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 Diabetes detection is pivotal in disease management and complication 

prevention. Traditional screening methods, like blood tests, are invasive and 

time-consuming. Deep learning has emerged as a non-invasive and 
automated alternative for diabetes detection. Convolutional neural networks 

(CNNs) excel in image analysis tasks, making them ideal for this purpose. 

This paper employs a CNN-based method for diabetes prediction using 

retinal images, utilizing the DenseNet169 architecture for feature extraction 
and diabetic retinopathy (DR) prediction. The APTOS 2019 blindness 

detection dataset from Kaggle, containing around 13,000 retinal images, is 

used for training. Pre-processing and normalization precede feature 

extraction, followed by the prediction of the DR stage. The model aims to 
classify retinal images into five stages of DR (0 to 4), ranging from no DR to 

proliferative DR. Our model achieved over 82% accuracy, outperforming 

advanced algorithms. Model evaluation includes accuracy, precision, recall, 

and F1 score measures. 
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1. INTRODUCTION  

Diabetes mellitus is a condition where the body fails to process sugar (glucose), resulting in 

increased blood glucose levels called hyperglycemia [1]. This is because the body can either fail to produce 

enough insulin or have an ineffective response to the insulin produced. Diabetes is not curable, but 

manageable. However, if not controlled, it can give rise to severe complications like nerve damage, heart 

attack, kidney failure, and stroke. For instance, in 2017, about 10% of the world’s population had diabetes, 

with the possibility of reaching 11% by 2045, according to [2]. 

Diabetes comes in two main types: type-1 (T1D) and type-2 (T2D). Type 1 usually shows up in 

teens and adults, causing high blood sugar, lots of thirst, and frequent trips to the bathroom. Treatment 

usually involves insulin. On the other hand, type 2 often hits older adults and comes with extra health issues 

like obesity, high blood pressure, and cholesterol problems [3], [4]. T2DM poses a global health concern, 

leading to increased disability levels and healthcare costs. DN (diabetic nephropathy) and diabetic 

retinopathy (DR), the primary complications, cause irreversible blindness and kidney diseases. Early 

detection aids interventions for favourable outcomes, given the similar microvascular pathophysiological 

factors in the eyes and kidneys [5]. Quick and accurate diabetes diagnosis is vital due to the increasing 

number of cases due to improved living standards. Machine learning (ML) aids initial diabetes diagnosis but 

relies on feature selection and suitable classifiers. An automated DR diagnostic model [6] uses convolutional 

neural networks (CNNs) for disease stage classification, leveraging their established success in large-scale 
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image recognition. CNNs capture translation-invariant features efficiently, necessitating fewer parameters 

compared to fully connected networks, aligning with research goals. Traditional ML models struggle with 

complex data, while CNNs in deep learning (DL) excel due to advanced pre-processing, convolutional 

functions, and adaptability with deeper networks [7], [8]. DL models offer varying capacities in feature 

extraction and image classification for DR diagnosis, but evaluating an all-encompassing DL model in a 

single test setup lacks reliability. 

Convolutional networks [9] excel in large-scale image and video recognition. An innovative 

visualization method for elucidating intermediate feature layers and classifier operations was introduced in 

[10]. The accessibility of vast public image databases like ImageNet created by [11] and sophisticated 

computing systems such as graphics processing units (GPUs) or extensive distributed clusters developed by 

[12] has enabled these advancements. The evolution of deep visual recognition structures has been notably 

shaped by the ImageNet large-scale visual recognition challenge (ILSVRC) [13]. This contest has served as a 

platform to test various versions of extensive image classification systems, spanning from complex shallow 

feature encodings to deep ConvNets. This research opts for CNNs due to their success, comprising 

convolutional and fully connected layers tailored for two-dimensional (2D) input arrangements. CNNs utilize 

local connections and tied weights for translation-invariant features, offering easier training with fewer 

parameters compared to fully connected networks [14]. 

The main contribution of this research paper is summarized as follows, the dataset used for our DR 

detection model is the APTOS 2019 blindness detection [15] dataset from the Kaggle platform. Which 

contains approximately 13,000 images of the retina obtained by fundus photography under various imaging 

conditions. In the DenseNet169 architecture, a CNN model has been proposed for feature extraction and 

prediction of DR. Proposed techniques are also compared with existing modern methodologies such as CNN 

[16], extreme gradient boosting (XGBoost) [17], and deep neural network (DNN) [18]. 

