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Abstract 
Interharmonics frequencies are not integer multiple of the fundamental frequency, and 

interharmonics amplitudes are far less than fundamental amplitude and harmonics amplitudes, which 
mean high sensitivity to desynchronization problems, so it’s dificult to estimate interharmonics. In this 
paper, a new method based on random sparse sampling and compressed sensing (CS) Bregman 
technique was proposed to estimate the interharmonics. The random sam pling has following advantages; 
alias-free, sampling frequency need not obey the Nyquist limit, and higher frequency resolution. So the 
random sampling can measure the signals which their frequencies component are close, and can 
implement the higher frequencies measurement with lower sampling frequency. However, the random 
sampling exists the noise in spectrum analysis, so it’s difficult to estimate the low amplitude signals. 
Compressed sensing can work out this problem by designing observation matrix and with the sparsity 
reconstruction of the signal in the Fourier domain; in addition, the application of CS can estimate the 
amplitudes and phases of the signals exactly. The results ofexperiments show that the proposed method 
can estimate the interharmonics exactly,even if the interharmonics frequencies are close the fundamental 
frequency and interharmonics amplitudes are far less than fundamental amplitude and can measure high 
order interharmonics with lower sampling frequency.  
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1. Introduction 

With the widespread use of nonlinear loads, power system, a large number of frequency 
of the fundamental frequency of aneuploidy between the harmonics [1]. Pollution caused by the 
presence of harmonics and interharmonics on the power system environment must be right to 
effective governance, and accurate detection of harmonics is that the premise of governance. 
However, inter-harmonic characteristics determine its detection is difficult for harmonic 
detection. First, the inter-harmonic frequency of the fundamental frequency of aneuploidy is 
often difficult to determine the cycle of the waveform contains interharmonics. Harmonic and the 
fundamental inter-harmonic frequency domain is less than one working frequency, which means 
that the higher harmonics in the detection of inter-frequency resolution. Between harmonic 
amplitude is often far less than the amplitude of the fundamental and harmonic components, 
which means that the harmonic component of spectral leakage with high sensitivity, inter-
harmonic and fundamental and harmonic components the frequency is close to, this effect is 
more pronounced. Therefore, the inter-harmonic analysis method should have the following 
characteristics: by non-synchronous sampling is small; sampling time should not be too long, so 
as to avoid before and after the collection of data from the same signal; with high frequency 
resolution. 

Accuracy due to non-synchronous sampling and data truncated, using the Fast Fourier 
Transform (FFT) algorithm for harmonic analysis to produce spectral leakage and fence effect, 
the impact of harmonic analysis [2-3]. To reduce such errors, the scholars based on the 
rectangular window [4], Hanning window [5], the Hamming window [6] Blackman, windows [7], 
Blackman-Harris window [8], the Kaiser window [9] such as signal windows and interpolated 
FFT algorithm can reduce encountered alone FFT spectrum leakage and fence effect, improve 
the detection accuracy of the harmonic parameters, but can not be detected near the integer 
harmonics asked harmonic; adopt fundamental and harmonic parameter estimation based on 
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higher order cosine combination window of the spectrum [5, 7, 10] or more lines [11-12] 
interpolation FFT algorithm, the solution of higher equations [13-15], computing complex; 
continuous wavelet transform [16-17] to achieve the detection of inter / harmonic, but there is 
mutual interference of different scales of the wavelet function in the frequency domain, when the 
signal to be detected with similar frequency harmonic to detect method will fail; on Prony 
method [18-19] is harmonic, between harmonic analysis and modeling effective way to 
accurately estimate the sinusoidal component of frequency, amplitude and phase angle, but it 
needs to solve two odd equation and polynomial time, the high computational complexity and 
noise-sensitive; there are other methods [20-22], or limited frequency resolution, or large 
calculation, there are limitations in the specific application. 

