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 Chronic kidney disease (CKD) is the gradual decrease in renal functionality 

that leads to kidney failure or damage. This disease is the most severe 

worldwide health condition that kills numerous people every year as an 

outcome of hereditary factors and worse lifestyles. As CKD progresses, it 

becomes difficult to diagnose. Utilizing regular doctor consultation data for 

evaluating diverse phases of CKD can assist in earlier detection and timely 

inference. Furthermore, effectual detection methods are vital owing to an 

increased count of patients with CKD. Here, group search conditional 

autoregressive value-at-risk based dense convolutional network 

(GSCAViaR-DenseNet) is introduced for CKD detection. Firstly, chronic 

data is acquired from the dataset and Min-Max normalization is utilized to 

pre-process considered chronic kidney data. Thereafter, feature selection 

(FS) is performed based on Topsoe similarity. Lastly, CKD detection is 

executed by dense convolutional network (DenseNet) and group search 

conditional autoregressive value-at-risk (GSCAViaR) is employed to train 

DenseNet. However, GSCAViaR is designed by incorporating a group search 

optimizer (GSO) with a conditional autoregressive value-at-risk (CAViaR) 

model. Additionally, GSCAViaR-DenseNet acquired a maximal accuracy of 

about 91.5%, sensitivity of about 92.8% and specificity of about 90.7%. 
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1. INTRODUCTION 

The problem of chronic kidney disease (CKD) detection is a significant challenge in the medical 

field. CKD is a term that defines to the state, whereupon kidneys can no longer filter blood more efficiently 

[1]. Previous research has highlighted various methodologies for early detection, but limitations remain. This 

research addresses these limitations by introducing a novel approach that leverages the optimized dense 

convolutional network (DenseNet) with conditional autoregressive value-at-risk (CAViaR) for CKD 

detection through group-based search. This approach not only improves detection accuracy but also provides 

a more detailed analysis of risk factors.  

Moreover, CKD is categorized by a gradual decrease in kidney functioning that damages renal 

organ functions. Owing to the lack of obvious symptoms in earlier stages, the beginning of renal failures may 

https://creativecommons.org/licenses/by-sa/4.0/
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firstly not have been identified [2]. It is clear that CKD affects any person and some of people are more 

vulnerable to this disease than others particularly, patients having heart problems, diabetes, and abnormal 

potassium or calcium levels. As CKD increases, body may collect too much quantity of fluid, waste products 

and electrolytes [1]. CKD is an increasingly serious condition in the current ageing community. The aged 

population and related high hypertension enhance the occurrence of hyperglycemia and hyperlipidemia, 

thereby increasing CKD incidence [3]. In addition, CKD is a common category of kidney disease that can be 

only cured effortlessly when it is detected at earlier stages [4]. However, this disease has no symptoms in its 

earlier stage; testing is an only mode to identify whether patient is affected with kidney disease or not [5]. 

Earlier detection of CKD in its beginning phases can assist the patients in getting effectual 

treatments and then, prevent the development of end-stage renal disease (ESRD) that needs a kidney 

transplant or dialysis to enhance the patient’s life [5]. Hence, certain blood and urine tests are taken for 

detecting CKD. However, detecting CKD at the starting stages is not simple without accurate examinations 

[6]. Additionally, CKD has higher mortality and morbidity, with a comprehensive impact on the human 

body. CKD diagnosis is crucial and may be capable of obtaining timely treatments as it is an irreversible and 

progressive pathologic syndrome [7]. Accurate management of CKD is pivotal for protecting the 

functionality of kidneys, decreasing disease development and enhancing patient results [8]. The existing 

researchers have revealed that machine learning (ML) and deep learning (DL) methods can be employed for 

the accurate diagnosis of CKD [9]. Employing DL’s skill discovery abilities like classification and data 

mining approaches [10], it is presently probable to manage valuable and huge data for enhancing clinical 

prognosis and diagnosis in decision-making [11], [12]. When healthcare providers integrate this data with 

other information sources, they can develop newer solutions with an assistance of predictive analysis for 

earlier CKD detection, related health threats and even prescriptive analysis for the precision medicines [13]. 