The organization of the paper is as follows: section 1 presents the introduction, followed by section 

2, which covers the literature review. Section 3 outlines the methodology, while section 4 encompasses the 

results and discussion with a comparative analysis, leading to the conclusion in section 5.  

 

 

2. LITERATURE REVIEW 

DR is a serious complication of diabetes that affects the eyes, potentially leading to vision 

impairment or even blindness. It's super important to detect things fast because checking them by hand isn't 

always accurate and can make lots of mistakes. Recognizing the critical need for an intelligent system to 

enhance predictive efficiency, numerous researchers and medical professionals have turned to more 

sophisticated techniques for extracting features and classifying images to detect early signs of DR. This has 

resulted in a proliferation of works employing both ML and DL techniques. 

DL techniques, especially in fundus image analysis, surpass ML methods due to their efficiency in 

handling extensive datasets, mitigating overfitting, and improving prediction accuracy. Amechanized DR 

classification frame work coordinating pre-processing, include extraction, and classification stages, utilizing 

profound CNN and different ML procedures. Exchange learning and dimensionality decrease help highlight 

extraction XGBoost demonstrates superior accuracy for DR classification [17], following a comprehensive 

comparison of ML methods. 

The authors propose an automated DR detection system using CNNs trained on Messidor and 

Kaggle data. 13 CNN architectures pre-trained on ImageNet via transfer learning are tested on various image 

qualities [19]. A comprehensive review of automated microaneurysm detection for the early diagnosis of DR 

is presented. The authors highlight the significance of early DR detection and the role of microaneurysms in 

diagnosis. Various techniques for microaneurysm detection, such as thresholding, morphological operations, 

machine learning, and deep learning, are overviewed. The study offers a thorough evaluation of multiple 

techniques for detecting early signs of DR [20]. The authors evaluated AlexNet as a suitable CNN 

architecture for DR detection. They performed a comparative examination using various CNN architectures-

DenseNet201, NASNetMobile, InceptionV3, ResNet50, MobileNet, and MNASNet-on a dataset containing 

23,513 retinal images [21]. A comparison study analyzed multiple CNN architectures (ResNet50, 

NASNetMobile, InceptionV3, MobileNet, DenseNet201, and MNASNet) with a dataset of 23,513 retina 

images [22]. 

An extensive assessment of 13 pre-trained CNNs was conducted, utilizing the MESSIDOR and 

Kaggle datasets to detect DR [23]. A method improves DNN performance on retinal optical coherence 

tomography (OCT) images by removing select deep convolutional layers from networks like GoogLeNet, 

ResNet, and DenseNet, yielding enhanced accuracy and reduced computational load [24]. A multi-branch 

CNN for DR screening and staging from wide-field optical coherence tomography angiography (WF-OCTA) 

achieved 95.6% accuracy in screening and 91.7% in staging. Their model, focusing on vessel, lesion, and 

texture analysis, outperforms existing methods in WF-OCTA-based DR assessment [25]. The study 
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introduces an ensemble of multi-stage CNNs for automated DR grading, combining pre-trained CNNs 

(InceptionV3, Xception) to enhance accuracy. The multistage patch-based deep CNN (MPDCNN) achieved 

96.2% accuracy in fivefold cross-validation, demonstrating effectiveness in automating DR grading [26]. The 

study introduces an advanced automated DR screening system using a pre-trained CNN. It employs a two-

stage transfer learning approach, enhancing initial layers and utilizing principal component analysis (PCA) 

for feature extraction. The method, with a gradient-boosting-based classification layer, outperforms existing 

techniques, demonstrating superior accuracy and resilience [27]. DL models' adaptability for universal DR 

screening was assessed in [28]. A study explored the clinical value of a deep learning algorithm (DLA) to 

detect referable DR in different subgroups using Inception-v3, ResNet101, and DenseNet121 architectures 

with both global and local datasets. Inception-v3 performed better globally, while DenseNet121 excelled 

locally. Model overestimation compared to ophthalmologists' diagnoses was noted, with the local dataset 

outperforming foreign data by 5–8% in Kappa scores [29]. The suggested DLA comprises preprocessing, 

feature extraction, and classification stages. Retinal fundus images were employed for training and assessing 

the proposed model. 