Designed a compressed between the perception of harmonic detection methods, time 
domain is lower than the Nyquist theory of random sampling, Bregman, frequency-domain 
reconstruction with high accuracy detection signal all the harmonics and interharmonics 
frequency, amplitude and phase. In this paper, a theoretical analysis and calculation of 
derivation, random sampling could be circumvented by Fourier domain spectral leakage, picket 
fence effect, as well as non-integer times a wave phenomenon. The simulation results show 
that: the proposed algorithm can effectively eliminate all the harmonics interfere with each other 
to improve the accuracy of signal analysis, harmonic analysis [23-29]. 
 
 
2. Random Sampling and Analysis 
2.1. The Drawbacks of Uniform Sampling

 Uniform sampling of a function of time is a linear function of the standard, such as 

sampling time interval distribution. Define the sampled signal )(tx , the sampling interval t , the 

sampling time point
tntn 

 , the sampling frequency t
f s 


1

, and to meet the sampling 
theorem, is greater than 2 times the highest frequency of the value signal. For a limited length of 

the sampled signal discretization, ie )]:1([][ tNxnx  , N is sampling points, sampling 

duration tNT  . 

By Fourier transform analysis of sampled signals
)256,256,185(),2sin()( HzfNHzffttx s  

. Signal spectrum analysis results shown 
in Figure 1. 

 
 

 
 

   Figure 1. Signal Spectrum Analysis of Uniformly Sampling (fs=256Hz) 
 
 

It can be seen from Figure 1, the sampling frequency is less than 2 times of the signal 

real frequency value, frequency value Hzf 185 of the aliasing signal 71Hz. The real signal 
spectrum is not distinguished because the aliasing signal spectrum is equal to the true signal. 
Also noted that the cases in the frequency resolution of 1Hz, the signal frequency is an integer 
multiple of the frequency resolution, so the ability to accurately measure the frequency value. 
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In the previous cases, other parameters constant, the changing sampling frequency is

Hzfs 512
, to meet the limitations of the sampling theorem. Signal spectrum analysis results 

shown in Figure 2. 
 
 

 
 

Figure 2. Signal Spectrum Analysis of Uniformly Sampling (fs=512Hz) 
 
 

Figure 2 shows the aliasing signal (0, 
2/sf ) band, but due to changes in sampling 

frequency, the frequency resolution becomes 2Hz, signal the true frequency of families 185Hz is 
not an integer multiple of the frequency resolution, thus leading to spectral leakage and fence 

phenomenon, so that the measured frequency value is Hzf 188 which is deviated from the 
correct value. 

As can be seen from the above analysis, uniform sampling is limited by the sampling 
frequency limit; aliasing frequency; frequency resolution is not high, there is the problem of 
spectral leakage and fence phenomena. 

 
2.2. Random Sampling and its Fourier Transform

 Random sampling, sometimes called non-uniform sampling, as opposed to uniform 
sampling of a sampling method. The sampling interval random sampling is random, the time 
interval is generally set to unequal intervals, not a linear function of the sampling points and 
sampling time. Random sample from the sampling theorem limit, increasing the frequency 
detection range can be detected in the short length of the data, low sampling frequency to the 
higher order frequency, allowing real-time to quickly meet the requirements of a particular 
occasion. The most important thing is that the random sampling of non-uniform sampling can 
eliminate signal aliasing problems caused by uniform sampling; also has the advantage of high 
frequency resolution, reducing the spectrum leak to eliminate the problem of the fence 
phenomena. 

In the example above, the other parameters constant, 

)()(),()1,0( nn txnxngTrandt 
 ,the switch to random sampling, where rand (0,1) 

random number between (0,1), Nn ,,2,1  ,g (n) is a nonlinear function of n. Fourier 
transform: 

 





N

n
ntjnxX

1

)exp()()( 
             (1) 

 

 
 

Figure 3. Signal Spectrum Analysis of Random Sampling (Average fs=256Hz) 
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Random sample (N = 256), Fourier transform spectrum analysis results shown in Figure 
3. The use of random sampling time sampling interval increases, the frequency resolution to 
eliminate the phenomenon of the fence. As a result of random sampling, the aliasing signal will 
no longer concentrated on some special points and the sampling frequency, but evenly 
distributed to all of the signal frequency band. In addition, spectral leakage will cause the 
spectrum noise. The spectrum noise can be reduced with the increase of sampling points.