The vital aim is to introduce GSCAViaR-DenseNet for CKD detection. CKD is progressively 

acknowledged as a worldwide health issue and an important determinant of worse health results. In this 

research, chronic kidney data is taken from a specific dataset. Then, pre-processing is conducted utilizing 

Min-Max normalization. After pre-processing of data, FS is accomplished based on Topsoe similarity. 

Finally, CKD is detected utilizing DenseNet and GSCAViaR does its training. However, GSCAViaR is 

designed by joining GSO with CAViaR. Proposed GSCAViaR-DenseNet for CKD detection: Nowadays, 

earlier detection of CKD and its complexities seem to be very crucial for enhancing a patient’s life. Here, the 

detection of CKD is conducted by DenseNet. However, DenseNet is trained utilizing GSCAViaR which is 

modelled by combining GSO with CAViaR. 

CKD is also termed as chronic renal disease, wherein kidneys fail to function gradually. For 

reducing the chances of CKD that lead to kidney transplantation or dialysis, earlier CKD detection is crucial. 

This motivated, To design a method to detect CKD by reviewing current approaches developed for CKD 

detection. The reviewed techniques along with their advantages and challenges are interpreted in this part. 

Saif et al. [14] designed a deep ensemble model for CKD prediction. It enhanced complicated 

feature depictions and performed better in classification tasks. Nevertheless, this method failed to investigate 

the robustness of this model. Rao et al. [15] presented a fusion DL model for the prediction of CKD. This 

approach was ideal for medical applications, which employ data in different formats. However, size of 

dataset was not expanded, and it did not assess its generalizability to diverse populations. Introduced the 

novel weight convolution neural network (NWCNN) for diagnosing CKD [16]. This technique efficiently 

handled missing data imputations, even though it failed to identify the severity level of CKD while 

improving generalization performance.  

Ismail [1] developed a snake-optimized framework termed CKD-SO for earlier identification of 

CKD. This approach provided early interferences that decreased high trouble of CKD-associated diseases as 

well as mortality, but still, it faced storage and computational challenges: 

A few demerits of existing CKD detection methods collected for review are explained below. 

− The technique developed in [1] was only suitable for population study and it did not assist clinical 

experts with each patient. Moreover, it required much memory storage and lengthy training time. 

− Fusion DL model [15] had better flexibility and durability, even though it failed to enhance illness 

predictions, treatment and prevention, thereby improving patient care and results. 

− CKD detection in its early phases can prevent serious health problems. However, accuracy of traditional 

approaches for detecting CKD is decreased frequently owing to their dependence on a limited number 

of biological features. 
This study introduces a hybrid model that combines the GSCAViaR model with DenseNet for 

detecting CKD. By merging statistical modelling with deep learning, this novel approach significantly boosts 

prediction accuracy and robustness, even with diverse patient data. The research not only achieves superior 

performance compared to existing methods but also provides a thorough methodological framework that other 

researchers can use and expand upon, advancing the field of CKD detection. 
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The structure of the paper is as follows: section 2 details the proposed GSCAViaR-DenseNet 

methodology, and section 3 presents the results alongside the experimental setup, dataset description, 

evaluation metrics, and a comparative analysis with existing approaches. Finally, section 4 concludes with a 

discussion of the findings and their implications, offering a thorough overview of the research outcomes. 

 

 

2. METHOD  

To detect CKD, specific blood and urine tests must be taken and therefore, CKD detection at its 

earlier phase is not simple without appropriate tests. Here, GSCAViaR-DenseNet is presented for detecting 

CKD. Initially, chronic kidney data is obtained from a particular dataset. The data is pre-processed by Min-

Max normalization. Then, features are selected based on Topsoe similarity. Lastly, CKD is detected by 

employing DenseNet and it is trained by GSCAViaR. Moreover, GSCAViaR is devised by integrating GSO 

with CAViaR. Figure 1 exhibits a pictorial illustration of GSCAViaR-DenseNet for CKD detection. 

