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Abstract 
With the rapid advance of society, especially the development of computer technology, 

network technology and information technology, there is an increasing demand for systems that can 
provide secure data storage in a cost-effective manner. In this paper, we propose a prototype file system 
called EDFS (Encryption and De-duplication File System), which provides both data security and space 
efficiency in storage systems. We adopt de-duplication technology called CDC (Content-Defined 
Chunking) to chunk the file and compute its unique fingerprint, lookup different blocks, then store different 
blocks on server to ensure storage efficiency. Thinking of security, we use convergent encryption to 
encrypt data blocks, which not only ensure data security but also improve the possibility of de-duplication. 
Finally, we describe a prototype implementation of EDFS based on FUSE and present an analysis of the 
potential effectiveness, using real data obtained from a runtime database. 
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1. Introduction 

With the rising of information-nalized level of human society, the world’s data capacity is 
growing at an alarming rate, which indicates that the era of great explosion of information has 
already come. According to statistics, until now the global amount of data has increased by 8 
times from 2005 to 2012. It is expected that the global amount of data could reach 35 quadrillion 
in 2020. However, study found that up to 60% of these data is redundant and the traditional 
data compression [2] can only eliminate intra-file redundancy. So in order to solve the problem 
mentioned above, de-duplication, also known as single-instance storage, has been proposed as 
an efficient way to best utilize the given amount of storage. De-duplication identifies common 
sequences of bytes called chunks both within and between files, and only stores a single 
instance of each chunk regardless of the number of times it occurs. By doing so, de-duplication 
can dramatically reduce the space required to store a large data set. 

Data security [3] is another field of great importance that must be taken into 
consideration in modern storage systems. But unfortunately, traditionally encryption and de-
duplication are, to a great extent, diametrically opposed to each other. De-duplication makes 
use of data similarity to remove redundant information in storage space while the goal of 
cryptography is quite the contrary, which aims at making cipher text indistinguishable from 
theoretically random data. As a result, the goal of a secure de-duplication system is to ensure 
data security without compromising the space efficiency achieved from de-dupe techniques. 

In this work, we develop a prototype file system for secure de-duplication, which allows 
data to be encrypted independently without invalidating data de-duplication. Also, we put 
particular effort in performing some physical experiments to analyze the performance behavior 
of the given technique. We examine the relationships among average chunk size, de-duplication 
ratio under different chunking algorithms, chunk sizes and data sets. 
 
 
2. Related work  

There mainly exist three approaches for eliminating redundant information: delta 
encoding, de-duplication, and compression. Current systems which aim at achieving efficient 
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storage and highly utilized network bandwidth usually rely upon one of the mentioned 
techniques independently or use them in a combined manner. Delta encoding, also known 
as data differencing, is a way of storing or transmitting data in the form of differences between 
sequential data. It is used in many applications including source control and backup [4]. 
Rsync is a utility free software and network protocol that synchronizes files and directories from 
one location to another while minimizing data transfer by using delta encoding when appropriate 
[5]. 

In order to improve space efficiency, backup applications also take advantage of 
information redundancy to greatly decrease the amount of data to be backed up [6]. There are 
three primary chunking strategies of data de-duplication: whole-file chunking, fixed-size 
chunking and variable-size chunking. Whole-file chunking treats each file as a single block, 
typically uses the block’s hash value as its identifier. Therefore, if more than one files hash to 
the same value, they are assumed to have identical contents and will only need to be stored 
once. Farsite [7] and the Windows Single Instance Store [8] both perform de-duplication on per-
file bases. As for fixed-size chunking, varieties of preceding works exploit it for backup 
applications and large-scale file systems, such as [9] and [10]. Lessfs [11]，a high performance 
inline data de-duplicating file system for Linux, is becoming more and more popular in enterprise 
solutions for reducing disk backups and minimizing virtual machine storage in particular. In 
addition, Opendedup, also called SDFS [12] is a file-system that supports in-line and batch 
mode de-duplication on both Linux and Windows, along with VMware virtualized environments. 
It can do de-duplication process either locally, on the network, or in the cloud (including Amazon 
S3). The variable-size chunking, also known as content-defined chunking splits files into 
variable-length chunks within a sliding window using a hash value. Variable-length chunking is 
widely used in various application domains of redundancy elimination such as backups [13], file 
systems [14], and data transfers [15]. In addition, some works proposed to adapt the most 
optimal chunking schemes based on the inner features of the file itself. According to this, Liu et 
al. proposed a scheme [16] that applies different chunking methods on the basis of the 
metadata of individual files. Jaehong et al. proposed context-aware chunking which shares the 
basic idea with Liu’s work, but only use file extension rather than all file metadata [17]. 

