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Abstract 
Cantilever energy harvester has become the main structure in piezoelectric energy harvester. 

There are two different methods to build their model. One is lumped parameter model; the other is 
distributed parameter model. By building their govern equation and solving them, amplitude-frequency 
characteristics, power and natural frequency of the model are obtained. Comparison of model frequency 
and amplitude are made between two models. Problems, scope of application and correct method for 
energy harvester are also given which provides reliable theoretical reference and makes solid foundation 
for energy harvester design. 
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1. Introduction 
With the application of wireless sensor networks become more and more widespread, 

supply energy for these wireless sensors proves to be a significant issue. At the same time, 
owing to the application of MEMS technology, the power consummation of wireless sensors 
become more and more low. Moreover, for the ambient vibration lies everywhere, the vibration 
can supply energy for the low-power consumption wireless sensor via energy harvester which 
transforms vibration into electricity. It is a favorable approach to deal with the long time power 
supply for the wireless sensor [1]. Therefore, numerous scholars have researched energy 
harvesting technology. The piezoelectric energy harvester becomes focus for simple structure 
and higher energy conversion efficiency [2]. 

Cantilevers is the most simple, effective and generally used geometry. Study and 
analyze the structure and mechanical relationship is the basis of the research of energy 
harvester. Generally, there are two mechanical models for energy harvester. One is lumped 
parameter model (Spring vibrator model), the other is distributed parameter model (Euler 
Bernoulli model) [3]. 

 
 

2. Lumped Parameter Model for Single Cantilever Energy Harvester 
Non coupled lumped parameter model is lumped parameter model. It is a convenient 

way to model. Acquired the parameter of the mechanical part of the harvester, the mechanical 
equilibrium equation and electrical balance equation can be build up by piezoelectric 
constitutive relation.And the transforming relationship is build up. The simplified model can 
interpret some feature of the energy harvester more accurately. 

 
2.1. Model Structure 

The sketch of the single cantilever beam energy harvester is shown in Figure 1. It is 
constituted of polarized piezoelectric plate along the depth of the layer and an elastic layer. The 
whole structure is clamped end of the beam and form into a cantilever structure. The energy 
harvester vibrates harmonically in the ambient vibration. The amplitude of it is A, and frequency 
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is . And the cantilever vibration belongs to bending vibration mode. Moreover, a lumped mass 
is fixed on the free end of the beam that adjust the resonate frequency and increase the output 
power. The piezoelectric plate is covered with electrode on the upper and lower surface. The 
electrode is connected with load circuit and form a close circuit. The impedance of load circuit is 
represented with LZ . 

 
 

LZ

m

L

 
 

 

Figure 1. Model of Single Cantilever Energy 
Harvester with Lumped Mass on the End 

Figure 2. Equivalent System of Single 
Cantilever Energy Harvester 

 
                     

Single cantilever energy harvester can be simplified as single degree of freedom 
system if mass of the beam is regardless and lumped mass and beam vibrate in the vertical 
direction. Then, the energy harvester model can be replaced by the spring-mass system shown 
in Figure 2. The spring-mass system is more sensitive to ambient vibration and generate forced 
vibration. 

In the model above mentioned, main mechanical components are inertia mass and 
support spring. Mass is connect to the base through the spring. The stiffness of the energy 
harvester can be expressed by the spring stiffness k .The system mass can be replaced by the 
lumped mass. With the act of vibrate acceleration, the harvester will vibrate. Displacement of 
the base is represented with 1z , relative displacement of the mass to the base is represented 

with 0z , and then mass displacement relative to the frame is represented with 1010 zzz  . (Only 

the relative displacement can produce deformation in spring.) Reserved energy is in form of 
elastic potential energy in the process of transform of system. The output and dissipate energy 
is reflect on the damping. Damping is represented with c . 

 
2.2. Differential Equation of Spring Vibrator Model 

If displacement of the measured base is 1z (velocity is 
dt

dz1 ,acceleration is 
2

1

2

dt

zd
) that 

used as input, 
2

01

2

dt

zd
 of the mass can be used as output. So, differential equation of the mass 

can be written as follow [4]. 
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n                                                                          (1) 

 

mc 2/  is damping coefficient, mkn /  is natural frequency of the system. 