 

 

 
 

Figure 1. A pictorial illustration of GSCAViaR-DenseNet for CKD detection 

 

 

2.1.  Acquisition of chronic kidney data 

The chronic kidney data is acquired from the dataset [16] to carry out CKD detection and it is given by, 

 

𝑅 = {𝑅1, 𝑅2, . . . , 𝑅ℎ, . . . , 𝑅𝑖} (1) 

 

here, 𝑅ℎ represents ℎ𝑡ℎ  input chronic kidney data whereas total data in the dataset R is implied as 𝑅𝑖.  

 

2.2.  Pre-processing utilizing Min-Max normalization 

Data pre-processing is carried out to impute missing data and recognize the variables, which must be 

considered in prediction systems. Here, Min-Max normalization is employed for data pre-processing by 

considering 𝑅ℎ with dimension 𝑘 × 𝑥 as input. Min-max normalization [17] is the easiest method, wherein 

this technique is capable of fitting data in a pre-defined boundary with the pre-defined boundary. It can be 

formulated as follows, 

 

𝑀ℎ =
𝛨−𝛨𝑚𝑖𝑛

𝛨𝑚𝑖𝑛𝑚𝑎𝑥∗(𝛪−𝛮)+𝛮
 (2) 

 

where, [𝛪, 𝛮] mentions pre-defined boundary, 𝛨 denotes a range of actual data and 𝑀ℎ specifies pre-

processed data with dimension 𝑘 × 𝑥. 

 

2.3.  FS based on topsoe similarity 

An intention of FS is to detect most informative and significant subset of the features in certain 

databases. Moreover, it discards the features that are redundant or not appropriate. Here, features are selected 

based on Topsoe similarity by taking 𝑀ℎwith dimension 𝑘 × 𝑥 as input. Topsoe similarity [18] computes the 

distance between two probability distributions and it can be calculated by, 
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𝑑𝛵 = ∑ (𝑈𝑟 𝑙𝑛 (
2𝑈𝑟

𝑈𝑟+𝑌𝑟
) + 𝑌𝑟 𝑙𝑛 (

2𝑌𝑟

𝑈𝑟+𝑌𝑟
))

𝑗
𝑟=1  (3) 

 

Here, 𝑈𝑟 indicates candidate features and 𝑌𝑟  notes target. After computing Topsoe similarity for 

individual features, top 𝜈 features with higher values are selected. The outcome after FS is symbolized as 𝑇ℎ 

with dimension 𝑘 × 𝑧, where 𝑥 > 𝑧. 

 

2.4.  CKD detection utilizing DenseNet 

Early diagnosis and detection of CKD is more critical for stopping the development to kidney 

failures. Here, Densenet is employed to detect CKD by obtaining 𝑇ℎ with dimension 𝑘 × 𝑧 as input and 

Densenet is trained by GSCAViaR. Furthermore, GSCAViaR is designed by merging GSO with CAViaR. 

 

2.4.1 Architecture of DenseNet 

DenseNet [19] links individual layers to all other layers in a feed-forward (FF) manner. Consider an 

image 𝑇ℎ, which is given to a convolutional (conv) network. It contains 𝑃 layers, each one implements the 

non-linearity transformation 𝐴𝑝(. ), wherein 𝑝 indexes a layer. 𝐴𝑝(. ) refers to composite functioning of 

operations like batch normalization (BN), conv, rectified linear unit (ReLU) or pooling. An output of 

𝑝𝑡ℎ layer is denoted as 𝑚𝑝. 