Besides de-duplication, data security is another key factor that must be taken into 
consideration to build secure systems. Keyed encryption has been put into use to address data 
secrecy by many distributed systems, such as OceanStore [18] and e-Vault [19]. Cryptographic 
techniques utilized by the systems mentioned above make the assumption that all incoming 
data is already encrypted. Nevertheless, none of these systems attempt to exploit redundancy 
deletion to achieve storage efficiency. Some systems adapt security models at expense of 
space overhead rather than provide security and de-duplicated storage efficiency. For instance, 
PASIS [20] and POTSHARDS [21] achieve long-term security by using secret sharing, which 
leads to a very high storage overhead.  
 
 
3. The EDFS Scheme 
3.1. Chunking Module 

Chunking is a method of scanning a file and splitting it into short elements. Each 
element is called a chunk and is a unit of redundancy detection. As mentioned above, there are 
three main chunking strategies of data de-duplication: whole-file chunking, fixed-sized chunking 
and content-defined chunking. Whole-file chunking is simple and fast, but it can only detect file 
duplicate since the entire file is viewed as a whole block [22]. For fixed-size chunking, a file will 
be break into fixed size pieces. However, because boundaries are chosen by offset, this method 
is very sensitive to the insertion and deletion operation. Inserting or deleting even a single byte 
will shift all the block boundaries following the modified point, resulting in entirely different 
blocks. To effectively address this problem, EDFS adopt the sliding window (a byte sequence of 
a given length) chunking algorithm (Figure 1) called content-defined chunking, also called 
variable-size chunking.  

EDFS uses a fingerprint function which derives from Rabin’s fingerprint algorithm [23] to 
compute fingerprints. These fingerprints are signatures for bounded window of byte stream. The 
fingerprint function is as follows:  
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Where iS is a byte stream, nssssS ...321 , l is size of the chosen sliding window, r and D are 

fixed values, and Dr  . We call this equation a “target pattern”. 
 
 

 
 

Figure 1. Sliding Window Chunking 
 
 

If the sum of the l  length bytes in the sliding window divides D with r remainder, EDFS 
will mark the current end of the window as a breaking point. The bytes between the current 
breaking point and the previous breaking point compose a chunk. Otherwise, the sliding window 
will be shifted by one byte to generate another fingerprint and compare again. As we can see, 
CDC algorithm holds a clear advantage over fixed-size since the boundary points are 
determined on the basis of the content of files, not the offset from the beginning. As a result, 
insertion or deletion will only affect the specific blocks where data inserted into or deleted from. 
 
3.2. Encryption Algorithm 

Traditionally, combining the space efficiency of de-duplication with the secrecy aspects 
of encryption is problematic since generally, different clients hold different keys, formula: 

 
),(_ blockkeyencrypttextcipher         (2) 

 
Means after encryption, the same source block may generate different blocks. In this work, we 
adopt convergent encryption (Figure 2) to address the issue. Using this method, clients gain 
encryption key by using a function to calculate the hash value of the given block. 
 

)),((_ blockblockhashencrypttextcipher        (3) 

 
 

 
 

Figure 2. Convergent Encryption Module 
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Therefore, the same plaintext results in identical cipher text regardless of who does the 
encryption. In addition, EDFS utilizes XTS-AES to encrypt the chunk since it provides 
transparent encryption. We can insert an encryption/decryption module into an existing data 
path without changing data layout or message formats of other components under these paths. 
What's more, Dworkin [24] proves that “In the absence of authentication or access control, XTS-
AES provides more protection than the other approved confidentiality-only modes against 
unauthorized manipulation of the encrypted data.” 
 