The ambient vibration can be regarded as synthesis of many vibrations of different 
frequencies. The energy harvester natural frequency takes the main frequency of the 
environment into account during design process. So, single frequency vibration can be referred 
as research emphasis. The ambient vibration can be written as follow. 

 
tAtz sin)(1                                                                                                 (2) 
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A  is amplitude of vibration,  is frequency. The acceleration of the vibration can be 
obtain by differentiate on the displacement function. 

 

tA
dt

zd sin
2

1

2

                                                                                              (3) 

 
Substitute (3) into (1), then:  
 

tAz
dt

dz

dt

zd
n  sin2 2

01

201

2

01

2

                                                                   (4) 

 
The solution of differential Equation (4) includes two parts. The first part is the free 

vibration which doesn’t take ambient vibration excitation into considering. i.e. the right side of 
the differential equation equals zero that make a homogeneous second-order differential 
equation. If the attenuation vibration is think about, general solution of the equation can be 
written as follow: 

 

)sin(
)(

)sincos(
2222
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 

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
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Equation explain that the lumped parameter system that make up of spring, mass and 

damping vibrate under forced vibration. The first item )sincos( 21 tCtCe t   , when t ,it 

trends to zero and known as transient terms. It expresses that the amplitude of the vibration 
gradually attenuates. The second item is known as steady item. And it expresses that the 
amplitude and the cycle are invariant with the time. 

Therefore, when the ambient is resonant excitation, the spring-mass vibration system is 
a stable periodic vibration. If c  and )( 2mk   are too small, the vibration attenuates mildly. If 

the ambient frequency is close to natural frequency
2

2

42

1

m

c

m

k
f 


, amplitude may be 

tremendous large, this situation is called as resonance. 
Thus, the relative vibration of spring-mass system is given as below. 
 

)sin(01   tAz                                                                                         (7) 

 
Where, 
 

222

2

)]/(2[])/(1[

)/(

nn

nA
A






                                                                     (8) 

 

2)/(1

)/(2
arctan

n

n





                                                                                            (9) 

 
The displacement )(

10 tz  of the mass m  relative to the frame is harmonic vibration 

obviously i.e. )sin()(
10   tAtz ,but the phase angle is differ  . is damping ratio and 

km

c

2
 . n is the natural frequency of the system and mkn / .The difference of amplitude 

and phase is depend on   and 
n


. 
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Because of relative displacement of the inertia mass is 01z , according to Newton’s 

second law, the deformation force that inertia system produced under the excitation can be 
written as below. 

 
)sin(2

01   tAmzmF                                                                        (10) 

 
2.3. Amplitude-frequency Characteristic of the Spring-vibrator Model 

According to the result that mentioned previously, amplitude-frequency )(xA

characteristic and phase-frequency characteristic )( are shown as below. 
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Amplitude-frequency curves and phase-frequency curves are shown in Figure 3 and 

Figure 4 according to the two equation that mention previously. 
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Figure 3. Amplitude under Different Damping 
Ratio 

Figure 4. Phase Angle under Different 
Damping Ratio 

 
                      

As can be seen from Figure 3, the amplitude of the cantilever is larger 5 times than the 
ambient vibration when 1.0  and n  .In other words, cantilever model is more sensitive to 

the ambient environment and amplify the amplitude. On the other hand, the amplitude is the 
biggest when vibration is resonance, and smaller damping can get bigger amplitude. Moreover, 
it can be concluded that damping is a critical parameter for cantilever energy harvester. It 
affects not only the amplitude of the energy harvester but also the phase that shown in Figure 4. 
Phase will affect both electric current and volt of the energy harvester circuit. Generally, the 
damping is between 0.01 and 0.05. 

 
2.4. Power of Spring-vibrator Model 

As shown in Equation (7), the amplitude of the vibrator is AZ 01 . 
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Where 
n
  , the power of it is shown as below. 
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The output power will be max when the frequency of excitation equal to the resonance 

frequency. i.e. 1  
 



4

23Am
P e                                                                                                      (15) 

 
The affect factors can be concluded that as below [1]. 
(1) Bigger mass of energy harvester can harvest more power. So it is important to 

increase the mass of the energy harvester as possible. And add mass on the end of the beam 
can not only decrease the natural frequency but also increase output power. 

(2) Higher frequency of the energy harvester can harvest higher power. However, 
higher frequency makes smaller amplitude. So it is important to consider the amplitude as well 
as the frequency is concerned. 

(3) Smaller damping makes bigger power. But it is not pretty as small as possible. The 
output of energy harvester is depending upon the power that damping consummation. 