(a) ResNets 

ResNets include skip-connections that bypass a non-linearity transformation with the identity 

operation and it is modeled by, 

 

𝑚𝑝 = 𝐴𝑝(𝑚𝑝−1) + 𝑚𝑝−1 (4) 

 

A benefit of ResNets is that a gradient can directly flow by means of identity operation from the later layers 

to the earliest layers. Nevertheless, identity operation and the outcome of 𝐴𝑙  reintegrated by a summation that 

may delay information flow in a network. 

(b) Dense connectivity 

For enhancing information flow amongst layers, diverse connectivity pattern is developed and direct 

associations from any layer to every succeeding layer. Accordingly, 𝑝𝑡ℎ layer accepts feature maps of every 

previous layer, 𝑇ℎ , . . . , 𝑚𝑝−1 as an input. 

 

𝑚𝑝 = 𝐴𝑝([𝑇ℎ, 𝑚1, . . . , 𝑚𝑝−1]) (5) 

 

here, [𝑇ℎ , 𝑚1, . . . , 𝑚𝑝−1] indicates concatenation of feature maps generated in the layers 0, . . . , 𝑝 − 1. Due to 

its dense connectivity, this network is specified as DenseNet.  

(c) Composite operation 

𝐴𝑝(. ) is defined as a composite operation of the three following functions such as BN, followed by 

ReLU and 3 × 3 conv. 

(d) Pooling layers 

An important segment of conv networks is the down-sampling layers, which vary in feature map 

dimensions. For facilitating down-sampling in this structure, network is divided into numerous densely 

associated dense blocks. The layers amid blocks are referred as transition layers that perform pooling and conv. 

(e) Growth rate 

If an individual operation 𝐴𝑝 generates 𝑡 feature maps, it pursues that 𝑝𝑡ℎ layer has 

 𝑡0 + 𝑡 × (𝑝 − 1) input feature maps, wherein 𝑡0 represents the count of channels in an input layer. 

A hyperparameter t is specified as the growth rate of the network. 

(f) Bottleneck layers 

Even though individual layer only generates t output feature maps, it generally has several inputs. 

The 1 × 1 conv is presented as the bottleneck layer, before an individual 3 × 3 conv reduces the count of an 

input feature map and therefore, to decrease computational effectiveness. 

(g) Compression 

For enhancing system compactness, the count of feature maps at the transition layers is reduced. If 

the dense block comprises 𝜈 feature maps, pursuing transition layer is permitted to generate [𝜃𝜈] output 

feature maps, wherein 0 < 𝜃 ≤ 1 is mentioned as a compression factor. The CKD-detected output from 

DenseNet is implied as 𝐷ℎ  and DenseNet model is shown in Figure 2. 
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Figure 2. DenseNet model 

 

 

2.4.2. Training of DenseNet utilizing GSCAViaR 

GSO [20] is the nature-enthused optimization approach that can resolve various diverse optimization 

troubles. GSO is inspired by the searching attributes of animals in usual life. This algorithm is employed for 

discovering excellent outcome over the group of candidate solutions to resolve any optimization issues by 

identifying minimal or maximal objective functions for particular problems. CAViaR [21] specifies an 

evolution of quantile over time utilizing a remarkable kind of autoregressive procedure. CAViaR model is 

capable to adapt newer threat environments. Here, GSO is combined with CAViaR to design GSCAViaR that 

is more suitable for training DenseNet for detecting CKD. 

− Group search position encoding 

The learning parameter of DenseNet 𝜇 is continuously tuned in 𝛽 search space for acquiring superior 

outcomes, in such a manner that 𝛽 = [1 × 𝜇]. 

− Fitness function  
The fitness function is evaluated by identifying variation amongst target and DenseNet outcomes 

that can be specified as, 
 

𝐹 =
1

𝑖
∑ [𝐺ℎ − 𝐷ℎ]𝑖

ℎ=1

2
 (6) 

 

here, 𝐺ℎ indicates targeted output, 𝐷ℎ  mentions DenseNet output whereas 𝑖specifies total data.  