3.3. FUSE 

FUSE (Filesystem in userspace) is a framework (Figure 3) for unix-like operating 
systems. It was officially merged into the mainstream Linux kernel tree in kernel version 2.6.14. 
What’s more important, FUSE has distinctive features as follows: simple library API, secure 
implementation, usable by non privileged users and be proved very stable over time. Using 
FUSE, non-privileged users can create/access their own file systems without 
modifying kernel code. This is achieved by running file system code in user space while the 
FUSE module provides only a "bridge" to the actual kernel interfaces. What’s more, FUSE has 
already integrated several programming languages, which provides more choices for 
developers. 

 
 

 
 

Figure 3. Architecture of FUSE 
 
 
4. Prototype System 

We develop a prototype file system called EDFS based on FUSE. The targets are as 
follows: 

security: the ability to resist attacks at a moderate intensity level; 
efficiency: detect and eliminate data redundancy without restricting to files of fixed set 

format; 
performance: better read and write speed compared to some file systems that has 

already exists; 
usability: transparent de-duplication and encryption that under control; 
probability: be available across different platforms without considering validity of 

underling file system. 
 
4.1. System Organization 

The system is composed of several modules shown in Figure 4. De-duplication consists 
of chunking module, tmp_repository, map_db and meta_db. Buffer poll offers several service 
procedures for the incoming data. Each procedure serves an individual byte sequence (file). 
Further more, chunking module partitions the file into a number of chunks and store them in 
tmp_repository. Map DB and Metadata DB ate all in-memory databases for mapping the current 
block in memory to the right place on disk and recording file metadata in RAM before de-
duplication and encryption, respectively. Block Manager receives blocks from tmp_repository, 
generates their fingerprints and checks if they already exist in the fingerprint table. If not, deliver 
the block to compression module, otherwise, delete the block, updating metadata DB, 
blockusage DB and fileblock DB. 
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Figure 4. Architecture of EDFS 

 
 
4.2. Data esngine 

In order to improve efficiency of storage and query, we create secondary directories 
under the root storage directory, using the hash value of the block as the file’s name. For 
example, if a block’s hash value (SHA-256) is 
9a32a228319266a0780e00bb6a9d7f6bf18e8dcd3a35a564 as h(b), then it will be stored in 
directory ‘/dta/9/A’ where ‘9’ stands for the first byte of h(b) and ‘A’ stands for the second byte of 
h(b). 
 
4.3. Metadata Engine 

Metadata engine consists of three individual files: blockusage.db， fileblock.db and 
metadata.db. We use commodity DBMS (Berkely DB) to implement them.  

Blockusage.db is responsible for describe the attribute of every block. Its Key is the 
hash value of the stored block and its Value is structured as follow: 

typedef struct { 
unsigned long long size; /* size of the block */ 
unsigned long long inuse; /* usage frequency */ 

} ; 
Fileblock.db shows the relationship between a file and the blocks that compose it. 

Besides, it also records the inode information of the file on underlying file system. With inode 
and blocknr, we can easily restore the whole file using chunked blocks. Its Value is the hash 
value of the given block and the key’s structure is as follow: 

typedef struct { 
    unsigned long long inode;  /* inode of the backed file */ 
    unsigned long long blocknr;  /* sequence of the block among all blocks */ 
} ; 
Metadata.db is mainly used to store properties of backed files. It can be used to check 

the correctness of a newly restored file by comparing the recorded summary information. Its key 
is inode of the backed file and its value is structured as follow: 

typedef struct { 
    struct stat stbuf;  /* the ‘stat’ struct */ 
    unsigned long long real_size;  /* file size after de-duplication and encryption */ 
    char filename[MAX_POSIX_FILENAME_LEN + 1];  /* file name */ 
    unsigned long long md5sum；  /* md5sum of file as plaintext */ 
} ; 
What’s more, we use Tokyo Cabinet, a library of routines for managing a database, to 

implement metadata DB and map DB in RAM. By doing this, we can store some most frequently 
used blocks in memory, which will dramatically improve IO performance and speed up query 
evaluation. 
 
4.4. Procedure of Basic Operations 

In this section, we describe the algorithms of three mostly used basic operation 
functions of EDFS over files: open, read and write. 
 