(4) Increase of damping ratio is help to frequency sensitivity of energy harvester that 
near the resonance frequency. 
 
2.5. Natural Frequency Solving of Spring-vibrator  
 

L
x

cz

 
 

Figure 5. Deflection Curve of Cantilever 
 
 

2.5.1. Lumped Mass is Taken into Account 
When single cantilever beam simplified as spring-vibrator model, elastic element is 

cantilever structure. The mass of cantilever have significant proportion of the system. So it 
cannot be ignored. Otherwise, the calculated frequency will be obviously high. Generally, 
Rayleigh method is used to calculate the natural frequency of single cantilever piezoelectric 
energy harvester [5]. 

 

3)'14033(

420

')140/33( Lmm

YI
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kc
n 




                                                         (16) 

 
'm  is lumped mass on the free end, m is mass of the cantilever. Because of the assumed 

bending curve is different from the real vibration cure, the calculated natural frequency is slightly 
higher than the accurate.  
 
2.5.2. Non Lumped Mass Condition 

According to the derivation as above, if the mass on the end doesn’t take into account, 

the natural frequency is as Equation (16). The equivalent mass is m
140

33
. Compare to the 

condition of lumped mass cantilever, natural frequency of the cantilever is obviously lower. 
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3. Euler Bernoulli Model of Single Cantilever 

Although lumped parameter model has given preliminary solution of the problem by 
simplification. But it is confined in single freedom vibration. It lacks of detailed deformation and 
vibration of the cantilever, such as vibration mode, accurate strain distribution and electric affect 
etc. Facts shown that for the transverse vibration cantilever, harmonic excitation of lumped 
parameter model may lead great error. The error depends on specific ratio of end mass and the 
mass of cantilever. As shown in Figure 6, for transverse vibration of slender beam, suppose 
principal axis of inertia of every cross sections are in the same plane XOZ. External load is also 
in the plane. The beam will vibrate in the plane. Then main deformation of the beam is bending. 
If length is great 5 times than the height of beams, shear deformations and the cross section 
spinning around their principal axis of inertia can be ignored. In this case, the beam is 
equivalent to Euler Bernoulli beam [6]. 

 
3.1. Laminate Structure and Partial Equation of Single Cantilever 
 

R

cz

 
 

Figure 6. Euler Bernoulli Cantilever Model 
 
 

The end fixed cantilever is made up two layers. The length of it is L , width is b , 
thickness are 

pt (PZT layer) and mt (elastic layer), the lumped mass is 'm ( Lx  ),the end is 

fixed( 0x ).Top layer is piezoelectric layer and the bottom layer is elastic layer. Two layers are 
smooth continuous and have no relative sliding. It is supposed that the layers are uniform. 
Elastic model of PZT layer is 

pY , bending moment of inertia is 
pI , thickness is 

pt , and cross-

section area is 
pA (

pbt ). Elastic model of elastic layer is mY , bending moment of inertia is mI , 

thickness is mt , and cross-section area is mA (
mbt ).Subscript psignifies PZT layer, ). Subscript 

m signifies elastic layer. Curvature is RC /1 , and the dimensionless couple effect of 

piezoelectric effect is 2/1

0

2

31 )/( ppYdk  that suppose to be less than L/1 . 31d  is polarization 

coupling coefficient in z  direction when subjected to stress/strain in x direction. 0  is vacuum 

permittivity, 
p  is relative permittivity of piezoelectric material. Bending stiffness of the beam 

about the neutral axis cz  is shown as below in Figure 7. (
pD  is bending stiffness of unit width. 

[7]) 
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If the beam is made up of two layers, the equation can be simplified as below. The 

upper is piezoelectric material and the lower is elastic material. 
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For laminated layer, cz
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1 , iz  is center axis of the coordinate of the i th layer. it  is the 

thickness of i th layer that is shown in Figure 7. 
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Figure 7. Model of Euler Bernoulli  
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m is the mass of unit length, for the convenience of derivation, it can be concluded  as below by 
principle of virtual work [5].  
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The first item in equation (23) is damping force, the second item )(tF  is produced force 

that caused by vibration along z . ),( txw  is the deflection when time is t . 