GSCAViaR performs the following steps to attain the best outcome. 
 

Step 1: Initializing of solution 

Firstly, a group of candidate agents that is termed as group and individual agents specified as 

members are randomly initialized. It can be formulated by, 
 

𝐵 = {𝐵1 , 𝐵2, . . . , 𝐵𝑠, . . . , 𝐵𝑛} (7) 
 

where, 𝐵𝑠implies 𝑠𝑡ℎcandidate solution, 𝐵𝑛denotes total variables in a population 𝐵. 

 

Step 2: Computing objective function 

It is determined by taking the difference amongst DenseNet and targeted outputs, which is 

calculated utilizing (6). 
 

Step 3: Producing stage 

An apex is the existing location of the producer. In GSO, a producer performs at 𝑘𝑡ℎ iteration as 

mentioned below. 

A producer investigates at zero and there after examine besides using stochastic testing of three 

positions in the validation place. The first criterion at a zero rate can be illustrated by, 
 

𝐵𝑣 = 𝐵𝑦
𝑙 + ℜ1𝛼𝑚𝑎𝑥𝐽𝑦

𝑙 (𝜗𝑙)𝑚𝑎𝑥 (8) 
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A point in the right-hand side hypercube can be given by, 

 

𝐵ℜ = 𝐵𝑦
𝑙 + ℜ1𝛼𝑚𝑎𝑥𝐽(𝜗𝑙 + ℜ2𝜃𝑚𝑎𝑥/2)  (9) 

 

A point in the left-hand side hypercube is modelled as, 

 

𝐵𝑎 = 𝐵𝑦
𝑙 + ℜ1𝛼𝑚𝑎𝑥𝐽𝑦

𝑙 (𝜗𝑙 − ℜ2𝜃𝑚𝑎𝑥/2)  (10) 

 

Here,ℜ1 ∈ �̸�1 that specifies to normally distributed stochastic value having mean=0 and the 

standard deviation (SD) as 1. ℜ2 ∈ �̸�𝑤−1 implies to stochastic values that are distributed uniformly in a range 

0 and 1. 

If a better region has superior fitness value than its existing location, then it moves to this region. Or 

else, it stays in its present location and changes its head to a newer angle as: 

 

𝜗𝑙+1 = 𝜗𝑙 + ℜ2𝜌𝑚𝑎𝑥 (11) 

 

Here,  𝜌𝑚𝑎𝑥 ∈ �̸�1  enotes maximal adjusting location. 

If a producer is not capable of acquiring superior search space after 𝜌 out of iterations, it employs 

the leader back to 0∘. 

 

𝜗𝑙+𝜌 = 𝜗𝑙 (12) 

 

Here, 𝜌 ∈ �̸�1 indicates constant value. 

 

Step 4: Scrounging stage 

At an individual iteration, various grouping agents are selected as scroungers. At 𝑙𝑡ℎ redundancy, 

space copying attribute of 𝑠𝑡ℎ scrounger is implied as stochastic walking nearer a producer. 

 

𝐵𝑠
𝑙+1 = 𝐵𝑠

𝑙 + ℜ3 ∘ (𝐵𝑦
𝑙 − 𝐵𝑠

𝑙) (13) 

 

𝐵𝑠
𝑙+1 = 𝐵𝑠

𝑙(1 − ℜ3) + ℜ3 ∘ 𝐵𝑦
𝑙  (14) 

 

From CAViaR, the expression can be given as, 

 

𝐵𝑠
𝑙 = 𝜒0 + ∑ 𝜒𝑑

𝑢
𝑑=1 𝐵𝑠

𝑙−𝑑 + ∑ 𝜒𝑑
𝑏
𝑐=1 𝑓(𝐵𝑠

𝑙−𝑐) (15) 

 

Consider, 𝑢 = 𝑏 = 2, therefore above equation becomes, 

 