 
 

Algorithm 1: edfs_open(path, fi) 
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1. procedure open(path, fi) 
2. step 1: find the record where key=path in in-memory DB p2i 
3.         if p2i[key]=NULL 
4.             then go to step 4 
5.         else i ← p2i[key].inode 
6. step 2: find the record where key=i in in-memory DB mt 
7.         if mt[key] ≠NULL 
8.             then go to step 5 
9. step 3: find the record where key=i in DB md 
10.         if md[key]≠NULL 
11.             then s ← md[key].stat 
12. step 4: find the file f where f.stat=s from root directory recursively 
13. step 5: update DB mt, p2i and in-memory DB o2b, set 
14.         mt[key].stat ← s 
15.         mt[key].maxblk++ 
16.         p2i[key].inode ← i 
17.         o2b[key].of ← fi.offset 
18.         o2b[key].blk ← mt[key].maxblk 
17. step 6: allocate a idle circule buffer from the poll, and set 
18.         tag ← i 
19. end procedure 

 
Algorithm 2: edfs_read(path, offset, fi) 
1. procedure edfs_read(path, offset, fi) 
2. buf[size] <-- 0 
3. step 1: find the record where key=path in in-memory DB p2i, set 
4.         i <-- p2i[key].inode 
5. step 2: find the record where key.inode=i and key.of=offset in in-memory DB o2b, set 
6.         blk <-- o2b[key].blk 
7.         find the record where key.inode=i and key.blk=blk in in-memory DB wt 
8.             if wt[key]=NULL 
9.                 then find the record where key.blk=blk in DB fb 
10.                 h <-- fb[key].hash 
11.                 find the block b where f.name=h under root directory recursively 
12.                 t <-- decode(b) 
13.                 t <-- decompress(t) 
14.                 buf <-- t 
15.             else buf <-- wt[key] 
16.         blk_offset <-- offset - o2b[key].of 
17.         find the record where key=hash(blk) in DB blk_usage 
18.             if blk_offset > blk_usage[key].size 
19.                 then offset <-- offset + blk_usage[key].size 
20.                 go to step 2 
21.         return buf 
22. end procedure 

 
Algorithm 3: edfs_write(path, offset, fi) 
1. procedure edfs_write(buf, size, offset, fi) 
2. thread 1: find the record where key.inode=fi.inode and key.of=offset in in-memory DB 
o2b, set 
3.           blk <-- o2b[key].blk 
4.           blk_offset <-- offset - o2b[key].of 
5.           find the record where key.blk=blk in DB fb 
6.           h <-- fb[key].hash 
7.           find the block b where f.name=h under root directory recursively 
8.           t <-- decode(b) 
9.           t <-- decompress(t) 
10.           tmp_buf <-- t 
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11.           for n <-- 0 upto blk_offset 
12.               do write tmp_buf[n] to circule buffer tagged fi.node 
13.           write size of data in buf to circule buffer tagged fi.node 
14.           get the last stored checksum cs if any from in-memory DB wt 
15.           if cs = NULL 
16.               set first boundary point at the beginning of buffer 
17.           else  
18.               set the chunking point inherited from the last chunking operation 
19.   repeat:   calculate cs of data within the given window 
20.               if cs matches 'target pattern' 
21.                   then store the finding block in wt 
22.               else  
23.                   if reache the end of the buffer 
24.                       then stote a record in in-memory DB tmpct <fi.inode, checksum> 
25.                   else sliding the window by one byte, go to repeat 
26. thread 2: get a record r from wt 
27.           h' <-- hash(r.block) 
28.           inuse <-- blk_usage[h'] 
29.           if inuse=0 then  
30.               cr <-- compress(r.block) 
31.               er <-- encode(cr) 
32.               insert a record of r.block in DB blk_usage 
33.           else 
34.               blk_usage[h']++ 
35.           insert a record <h', blk> into DB fb 
36.           update the according record in DB md 
37. end procedure 

 
 
5. Experment 
5.1. Experment Environment 

Table 1 shows the testing environment we used to test the performance of EDFS vs. 
Lessfs and Rsync. We perform comprehensive analysis on various aspects of de-duplication. 

