 3D CNNss in video feature extraction is demonstrated through the examination of
two summarization frameworks: conventional video summarization and query-focused video summarization.
An overview of summarization methods is provided.

4.1.1. Conventional video summarization methods under consideration

Conventional or generic video summarization involves generating a concise video summary by auto-
matically selecting keyframes or keyshots representing the most important content necessary for understanding
the video. This type of summarization is generally content-driven, relying on the visual information within the
video to determine what should be included in the summary. The methods under consideration are:

— Diversity-representativeness reward deep summarization network (DR-DSN): a deep summarization net-
work [17] proposed for estimating the likelihood of individual video frames and generating the video sum-
mary.

— Video attention summarization network (VASNet): a summarization method [9] combining a soft self at-
tention and two-layer regressor network.

— Positional encoding with global and local multi-head attention for summarization (PGL-SUM): integration
of positional encoding with global and local multi-head attention [18]] for calculating importance scores of
frames.

— Summarization generative adversarial network with attention autoencoder (SUM-GAN-AAE): a supervised
summarization technique leveraging the combination of adversarial learning with attention mechanism [[19]
for summarizing videos.

— Concentrated attention summarization (CA-SUM): a summarization network employing [[11] concentrated
attention considering uniqueness and diversity of video frames.

— Deep summarization network with reinforcement learning (DSR-RL): a recurrent summarization network
[20] incorporating self attention mechanism and reinforcement learning.

4.1.2. Query-focused video summarization methods under consideration
Query-focused video summarization generates the video summary based on specific input queries by
the user. This type of summarization is context-driven, relying on viewer queries, making it more personalized
than conventional summarization. The methods under consideration are:
— Three-player adversarial network (TPAN): a generative adversarial network with three players [21]] operat-
ing on three sets of query-conditioned summaries to generate query-focused video summaries.

Leveraging 3D convolutional networks for effective video ... (Bhakti Deepak Kadam)
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— Mapping network (MapNet): a mapping network [10] that investigates the correlation between video shots
and queries.

— Hierarchical variational network (HVN): a novel architecture, hierarchical variational network [22] de-
signed to capture long-range temporal dependencies based on queries with its multi-level variational block.

— Query-relevant segment representation module with global attention module (QSRM-GAM): a two-stage
approach, consisting of the query-relevant segment representation module and global attention module [23]
proposed for video summarization, taking into account user interests.

— Convolutional hierarchical attention network (CHAN): a pioneering model, convolutional hierarchical at-
tention network [24]] to employ local and global self-attention for query-focused video summarization.

4.2. Experimental setup

An experiment is carried out to extract the spatiotemporal features from video sequences using pre-
trained C3D [15] and I3D [16] networks. The C3D network is trained on the Sports-1M dataset [25]. Motion
features are obtained in the RGB and flow formats. RGB features are extracted from video frames utilizing the
I3D model [16]], pretrained on Kinetics 400 dataset [26], in conjunction with PWC-Net [27]. Flow features,
on the other hand, are extracted using I3D network with recurrent all-pairs field transforms (RAFT) [28]]. All
experiments are conducted on a computer equipped with an NVIDIA RTX 3060 GPU.

4.2.1. Datasets

TVSum [29] and SumMe [30] are the publicly available benchmark datasets employed for generic
video summarization. The SumMe dataset [30] comprises 25 videos spanning various genres like sports, holi-
days, and cooking. In contrast, the TVSum dataset [29] includes 50 YouTube videos across 10 categories such
as documentary, educational, and egocentric. Both datasets come with multiple user annotations, including
user-selected keyframes and shot-level importance scores.

For query-based video summarization, the benchmark dataset used is the query-focused video summa-
rization (QFVS) dataset [31]]. The QFVS dataset [31]] includes four egocentric consumer-grade videos recorded
in uncontrolled everyday scenarios, each lasting 3 to 5 hours and featuring a diverse range of events. For each
video and query pair, the dataset includes four query-based summaries, consisting of one oracle summary and
three user-generated summaries.

4.2.2. Evaluation metric

Video representations for sequences in the above-mentioned datasets are generated using C3D, 13D
(RGB), and I3D (flow) networks, and F1-scores are computed. The F1-score assesses the similarity between
the ground truth summary (user summary) and the generated machine summary [32]. It is the harmonic mean
of precision and recall. This metric is the most commonly used approach for measuring the performance of
summarization frameworks.

4.3. Results

The experimental results are presented in Tables[I|and[2] The results provide a comparative analysis of
the performance of various video representation techniques for conventional and query-focused summarization
methodologies under study.