𝐵𝑠
𝑙 = 𝜒0 + 𝜒1𝐵𝑠

𝑙−1 + 𝜒0𝐵𝑠
𝑙−2 + 𝜒1𝑓𝐵𝑠

𝑙−1 + 𝜒2𝑓𝑓(𝐵𝑠
𝑙−2) (16) 

 

Substitute (16) in (14) and thus, the equation becomes, 

 

𝐵𝑠
𝑙+1 = (𝜒0 + 𝜒1𝐵𝑠

𝑙−1 + 𝜒0𝐵𝑠
𝑙−2 + 𝜒1𝑓𝐵𝑠

𝑙−1 + 𝜒2𝑓𝑓(𝐵𝑠
𝑙−2))(1 − ℜ3) + ℜ3 ∘ 𝐵𝑦

𝑙  (17) 

 

The above expression is an updated equation of GSCAViaR, wherein ℜ3 notes uniform stochastic 

sequence values ranging between 0 and 1, 𝐵𝑦 
𝑙 refers to a producer at 𝑙𝑡ℎiteration whereas ∘ indicates product 

that computes a product of two vectors. 

 

Step 5: Dispersion stage 

In GSO, it makes classification if 𝑙𝑡ℎ The offers agent is dispersed. At 𝑙𝑡ℎsearch, it develops 

scholastic front location and then, it obtains random distance that can be mentioned by, 

 

𝑎𝑠 = 𝜌. ℜ1𝑎𝑚𝑎𝑥 (18) 

 

Then, newer locations can be formulated as, 
 

𝐵𝑠
𝑙+1 = 𝐵𝑠

𝑙 + 𝑎𝑠𝐽𝑠
𝑙(𝜗𝑙+1) (19) 
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Step 6: Termination 

GSCAViaR is terminated after obtaining the best solution by continuous execution of the above steps. 

 

 

3. RESULTS AND DISCUSSION  

The outcomes achieved by GSCAViaR-DenseNet that is designed for CKD detection are elucidated 

in this part. GSCAViaR-DenseNet outperformed existing methods, achieving 91.5% accuracy, 92.8% 

sensitivity, and 90.7% specificity with 90% training data. In comparison, the Deep ensemble model, Fusion 

DL model, NWCNN, and CKD-SO had lower metrics across the board. 

 

3.1.  Experiment setup 

The GSCAViaR-DenseNet model for CKD detection was implemented using the PYTHON tool. 

The implementation involved the use of various libraries, including TensorFlow, Keras, and scikit-learn, to 

build and train the DenseNet architecture integrated with the CAViaR model. The experiments were 

conducted on a high-performance computing environment to ensure the efficient training of the model on the 

CKD dataset. 

 

3.2.  Dataset description 

The study utilizes the CKD dataset, which comprises 400 patient records collected. The dataset 

includes key features such as age, gender, blood pressure, serum creatinine, and glomerular filtration rate 

(GFR) [16]. 

 

3.3.  Evaluation metrics 

Accuracy, specificity, and sensitivity are considered for evaluating the GSCAViaR-DenseNet 

model. Accuracy measures overall correctness, specificity assesses the identification of negative cases, and 

sensitivity evaluates the detection of positive cases. Together, these metrics provide a comprehensive view of 

the model's performance [22], [23]. 

 

3.3.1. Accuracy 

Accuracy implies a percentage of exactly detected cases as positive and negative CKD by the 

system out of overall cases estimated that can be computed by, 
 

𝛼 =
𝑉+𝑁

𝑉+𝑁+𝐼+𝑋
 (20) 

 

Here,𝑉 indicates true positive (TP),𝑁 represents true negative (TN), 𝐼 specifies false positive (FP) 

and 𝑋 notes false negative (FN). 