 
 

Table 1. EDFS Performance Testing Environment 

CPU Intel(R) Core(TM)2 Quad CPU Q9500 @ 2.83GHz 
Fuse 2.9.1  

Tokyocabinet 1.4.32  

Memory 4GB BerkeleyDB 4.8 

Linux Core 2.6.38-8-generic Lessfs 1.5.12  

Gcc 4.5.12  Rsync 3.0.7  

 
 
We use four sample data sets from a runtime database to measure the de-duplication 

efficiency of three different algorithms – Rsync. Lessfs and EDFS. We use the following 
command to export four data sets from the actual runtime Mysql every other day: 

 
mysqldump –flush-logs –uroot –p zabbix > `date +’%m%d’`.sql 
 

It is important to note that about one gigabit data will be inserted into the database every day, at 
the meantime, data of the earliest day will be dropped. 

First, we do pair wise synchronization using rsync to see the difference between sample 
data sets. Table 2 shows the result. We can see that according to sliding window algorithm 
adopt by rsync, only a quarter data is different, which means that the de-duplication ratio will be 
up to about 75%.  
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Table 2. Pair Wise Synchronization of rsync 
pair total size(byte) Sent(byte) speedup 

0914.sql vs. 0915.sql 4,289,154,207 942,146,224 4.55 
0915.sql vs. 0916.sql 4,249,344,000 1,001,053,585 4.24 
0916.sql vs. 0917.sql 4,300,787,825 1,050,324,618 4.09 

 
 
We examine the degree of duplication of Lessfs for chunk size 128KB, 64KB, 32KB, 

16KB and 8KB respectively (Table 3). The result shows that hardly any duplicate blocks were 
detected using fixed-size chunking method adopt by Lessfs. It’s reasonable because for 
databases, changes caused by insertion are distributed across the whole DB system, which 
means that the fixed-size chunking blocks will be shifted. 

 
 

Table 3. De-duplication of Lessfs on Sample Data Sets 

file size(byte) 
chunk_no dedup_no 

128KB 64KB 32KB 16KB 8KB 128KB 64KB 32KB 16KB 8KB 
0914.sql 4178862708 31883 63765 127529 255058 510116 0 0 0 0 0 
0915.sql 4289154207 32724 65448 130895 261790 523579 0 1 2 4 8 
0916.sql 4249344000 32420 64840 129680 259360 518719 0 0 0 0 0 
0917.sql 4300787825 32813 65625 131250 262500 524999 0 1 2 4 8 

 
 
As for EDFS, we chose to close the capabilities of compression and encryption since 

we are aiming at de-duplication. Table 4 describes the de-dupe result. We can conclude that 
within a DB file, just like fixed-size chunking, there are hardly any duplicate chunks. However, 
there’s an obvious similarity between a pair. Two sample DB files, 4 GB each, will occupy only 
5.5GB physical disk. For the second file, 2.5GB redundant data is removed, which means the 
de-dup rate can be up to 60%.  

 
 

Table 4. De-duplication of EDFS on DB Set 
file Size(byte) dedup_size(byte) dedup_ratio chunk_no dedup_no 

0914.sql 4,178,862,708 4,178,862,708 0 4,769 0 
0915.sql 4,289,154,207 1,690,221,716 2.537 4,683 2,133 
0916.sql 4,249,344,000 1,930,648,089 2.2 4,512 2,010 
0917.sql 4,300,787,825 1,667,745,436 2.578 4,321 2,027 

 
 
5.2. Testing Analysis 

In database field, EDFS is not as good as Rsync on the aspect of de-duplication, but is 
much better than Lessfs. Besides, Rsync uses sliding window chunking algorithm which will 
generate so many small blocks called fragment, resulting in too much metadata which in turn 
severely degrade performance of IO and CPU. On the other hand, EDFS can provide 
transparent encryption while Rsync only transfer plain text, which is very dangerous over 
network. 

Referring to writing and reading performance, Lessfs is better for the reason that CDC 
chunking will have to shift bytes one by one when searching boundary points. So as to reading, 
EDFS must do a DB query to find the inode of the block. What’s worse, if data across several 
blocks, accordingly, query operation must be done a couple of times. However, to some extent, 
trading space for time really makes sense. 
 
 
6. Conclusion 

In this paper, we propose a prototype file system called EDFS (Encryption and De-
duplication File System), which provides both data security and space efficiency in storage 
systems. This scheme demonstrates that security can be combined with de-duplication in a way 
that provides a variety of security characteristics. In addition, we describe several new 
techniques that result in storage efficiency and security. According to testing results, The EDFS 
scheme can be easily applied to backup/storage environment of database field. 
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