 

 
 

3. Compressed Sensing Principle 
3.1. Compressed Sensing Representation  

Compressed Sensing (CS) theory main idea is: Suppose a length Nof the signal x  on 

an orthogonal basis or tight frame coefficients  is sparse (ie only a few non-zero coefficient), 

the coefficients of projection to another NM  : ( NM  )not related to a transform-based 

observations , the collection of the observations 1y:M . Signal x  is accurately recovered 
by solving an optimization problem in virtue of these observations. 

First, if the signal 
NRx on an orthogonal basis or tight frame  is compressible, the 

obtained transform coefficients xT ,   is the equivalent or sparse approximation of x ; 

the second step, to design a stable, not related to the transform-based , NM   dimension 

observation matrix  to observe x  the upcoming projected onto the M-dimensional space, 

observing a collection xy   of the process for the compression of the sampling process, 
namely the taking of samples [26-29]. Finally, the use of optimization problem solving the x ’s 

exact or approximate approximation x̂ . 
When the noise z observations, 
 

xy  +z                 (2) 
 
It can be transformed for the sake, 
 

 21 ||||..||||min xytsxT

x        (3) 
 

Or, 
 

12 ||||||||
2

1
minargˆ xxyx T

x
 

        (4) 
 

3.2. Separable Bregman Iterative Algorithm to Restore the Signal 

Problem (4) to solve the first converted to the sparse vector (5) to solve, A , 
then: 

 

1
2
2 ||||||||

2
minargˆ 


 Ay
        (5) 

 
Bregman algorithm [17-20], specific steps are as follows:   

1) Calculate: 
1)(  N

T IAAB 
, NI

 is N-dimensional unit matrix, yAF T ;

00 ,db
 are for the N-dimensional zero vector. 

2) Given )10( , iteration termination conditions )001.0( , the number of 

iterations 1n . 
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3) Calculate: 
)( 11   nnn bdFB

, 
)0,1|max(|)( 11   nnnnn bbsignd 
, 

4) nnnn dbb   1 . 

5) If 
   |||| 1nn , 1n n  , Go to Step 3); Otherwise, stop the iteration, n ˆ

 
 
3.3. Signal Low-speed Sampling Design with the Observation Matrix 

The design of the observer is to design efficient observation matrix can capture the 
design of a sparse signal useful information efficiency of the observations (ie, sampling) 
protocol, which the sparse signal is compressed into a small amount of data. These agreements 
is non-adaptive, only need a small amount of the fixed waveform and the original signal linking 
these fixed waveform and signal to provide a compact representation of the base. In addition, 
the observation process is independent of the signal itself. Using an optimized reconstructed 
signal can gather a small number of observations. 

Sampling interval [0, T] in this interval were collected randomly M points, 

MiTrandti ,,2,1,)1,0( 
, )1,0(rand are random points between (0,1) �

,)](,),(),([ 21
T

Mtxtxtxx  MRxy  � Interval reconstruction of the complex frequency 

domain N-dimensional NMC N  , . Compressed sensing harmonic detection is to find a 

mapping:
NM CRF : . 

Design a random observation matrix �  
 

NnMmn
T

t

N

l
i

N
nm

N

Nl s

m ,,2,1;,,2,1,))(2exp(
1

),(
2/

12/

  



    (6) 

 

sT
is uniform time-domain reconstruction of the equivalent of N-point sampling interval, 

  is Fourier-based, 
NjeNt Njti

j ,,2,1,)( /22/1   
. This design to meet irrelevant  

and    limitations of isometric resistance. A , This random sample of observations 
random characteristics. Observation matrix of random unrelated characteristic is a sufficient 
condition for the right to restore the signal, the height of the observation matrix and signal 
irrelevant to ensure the effective restoration of the signal. 