 

3.3.2 Specificity 

Specificity computes a proportion of TN instances that are accurately detected by a model and it is 

evaluated as, 
 

𝜂 =
𝑁

𝑁+𝐼
 (21) 

 

3.3.3 Sensitivity 

Sensitivity evaluates a proportion of TP instances that are perfectly detected by a system, which is 

given by, 
 

𝜅 =
𝑉

𝑉+𝑋
 (22) 

 

3.4.  Comparative techniques 

The Deep Ensemble model [8], Fusion DL model [15], Novel Weight Convolutional Neural 

Network (NWCNN) [9], and Snake-efficient Feature Selection-based Framework (CKD-SO) [1] are 

considered comparative methods to demonstrate the effectiveness of GSCAViaR-DenseNet [24], [25]. 
 

3.5.  Comparative assessment 

The estimation of GSCAViaR-DenseNet is performed by assessing key metrics while varying the 

training data and utilizing K-fold cross-validation. This approach ensures that the model's performance is 

robust and consistent across different subsets of the data, helping to minimize bias and variance [26], [27]. 
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3.5.1. Analysis of training data 

Figure 3 represents the analysis of GSCAViaR-DenseNet concerning evaluation measures by 

changing training data. In this section, values attained by GSCAViaR-DenseNet and conventional methods 

while training data=90% are explained. Figure 3(a) interprets the assessment of GSCAViaR-DenseNet with 

regard to accuracy. GSCAViaR-DenseNet attained an accuracy of 0.915 whereas the Deep ensemble model, 

Fusion DL model, NWCNN and CKD-SO acquired 0.749, 0.784, 0.819 and 0.854 implies enhancement in 

performance about 18.157%, 14.308%, 10.487% and 6.655%. Evaluation of GSCAViaR-DenseNet in terms 

of sensitivity is shown in Figure 3(b). The sensitivity obtained by GSCAViaR-DenseNet is 0.928 while the 

value achieved by the Deep ensemble model is 0.739, the Fusion DL model is 0.784, NWCNN is 0.805 and 

CKD-SO is 0.854. It explicates improvement in performance about 20.452%, 15.585%, 13.316% and 

8.045%. Figure 3(c) mentions the estimation of GSCAViaR-DenseNet regarding specificity. Deep ensemble 

model, Fusion DL model, NWCNN and CKD-SO obtained specificity of 0.734, 0.785, 0.806 and 0.854 

whereas GSCAViaR-DenseNet acquired 0.907. This describes enhancing in performance about 19.132%, 

13.453%, 11.194% and 5.900%. 

 

 

  
(a) (b) 

 

 

(c) 

 

Figure 3. Comparative analysis based on training data: (a) accuracy, (b) sensitivity, and (c) specificity 

 

 

3.5.2. Analysis regarding K-fold 

Assessment of GSCAViaR-DenseNet regarding evaluation measures by varying K-fold is 

demonstrated in Figure 4. The values obtained by considered techniques while K-fold=9 are illustrated in this 

part. Evaluation of GSCAViaR-DenseNet in respective to accuracy is specified in Figure 4(a). The accuracy 

acquired by GSCAViaR-DenseNet is 0.928 whereas the value attained by the Deep Ensemble model is 0.739, 

the Fusion DL model is 0.786, NWCNN is 0.806 and CKD-SO is 0.853. It elucidates enhancement in 

performance about 17.830%, 11.313%, 9.068% and 3.755%. Figure 4(b) presents an estimation of 

GSCAViaR-DenseNet with relation to sensitivity. Deep ensemble model, Fusion DL model, NWCNN and 
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CKD-SO attained sensitivity of 0.732, 0.785, 0.805 and 0.854 whereas GSCAViaR-DenseNet achieved 

0.898. This indicates improvement in performance about 18.475%, 12.640%, 10.407% and 4.896%. Analysis 

of GSCAViaR-DenseNet considering specificity is delineated in Figure 4(c). GSCAViaR-DenseNet obtained 

a specificity of 0.910 whereas the Deep ensemble model, Fusion DL model, NWCNN and CKD-SO attained 

0.737, 0.786, 0.804 and 0.853 signifies performance enhancement of about 18.953%, 13.584%, 11.581% and 

6.222%.  