 
3.2. Free Vibration Solution that without Lumped Mass on the Beam End  

For the energy harvester is cantilever structure with single-end fixed, the vibration of it is 
forced vibration under base excitation. In this case, the forced base of single-end cannot be 
regarded as fixed. Base excitation (small deflection conditions) is taken base excitation that 
proposed by Erturk and Inman [3]. If the cross section of cantilever is uniform and have no 
lumped mass on the end, the translational motion is )(tg , tiny rotation of the root is )(th  which 

is shown in Figure 8. 
 

 
Figure 8. Free Vibration of Single Cantilever Consider the Rotation of Root 

 
 

As description of Timoshenko [8], absolute displacement ),( txw  is sum of base 

displacement ),( txwb  and transverse displacement ),( txwrel [9]. 
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),(),(),( txwtxwtxw relb                                                                                 (24) 

 
),( txwb  represents the displacement of the fixed end, ),( txwrel  is the transverse displacement to 

the fixed end. 
 

)()()()(),( 21 thxtgxtxwb                                                                              (25) 

 
)(1 x  and )(2 x  are translate affect function and rotate affect function. For cantilever which has 

no lumped mass on the end, the partial equation of it can be shown as below. 
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If )(tF =0 in equation, the equation turn into corresponding homogeneous equation and can be 

solved by variables separation. General solution of deflection is superposition of every principal 
vibration mode and can be written as below. 
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After derivation, 
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Modal excitation function of r th is: 
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are translate and rotate velocity respectively. If base translate and rotate are arbitrary function, it 
can be obtained by Duhamel integration. 
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rd  is damping frequency of r th mode. rrrd   1  ,and r is damping ratio of r th mode. 
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3.3. Forced Vibration Solution that without Lumped Mass on the Beam End  

Back to non-homogeneous equation, focus on the lowest order mode ( 1r ) that closely 
relates to energy harvester [10]. 
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According to Equation (28), the following equation can be got. 
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That is, 
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According to Equation (30), the response of vibration mode is changed as below. 
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By way of Duhamel integration, 
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Substitute the integration constant of r th mode, 
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Substitute the above into 





1

)()(),(
n

rrrel txtxw  , the response of cantilever under forced 

vibration can be obtained. 
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3.4. Model Take the Lumped Mass into Account 

The cantilever that previously calculated is uniform cross section and has no lumped 
mass. Nevertheless, for decrease natural frequency and diminish dimension of energy 
harvester, a lumped mass will be attached on the end of beam. The vibration mode and 
eigenvalue are not applicable for this model [9]. If the lumped mass is 'm  as shown in Figure 9. 
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Figure 9. Single Cantilever with Lumped Mass  

 
 

According to Equation (26) and (28), for single cantilever with lumped mass, the partial 
equation can be written as below. 
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The corresponding Eigenvalues will change with respect to the change of orthogonal 

condition. The vibration mode function will change as below. 
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If Lkr , eigenvalue of the vibration mode can satisfy the equation as below. It is a 

transcendental equation and can be solved only by numerical methods. 
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tI  is Moment of inertia to the centroid, all frequencies of every mode can be get by 

solves the above equation. 
Similarly, according to equation, 
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The response of the lumped mass on the end of the cantilever is shown as below. 
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4. Difference of Two Models 
Spring-vibrator model is supposed to be single degree freedom system; actually, it is 

acontinuous syste. If the single degree freedom model is used, the error is inevitable. Thus, 
compare them will correct the system theoretically. 
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4.1. Frequency Difference 
4.1.1. Single Frequency and Multi Frequency 

Spring-vibrator model is supposed to be single degree freedom system; therefore one 
frequency can be calculated. But for Euler Bernoulli model, it is an infinite degree freedom 
system and has infinite frequency base point and multi-order mode [11]. 

 
4.1.2. Difference Ignored End Lumped Mass 

If effect of end lumped is ignored for spring-vibrator model, natural frequency of is 
shown as below. 
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For Euler Bernoulli model, multi-order mode frequencies are available. And the first order 
frequency is shown as below. 
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It is easily to find out that it is reasonable accurate to calculate the natural frequency of 

cantilever using spring-vibrator mode. The frequency is greater 1.5% than Euler Bernoulli 
model. The reason is that max potential energy curve under static load is different from the real 
curve [12]. 
 