 
3.4. Implementation Steps of the Harmonic Detection in Compressed Sensing 

1) In the time domain given interval were collected randomly M points, the point 
sequence for the observation vector; 

2) Reconstruct the N points in this interval sT
, which have frequency-domain resolution 

 

Hz
NT

f
s

1


 
 

3) By (6), the design of the NM  observation matrix , the NN  order inverse 

Fourier transform matrix ; 
4) Bregman algorithm for reconstruction of complex N-point frequency domain; 
5) Given the magnitude of the threshold, when the reconstruction of the frequency 

domain is larger than the threshold, find the appropriate frequency, amplitude and 
phase. 

 
 
4. Experimental Evaluation 

Signal contains the fundamental, harmonics and harmonics, and their parameters in 
Table 1, the expression: 
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Table 1. Truth Component of the Signal & their Testing Result 

Waveform 

Actual value Detection value 

Freq./Hz Margin/V Phase/  Freq./Hz Margin/V Phase/  

Fundamental 50.00 35.0000 0.0000 50.00 34.9816  0.0056 

Interharmonic 75.00 5.0000 155.0000 75.00 4.9715  154.9602 

Harmonic 150.00 7.0000 35.0000 150.00 6.9858  34.9871 

Interharmonic 175.00 3.0000 50.0000 175.00 2.9770  49.9232 

Harmonic 250.00 4.0000 70.0000 250.00 3.9800  69.9572 

Harmonic 350.00 1.1250 115.0000 350.00 0.9840  115.0625 

 
 





6

1

)2cos()(
i

iii tfAtx           (7) 

 

The highest signal frequency: Hzf 350max  , Were collected randomly in one second 

of time M = 256 points, its random equivalent sampling frequency max256 fHzf s  , Random 

equivalent sampling frequency is much less than 2 times the highest signal frequency, does not 
meet the Nyquist sampling theorem; If the frequency of such uniform sampling, the Fourier 
transform of the existence of a certain spectrum aliasing and leakage, is not possible to detect 
tothe signal harmonics. Mining M= 256 using this method reconstruct the frequency domain N =

7682563   point, resolution 1Hz, test results are in Table 1 the right side of Figure 4. 
Harmonic frequency, amplitude, initial phase of the true values and measured values are plotted 
on the same plot, the results are very accurate. 

Figure 4 shows the original signal, the sampling points and the reconstruction of time-
domain signal, the picture shows the original signal and reconstructed signal amplitude-
frequency diagram, the lower part of the original signal and reconstructed signal frequency 
diagram; time domain reconstruction of the signal relative error Relativeerror = 0.0014. 

 
 

 
 

Figure 4. The Inter-harmonic Compressed Sensing Detection 
 
 
5. Conclusion 

Random sampling technique as a non-uniform sampling method can effectively improve 
the sampling rate of the sampling system. In random sampling, the sampling time interval of 
non-uniform distribution can not be collected enough sample values for signal reconstruction. 
The high precision of the power harmonic analysis for electric metering, harmonic power flow 
calculation, equipment, network testing, power system harmonic compensation, and inhibition of 
great significance. In this paper, the signal is sparse in the Fourier transform, to design a 
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random observation matrix, then sparse sampling; the use of Bregman iterative algorithm 
successfully restored the signal. This method without adding any hardware costs on the basis of 
the limited random sampling value reconstruction frequency domain signal. The experiments 
showed that frequency-domain sparse signal well below the sampling rate of the signal Nyquist 
frequency sampling, compressed sensing signal reconstruction algorithm can accurately 
reconstruct the frequency-domain signal through the method of this paper, high-precision 
detection of signal of each harmonic and inter-harmonic frequency, amplitude and phase. A 
theoretical analysis and calculation of derivation of this method to circumvent the Fourier 
domain spectrum leakage, picket fence effect, and non-integer times a wave phenomenon. The 
proposed algorithm can effectively eliminate all the harmonics interfere with each other to 
improve the accuracy of signal analysis, suitable for high accuracy harmonic analysis. 
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