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 4. Comparative analysis based on K-fold: (a) accuracy, (b) sensitivity, and (c) specificity 

 

 

3.6.  Comparative discussion 

GSCAViaR-DenseNet acquired superior results while comparing with existing schemes like the 

Deep ensemble model, Fusion DL model, NWCNN and CKD-SO. The discussion table of assessments 

performed is illustrated in Table 1. When training data=90%, GSCAViaR-DenseNet achieved 91.5% of 

accuracy whereas the Deep ensemble model, Fusion DL model, NWCNN and CKD-SO obtained 74.9%, 

78.4%, 81.9% and 85.4%. This describes that GSCAViaR-DenseNet is capable of detecting possible 

symptoms of CKD. Sensitivity acquired by the Deep ensemble model is 73.9%, Fusion DL model is 78.4%, 

NWCNN is 80.5% and CKD-SO is 85.4% while sensitivity attained by GSCAViaR-DenseNet is 92.8% 

while training data is 90%. It elucidates that GSCAViaR-DenseNet detected each person at risk for CKD. 

Deep ensemble model, Fusion DL model, NWCNN and CKD-SO achieved a specificity of 73.4%, 78.5%, 

80.6% and 85.4% whereas GSCAViaR-DenseNet acquired a specificity of about 90.7%. This indicates that 

GSCAViaR-DenseNet perfectly identified individuals who have CKD. From the assessments conducted, it 

can be concluded that GSCAViaR-DenseNet is the better approach for CKD detection as it achieved 91.5% 

accuracy, 92.8% sensitivity and 90.7% specificity for 90% of training data. 
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Table 1. Comparative discussion of GSCAViaR-DenseNet 

Setups Metrics/Methods 

Deep 

ensemble 
model 

Fusion DL 

model 
NWCNN CKD-SO 

Proposed GSCAViaR-

DenseNet 

Training data=90% 

 

Accuracy 74.9% 78.4% 81.9% 85.4% 91.5% 

Sensitivity 73.9% 78.4% 80.5% 85.4% 92.8% 
Specificity 73.4% 78.5% 80.6% 85.4% 90.7% 

K-fold=9 

Accuracy 72.9% 78.6% 80.6% 85.3% 88.7% 

Sensitivity 73.2% 78.5% 80.5% 85.4% 89.8% 
Specificity 73.7% 78.6% 80.4% 85.3% 91% 

 

 

4. CONCLUSION  

CKD specifies an impairment of the kidneys that gets worse over time. It is a deteriorating issue that 

causes worldwide trouble as the existing remedial choices are not effective. Effectual treatment and earlier 

diagnosing are significant to avoid CKD progression. Furthermore, earlier detection of CKD is vital to save 

numerous people. As an outcome, various researchers are presently concentrated on developing proficient 

techniques to detect CKD. However, most of the approaches are time-consuming to identify CKD. In this 

research, GSCAViaR-DenseNet is newly designed for CKD detection. At first, chronic kidney data is taken 

from a specific dataset. Then, pre-processing of considered data is accomplished by Min-Max normalization. 

After that, FS is carried out for selecting appropriate features for detection process. The features are selected 

based on Topsoe similarity. At last, CKD is detected utilizing DenseNet and the training of DenseNet is done 

by GSCAViaR. Moreover, GSCAViaR is presented by joining GSO with CAViaR. In addition, GSCAViaR-

DenseNet attained maximum accuracy, sensitivity and specificity of about 91.5%, 92.8% and 90.7% while 

considered training data is 90%. GSCAViaR-DenseNet demonstrated superior performance in CKD 

detection, highlighting its potential for early diagnosis. Future work may explore optimizing the model for 

broader datasets to enhance generalizability. 
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