Table 1. Comparative analysis of feature extraction techniques in generic summarization methods assessed on
TVSum and SumMe datasets

Method F1-score with F1-score with FI-score with F1-score with
GoogleNet C3D 13D (RGB) 13D (Flow)

SumMe TVSum SumMe TVSum SumMe TVSum SumMe TVSum
DR-DSN [17] 42.1 58.1 55.8 65.7 55.3 65.4 55.5 65.6
VASNet [9] 49.7 61.4 51.4 63.8 60.2 62.6 60.8 62.3
PGL-SUM [18] 57.1 62.7 55.7 65.3 60.3 64.8 60.1 64.2
SUM-GAN-AAE [19] 48.9 58.3 52.3 62.7 52.1 62.6 51.7 62.3
CA-SUM [11] 51.1 61.4 61.4 66.4 61.9 65.1 60.2 64.9
DSR-RL [20] 50.3 61.4 54.8 64.5 51.7 63.4 55.3 62.8
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Table 2. Comparative analysis of feature extraction techniques in query-focused summarization methods
assessed on QFVS dataset

Method Features Result (F1-scores)

TPAN [21]] ResNet152 + C3D 46.05
MapNet [10] ResNet152 + C3D 47.20
CHAN [24] ResNet 46.94
HVN [22] C3D 48.87
QSRM-GAM [23]] 13D 49.20
CHAN [24] C3D 51.43
CHAN [24] 13D 50.78

4.3.1. Results with conventional video summarization methods

Table [I] provides the performance comparison of conventional summarization frameworks in terms
of Fl-scores. The Fl-scores reported for GoogleNet are retrieved from corresponding papers. Table [I] and
Figure [5 indicate that the Fl-scores for C3D and I3D video representations show a significant improvement
over GoogleNet. Additionally, Figures [5(a) and [5(b) depict a rising trend in Fl-scores for the SumMe and
TVSum datasets, respectively. The results show that using 3D CNNs for video feature extraction has enhanced
the Fl-scores on the SumMe dataset, with improvements of 32.5% for DR-DSN, 3.4% for VASNet, 6.9% for
SUM-GAN-AAE, 20.1% for CA-SUM, and 8.9% for DSR-RL. Similarly, on the TVSum dataset, the F1-scores
have increased by 13% for DR-DSN, 3.9% for VASNet, 4.1% for PGL-SUM, 7.5% for SUM-GAN-AAE, 8.1%
for CA-SUM, and 5% for DSR-RL.
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Figure 5. Performance comparison of feature extraction techniques assessed on
(a) SumMe and (b) TVSum dataset

4.3.2. Results with query-focused video summarization methods

Table |2 provides the comparative analysis of query-based summarization frameworks in terms of
F1-scores. The majority of summarization methods utilize ResNet for extracting video features. ResNet [[13] is
a pretrained 2D CNN trained on the ImageNet dataset. The F1-scores presented in Table 2] indicate that video
representations obtained with C3D result in enhanced F1-scores.

4.4. Discussion

Previous studies have shown that GoogleNet and ResNet are well-established models that excel at ex-
tracting spatial features from individual video frames using inception modules, which are composed of multiple
parallel convolutional filters of varying sizes. These models effectively capture intricate spatial details within
each frame, making them highly suitable for image-based tasks. However, their focus on spatial features alone
limits their ability to fully capture the temporal dynamics inherent in video sequences.

3D CNNs extend the capabilities of conventional 2D convolutions by integrating the time dimension,
allowing for the simultaneous analysis of both spatial and temporal aspects of video data. This integration is
crucial for tasks involving video sequences, where understanding motion and changes over time is as important

Leveraging 3D convolutional networks for effective video ... (Bhakti Deepak Kadam)
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as recognizing spatial features within individual frames. This study investigates the use of 3D CNNss for effec-
tive video feature extraction in summarization. It is demonstrated that by capturing spatiotemporal features, 3D
CNNss offer a more comprehensive representation of video content, resulting in notable improvements in per-
formance for video summarization. Although 3D CNNs have advanced video feature extraction, there is scope
for further research and development. Future research in video feature extraction can explore several promising
directions like hybrid models that combine the spatial strengths of 2D CNNs with the temporal capabilities of
3D CNNs and multi-modal video analysis.

5. CONCLUSION

In this paper, a comparative investigation of video feature extraction using 3D CNNs, focusing on
their applications in generic and query-specific video summarization is conducted. This study examines the
classical and deep learning based feature extraction techniques, highlighting the advantages of deep learning
approaches. The majority of existing video summarization techniques commonly rely on 2D CNNs, such as
GoogleNet and ResNet, for feature extraction. It is demonstrated that 3D CNNs, such as C3D and 13D, are
more effective for video feature extraction in both generic and query-specific video summarization compared
to traditional 2D CNNs. By evaluating F1-scores for various summarization methods, it is concluded that 3D
CNN s significantly improve performance due to their ability to capture both spatial and temporal features. This
underscores the superiority of 3D CNNs in providing a more comprehensive understanding of video content,
marking a notable advancement in video feature extraction and summarization techniques.
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