4.2. Differences of Amplitude 
4.2.1. Amplitude of Spring-vibrator Model 

According to Equation (47), for the model of non lumped mass on the end of cantilever, 

equivalent mass is mmeq 140

33
 , equivalent damping is eqeqeq kmc 2 .If the base excitation 

iwteZtz 0)(  is substituted into Equation (6), the amplitude-frequency can be got and identical to 

Equation (10). 
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4.2.2. Amplitude of Euler Bernoulli Model 

According to Equation (41), when the forced vibration excitation on the base is 
iwteZtz 0)(  ,the max amplitude is on the end of the cantilever Lx  . 
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Perform modulo on the equation above, 
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According to dynamics, for continuous system, the effect of low order mode to 
amplitude is the largest. So the first term of the infinite series of above ),( eulerH  is  

approximate amplitude response. The two models can be compared when the damping is 
01.01  ， 02.01  and 03.01  . 

 
4.2.3. Comparisons and Results 

It can be seen from Figure 10 that Euler Bernoulli beam mode has just calculated the 
amplitude of the first-order modal and hasn’t superposition other order modal. It’s amplitude of 
the beam mode is higher than spring-vibrator. And the differences become greater with the 
frequency close to the natural frequency. 

 

0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

50

60

z 01
(

)/
z(


)


n

 mod(H
beam

)

（ ）a

0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

50

z 01
(

)/
z(


)


n

 mod(H
SOD

)

（ ）b  

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

z 0
1(

)/
z(


)


n

 error=mod(H
beam

)-mod(H
sod

) 

（ ）c  
 

Figure 10. Amplitude and Error of Two Models ( 01.01  ) 

(a) is the Euler Bernoulli model, (b) is SOD model, (c) is the error between Euler Bernoulli and 
SOD model 
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Figure 11. Amplitude and Error of Two Models ( 02.01  ) 

(a) is the Euler Bernoulli model, (b) is SOD model, (c) is the error between Euler Bernoulli and 
SOD model 
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It can be seen from Figure 11 that the amplitude has significantly decreased with the 
increase of damping. At the same time, amplitude of Euler Bernoulli beam model and spring-
vibrator become closer. Furthermore, the difference become small with the frequency close to 
natural frequency. 

It can be seen from Figure 12 that the amplitude has decreased further with the 
increase of damping. At the same time, amplitude of Euler Bernoulli beam model and spring-
vibrator become closer. Furthermore, the differences become small with the frequency close to 
natural frequency. 
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Figure 12. Amplitude and Error of Two Models ( 03.01  ) 

(a) is the Euler Bernoulli model, (b) is SOD model, (c) is the error between Euler Bernoulli and 
SOD model 
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Figure 13. Relation of   and Relative Errors  

 
 

It can be seen from Figure 13 that the error of amplitude is a constant of 10.068% 
nearby the first-order frequency. The amplitude of first-order model of Euler Bernoulli beam 
model to spring-vibrator model is a constant value in which 8751.11 Lk ， 7341.0r1   that can be 

got from previous narrative. 
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It can be found that the amplitude of Euler Bernoulli beam model is greater 10% more 

than spring-vibrator model，and it is proportional. So the spring-vibrator model can be used to 
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simulate the energy harvester and some modification must be made. The presentation is shown 
as below. 
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4.2.4. End Mass is Taken into Consideration 

In most circumstance, for lower the first-order natural frequency, suit the environment 
vibration frequency and enlarge the deformation of the beam to generate more power. End 
mass is set on the end of the beam [13]. 

So the equation must take the end mass into the model equation. It makes the 
excitation function of the fixed end and eigenvalues of the eigenfunctions are changed.  
In this case, partial equation of the bending can be solved only by numerical method and 
voltage and power of the piezoelectric beam can be calculated. Some scholars use numerical 
method to correct spring-vibrator system and predict vibration of energy harvester which makes 
reasonable precision and errors less than %105.4 2 [14]. The correct method are shown as 

below. 
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In which  
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5. Conclusion 
In the research of energy harvester, the vibrators are always design as single cantilever 

beam. Single cantilever piezoelectric energy harvesters act as the research object. Lumped 
parameter model is use to build the vibration equation of spring-vibrator model. By solving the 
equation, amplitude-frequency characteristics, power and natural frequency of the model is 
obtained. Distributed parameter model of Euler-Bernoulli model also be introduced to study 
single cantilever energy harvester. Free vibration solution and forced vibration solution are 
derived in the circumstance of having end mass on the cantilever and having none end mass. 

Comparison of model frequency and amplitude are made between two models. 
Problems, scope of application and correct method for energy harvester are also given which 
provides reliable theoretical reference and makes solid foundation for energy harvester design. 
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