A study was conducted by [30] to evaluate the performance of various SVM classifiers in 

distinguishing diabetic retinopathy (DR) from normal occurrences. This was achieved by utilizing different 

sets of characteristics with feature extraction using AlexNet and ResNet101 and feature selection based on 

ACS (ant colony system). An attempt to create a deep-learning model to detect DR utilizing fundus images is 

made in [16]. Their model for DR achieved 92.71% accuracy, 91.89% sensitivity, and 92.90% specificity, 

was validated at SIOVS, and was labeled as a potential DR screening tool. The proposed CNN method by 

[31] efficiently categorizes DR severity in retinal images but needs refinement for improved accuracy and 

reduced overfitting due to training-validation disparities.  

DL models outperform traditional ones in DR analysis, leveraging a deeper architecture. DenseNet, 

contrasting with ConvNets, fosters a more connected network by sharing feature maps across layers through 

concatenation. Transfer learning with DenseNet from ImageNet initializes the network for improved 

performance on target datasets, especially those with similar visual characteristics. This enhances feature 

extraction, enabling models to understand nuanced details and textures within images learned from 

ImageNet's diverse object categories. 

 

 

3. METHOD 

Traditional methods for DR detection often rely on manually engineered features and rule-based 

systems. However, these approaches may struggle to capture the complex patterns and variations present in 

retinal images. Additionally, they heavily depend on the expert knowledge of ophthalmologists and might not 

scale well with large datasets due to their limited ability to handle diverse data. In contrast, DL methods, such 

as CNNs like DenseNet169, offer a more data-driven approach. They learn hierarchical representations from 

raw data, automatically extracting relevant features from images. This allows them to effectively capture 

intricate patterns and variations present in retinal images, improving their performance on complex tasks like 

DR detection. 

The proposed methodology begins with data collection, assembling a dataset of retinal images for 

DR diagnosis. Once obtained, the images undergo preprocessing, which involves resizing them to a uniform 

size (224×224 pixels), normalizing pixel values, and potentially augmenting the data to increase its diversity. 

A pre-trained model like DenseNet169 serves as the foundation for transfer learning. The model architecture 

can be customized by adding or modifying layers as needed before compiling it with appropriate loss 

functions, optimizers, and evaluation metrics. The dataset undergoes division into training and validation 

sets. The model undergoes training using the training dataset, with parameters set for a defined number of 

epochs. During training, callbacks are applied for functionalities like early stopping and learning rate 

adjustment, and class weights are utilized to handle class imbalances. The model's performance is evaluated 

using the validation dataset, calculating various metrics. Fit the model to the training data while adjusting the 

network's weights to minimize the loss between predicted and true labels. Employing techniques like learning 

rate reduction and early stopping optimizes the model's performance. 

In Figure 1, the flow chart of the proposed work shows the steps involved in this methodology. The 

image dataset of retina’s is used from APTOS 2019 blindness detection in Kaggle. They provided a huge 

dataset of retina images that are acquired using fundus photography and provided a severity level of 0–4 with 

each image by a clinician. The images are preprocessed for normalization and resizing, and one hot encoding 

is applied for better classification. DenseNet169 architecture, a CNN model used for feature extraction and 

prediction of diabetic retinopathy. DenseNet169 is a CNN design that adeptly captures image features 

through dense connections among its layers. Every layer receives feature maps from all previous layers, 

fostering a deep network with reduced parameters. This dense connectivity enables the network to capture 
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complex patterns and variations in retinal images, facilitating better DR detection. The growth rate, denoted 

as 'k', represents the incremental count of channels in each layer. This characteristic results in improved 

computational and memory efficiency in each compositional layer. The sequence involves pre-activation 

batch normalization (BN) and rectified linear unit (ReLU), followed by a 3×3 convolution, generating output 

feature maps enlarged by 'k' channels. 

The efficiency of DenseNet highlights its ability to streamline the network by reducing the need for 

numerous channels. This efficiency is attributed to the growth rate parameter, 'k', which determines the 

additional channels received by each layer shown in Figure 2. By leveraging this architecture, DenseNet 

achieves improved computational and memory efficiency compared to traditional ConvNets, presenting a 

promising innovation in the field of neural networks. 

 

 

 
 

Figure 1. Flow chart of proposed work 

 

 

 
 

Figure 2. k Growth rate 
 

 

Table 1 provided represents the distribution of DR levels among individuals, with corresponding 

labels and the number of individuals falling into each category. The information can be visualized through a 

graph to illustrate the distribution of DR levels: X-axis (labels). The different levels of DR (0 for no DR,  

1 for mild, 2 for moderate, 3 for severe, and 4 for proliferative) are listed. Y-axis (number of persons): 

represents the count or frequency of individuals within each DR level category. The graph in Figure 3 

displays bars for each level of DR, with the height of each bar representing the number of individuals falling 

into that particular DR level. By visualizing this data, it becomes easier to comprehend the distribut ion of DR 

severity levels among the given population. 

 

 

Table 1. Number of persons in each class 
Level of DR Labels Number of persons 

0 No DR 1805 

1 Mild 999 

2 Moderate 370 

3 Severe 295 

4 Proliferative 193 
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Figure 3. Distribution of classes on the y-axis are the number of persons and on the x-axis are stages of 

diabetic retinopathy 

 

 

Table 2 summarizes the clinical features linked to different DR levels. It categorizes DR severity 

levels numerically and outlines corresponding observable retinal manifestations. This concise guide assists in 

recognizing and characterizing distinct disease stages based on clinical retinal features. 

 

 

Table 2. DR levels and categories with their clinical manifestations 
Level Category Clinical manifestation 

0 No DR Lesion-free 

1 Mild DR Microaneurysms, small hemorrhages, or mild retinal changes 

2 Moderate DR Hemorrhagic diabetic retinopathy, Venous Beading and possibly cotton wool spots 

3 Severe DR Widespread hemorrhages, cotton wool spots, and Venous Beading 

4 Proliferative DR (PDR) Neovascularization, formation of fibrous tissue, vitreous hemorrhage, or retinal detachment 

 

 

4. RESULTS AND DISCUSSION 

The proposed model centers around DenseNet169, trained and tested on a dataset of 13,000 fundus 

pictures, and targets five distinct DR classes. The images are sourced from APTOS blindness detection, 

Kaggle dataset, are labelled and thoroughly assessed are shown in Figure 4. With a target image measure of 

224×224, it utilizes CNN preprocessing, SoftMax activation, and the Adam optimizer with a consistent 

learning rate of 0.01 and categorical cross-entropy as its preferred loss function throughout 50 epochs. The 

DenseNet169 model was initially designed with 13,070,405 parameters, out of which 12,912,005 were 

trainable and 158,400 were non-trainable for a 224×224 input size. To combat overfitting, a strategy of early-

stopping is implemented. With this strategy, the model counters the overfitting problem and maintains a 

training accuracy of 84.95% and a validation accuracy of 82%. While the training loss stood at 0.5375, the 

validation loss was 0.51069.  

 

 

 
 

Figure 4. Retina images with labels of severity of DR 

 

 

The confusion matrix for multi-class classification is shown in Figure 5, and it showcases the 

accurate predictions along the diagonal elements, where each row represents the true class and each column 

corresponds to the predicted class. Notably, the model displayed strong accuracy in recognizing no DR (587 
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correct predictions) and moderate DR (275 correct predictions). However, challenges emerged in 

distinguishing certain classes, such as no DR, with 9 instances misclassified as mild DR, and severe DR, with 

28 instances misclassified as moderate DR. Overall, the matrix serves as a comprehensive evaluation tool, 

highlighting the model's proficiency in some classes while uncovering areas requiring further refinement. 

 

 

 
 

Figure 5. Confusion matrix: model predictions vs. actual class labels 

 

 

The data in Table 3 represent the metrics (training accuracy, training loss, validation loss, and 

validation accuracy) recorded across different epochs during model training. Using these metrics, graphs 

were generated in Figure 6, illustrating the relationship between the numbers of epochs, the loss shown in 

Figure 6(a), and the accuracy shown in Figure 6(b). In this particular case, the figures display the model's 

performance metrics over 29 epochs, showcasing how these metrics evolve and potentially converge or 

diverge with each training iteration. 

 

 

Table 3. Training accuracy and loss, validation loss and accuracy in each epoch 

Number of epochs Training accuracy Training loss Validation loss Validation accuracy 

0 0.771792763 0.755034463 0.648285182 0.785245902 

1 0.786184211 0.719322748 0.858948273 0.708196721 

2 0.807976974 0.648033217 0.603256721 0.785245902 

3 0.791529605 0.655029376 0.584837147 0.78442623 

4 0.821957237 0.618818276 0.64209849 0.768852459 

5 0.815789474 0.627519772 0.584085039 0.791803279 

6 0.807976974 0.613731507 0.626006479 0.778688525 

7 0.836759868 0.585714199 0.54685521 0.809836066 

8 0.828125 0.612917097 0.550389021 0.805737705 

9 0.821957237 0.580648763 0.586297816 0.804098361 

10 0.817434211 0.603748549 0.539687865 0.817213115 

11 0.819078947 0.58481709 0.542103092 0.814754098 

12 0.817434211 0.606531533 0.55600325 0.809016393 

13 0.826480263 0.586373622 0.527535116 0.817213115 

14 0.826069079 0.57024889 0.52968928 0.818032787 

15 0.829358553 0.575481071 0.53653164 0.816393443 

16 0.838815789 0.562178858 0.538082487 0.818852459 

17 0.84375 0.55456677 0.526095138 0.82295082 

18 0.807154605 0.616007655 0.528861514 0.817213115 

19 0.842927632 0.565186433 0.510686069 0.821311475 

20 0.846217105 0.562477249 0.524516563 0.81557377 

21 0.827713816 0.566219513 0.517534104 0.81557377 

22 0.822368421 0.583820187 0.519712399 0.825409836 

23 0.838404605 0.563346779 0.519776312 0.82295082 

24 0.841694079 0.562778491 0.518873552 0.817213115 

25 0.851151316 0.561373844 0.518437012 0.826229508 

26 0.840460526 0.556755711 0.522460155 0.819672131 

27 0.843338816 0.527047623 0.522506847 0.818032787 

28 0.844161184 0.544994791 0.524690615 0.823770492 

29 0.849506579 0.537531073 0.53772449 0.817213115 
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(a) (b) 

 

Figure 6. Graph shows the relationship between Epoch’s number (a) loss and (b) accuracy 

 

 

Table 4 presents the model's performance metrics for multiple classes: Class 0 shows high precision, 

recall, and F1-score, indicating accurate predictions with strong support. Class 1 struggles with lower 

precision and recall. Class 2 demonstrates balanced metrics. Class 3 faces challenges, resulting in a lower F1-

score. Class 4 exhibits high precision but lower recall. "Macro Avg" represents average performance across 

all classes, while "Weighted Avg" considers class support. The accuracy stands at 0.82, showcasing the 

model's competency in multiclass classification. 

Accuracy: accuracy measures the proportion of correctly classified instances out of the total 

predictions made by the model, reflecting overall predictive performance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝐹𝑁+𝑇𝑃
 (1) 

 

Precision: precision evaluates the correctness of positive predictions by the model, representing the ratio of 

accurately predicted positive instances to the total predicted positive instances. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

Recall: this metric measures the model's ability to correctly identify all relevant instances in a class. It's the 

ratio of correctly predicted positive observations to the total actual positives. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

F1-score: a harmonic mean of precision and recall, offering a balanced assessment. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

𝑇𝑃 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑘 = 𝐴𝑘,𝑘 (5) 

 

𝐹𝑃 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑘 = (∑ 𝐴𝑖,𝑘
𝑛
𝑖=0 ) − 𝐴𝑘,𝑘 (6) 

 

𝐹𝑁 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑘 = (∑ 𝐴𝑘,𝑖
𝑛
𝑖=0 ) − 𝐴𝑘,𝑘 (7) 

 

𝑇𝑁 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑘 = (∑ ∑ 𝐴𝑖,𝑗
𝑛
𝑗=0

𝑛
𝑖=0 ) −  ∑ 𝐴𝑖,𝑘 − ∑ 𝐴𝑘,𝑖 + 𝐴𝑘,𝑘

𝑛
𝑖=0

𝑛
𝑖=0  (8) 

 

 

Table 4. Classification report 
Class Precision Recall F1-score Support 

0 0.96 0.98 0.97 596 

1 0.69 0.5 0.58 117 

2 0.7 0.86 0.77 333 

3 0.4 0.39 0.39 62 

4 0.8 0.38 0.52 112 

Macro avg. 0.71 0.62 0.65 1220 

Weighted avg. 0.82 0.82 0.81 1220 

 Accuracy 0.82   
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4.1.  Comparative analysis 

 In this section, comparison of the disease classification model of this study with the established 

methodologies. The study of [16] focused on binary DR detection with high accuracy, while this research 

introduced a multi-class classification approach, enhancing predictive capabilities for diverse DR stages. 

Table 5 compares accuracy rates for diabetic retinopathy detection: CNN achieved 93.72%, XGBoost 

91.40%, and DNN 95.6%.  

 

 

Table 5. Comparison of different models for detection of DR 
Model Classification Accuracy Recall Precision F1-score 

CNN [16] Binary (DR/NoDR) 

Multi-class(5-classes) 

93.72 

- 

97.30 

- 

- 

- 

- 

- 

XGBoost [17] Binary (DR/NoDR) 

Multi-class(5-classes) 

91.40 

- 

- 

- 

- 

- 

- 

- 

DNN [18] Binary (DR/NoDR) 

Multi-class(5-classes) 

95.6 

- 

92 

- 

94 

- 

93 

- 

DenseNet169 Binary (DR/NoDR) 

Multi-class(5-classes) 

98 

82 

69.90 

82 

91.45 

82 

79.22 

81 

 

 

The proposed retinal image-based diabetes prediction model, despite its depth and high training 

accuracy, lacks specialized features for DR detection. The graphical representation in Figure 7, through the 

graph, visually underscores these findings, providing a clearer insight into the model's performance across 

classifications. Unlike previous binary DR classification studies, this paper's model adopts a multi-stage 

approach. While prior models showed high accuracy in binary classification, this model achieves an 

exceptional 98% accuracy. This multi-stage method enhances performance in distinguishing DR stages, 

reaching 82% accuracy. Multiclass classification in DR research offers insights into diverse disease stages for 

precise treatment planning. It discerns subtle severity differences, aiding in nuanced retinal image analysis. 

Models like DenseNet169 ensure high accuracy, enabling robust predictions and early interventions to 

prevent vision loss. Avoiding diabetic retinopathy consequences requires strict blood sugar control, regular 

eye exams, and timely medical intervention to prevent vision loss. DenseNet169 CNN model significantly 

advances diabetes detection and classification, improving diagnostic accuracy and potentially enhancing 

early detection and treatment outcomes. 

 

 

 
 

Figure 7. Graph shows the accuracy comparison of this paper proposed model with previous models 

 

 

5. CONCLUSION 

This study explores CNN-based methods for DR prediction and classification, aimed at blindness 

prevention using retinal images, leveraging DenseNet169 architecture on the APTOS 2019 dataset. With over 

13,000 fundus images, the model aims to predict five diabetic retinopathy stages. Following preprocessing 

and feature extraction, the model achieved 82% accuracy, surpassing advanced algorithms. Evaluation 

encompassed accuracy, precision, recall, and F1 score metrics. This paper’s proposed model showcases 

substantial superiority over previous binary-class models in both binary and multi-class contexts. In binary 

settings, it achieves an impressive accuracy of 98%, outperforming established models. When expanded into 

multi-class classification, your model maintains high accuracy at 82%, marking a significant leap forward 

compared to traditional binary models. The proposed methodology is an ImageNet training transfer learning 

DenseNet model which needs huge dataset to train, and data are labelled. Transitioning from labeled to semi-

labeled or unlabeled data could enhance the model's robustness and scalability, allowing for more extensive 

data utilization and potentially improving performance. This method enables leveraging a larger pool of data 
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while still maintaining some level of supervision. Combine multiple data sources and ensure the model's 

interpretability while collaborating with healthcare professionals for ethical and practical implementation in 

clinical contexts. 
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