
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 38, No. 2, May 2025, pp. 1024~1032

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v38.i2.pp1024-1032  1024

Journal homepage: http://ijeecs.iaescore.com

End-user software engineering approach: improve spreadsheets

capabilities using Python-based user-defined functions

Tamer Bahgat Elserwy1, Tarek Aly1, Basma E. El-Demerdash2
1Department of Software Engineering, Faculty of Graduate Studies for Statistical Research (FGSSR), Cairo University, Giza, Egypt

2Department of Operations Research and Management, Faculty of Graduate Studies for Statistical Research (FGSSR),

Cairo University, Giza, Egypt

Article Info ABSTRACT

Article history:

Received May 24, 2024

Revised Oct 31, 2024

Accepted Nov 11, 2024

 End-user computing enables non-developers to handle data and applications,

boosting collaboration and productivity. Spreadsheets are a key example of

end-user programming environments that are extensively utilized in business

for data analysis. However, the functionalities of Excel have limitations

compared to specialized programming languages. This study aims to address

this shortcoming by proposing a prototype that integrates Python's features

into Excel via standalone desktop Python-based user-defined functions

(UDFs). This method mitigates potential latency concerns linked to cloud-

based solutions. This study employs Excel-DNA (dynamic network access)

and IronPython; Excel-DNA facilitates the creation of custom Python

functions that integrate smoothly with Excel's calculation engine, while

IronPython allows these Python UDFs to run directly within Excel. Core

components include C# and visual studio tools office (VSTO) add-ins,

which enable communication between Python and Excel. This approach

grants users the chance to execute Python UDFs for various tasks such as

mathematical computations and predictions — all within the familiar Excel

environment. The prototype showcases seamless integration, enabling users

to invoke Python-based UDFs just like built in Excel functions. This study

enhances the capabilities of spreadsheets by harnessing Python's strengths

within Excel. Future work may focus on expanding the Python UDF library

and examining user experiences with this innovative approach to data

analysis.

Keywords:

End-user software engineering

Excel user-defined functions

Standalone Python with excel

integration

Visual studio tools office

This is an open access article under the CC BY-SA license.

Corresponding Author:

Tamer Bahgat Elserwy

Department of Software Engineering, Faculty of Graduate Studies for Statistical Research (FGSSR)

Cairo University

Giza, Egypt

Email: Tamer.elserwy@gmail.com

1. INTRODUCTION

End-user computing provides a centralized and standardized method for managing applications,

devices, and data, leading to enhanced collaboration, scalability, and operational efficiency. A significant

trend in software technology is the development of interactive applications by individuals who are not

professional developers but possess expertise in other fields, working towards goals facilitated by

computational tools. According to statistics from global market insights, the end-user computing (EUC)

market reached USD 10.3 billion in 2022 and is expected to grow at a compound annual growth rate (CAGR)

of 11% from 2023 to 2032 [1]. The ongoing digital transformation across various sectors has increased the

demand for end-user computing solutions. Additionally, research indicates that spreadsheets can be viewed

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

End-user software engineering approach: improve spreadsheets capabilities … (Tamer Bahgat Elserwy)

1025

as a form of code, with spreadsheet users serving as key examples of end-user programmers [2].

Excel spreadsheets are among the most widely used end-user programming environments today, and their

significance in the business sector continues to grow [3]. Recently, Microsoft's announcement of integrating

Python into Excel marks a noteworthy advancement that aligns with the trend of enhancing data analysis

capabilities within familiar software platforms. This integration has the potential to simplify various tasks by

utilizing Python's powerful programming features within Excel's intuitive interface. The synergy of Python

and Excel creates new opportunities for users to conduct complex data analyses, perform statistical

calculations, and even build predictive models seamlessly. However, when evaluating the integration of

Python into Excel 365 within Microsoft’s Cloud architecture, certain limitations must be considered. A major

challenge is latency, which refers to delays in data processing caused by the time required for information to

travel between the client and the cloud server [4]. Additionally, the cloud approach does not always

guarantee improved performance; in some instances, response time measurements indicate that cloud

database performance can be inferior to traditional systems [5]. This paper explores the drawbacks of

integrating Python in Excel through cloud-based solutions, particularly focusing on latency issues that can

occur due to data transfer between the client and server. We propose a standalone desktop application as an

alternative solution. This method employs Python-based user-defined functions (UDFs) created using Excel-

DNA and IronPython [6]. By maintaining functionalities locally, our prototype seeks to address potential

latency problems and provide a more seamless user experience for data analysis in Excel. User-defined

functions in Excel are custom functions crafted by users to perform specific calculations. These functions can

be implemented in various ways, such as through add-ins that add new functions based on particular

statistical distributions or through sheet-defined functions that enable users to create functions directly within

their Excel sheets [7]. Additionally, this prototype is built on the architecture of visual studio tools for office

(VSTO) add-ins. These add-ins can monitor activities within the office environment and respond to user

actions, such as clicking a button that was added through the add-in. A consistent methodology was

employed throughout the study to create a managed code assembly that is loaded by a Microsoft Office

application [8]. Once the assembly is loaded, the VSTO add-in can react to events generated within the

application. It can also interact with the object model to automate tasks and enhance the application’s

capabilities, utilizing any classes from the NET framework. The assembly communicates with the

application's COM components via its primary interop assembly. This functionality makes VSTO add-ins

valuable tools that expand what users can achieve with standard Office applications.

The paper utilized IronPython and Excel-DNA open-source software to meet the research

objectives. Excel-DNA facilitates the creation of custom Python-based user-defined functions that integrate

smoothly with Excel's calculation engine, while IronPython allows these Python-based functions to run

directly within Excel. The primary aim of the prototype is to enhance spreadsheet capabilities through

Python-based user-defined functions. In this study, an experiment was conducted to develop a proposed

prototype for integrating Python's features into Excel via standalone desktop Python-based UDFs. This

method addresses potential latency challenges associated with cloud-based solutions. The remainder of the

paper is structured as follows: section 2 literaturee review and previous works and technologies utilized,

section 3 details the methodology of the prototype and describes how the experiment was conducted, and

section 4 discusses and analyzes the results of the experiments.

2. LITERATURE REVIEW

Prior studies investigate adapting Excel spreadsheets as a programming environment. Spreadsheets

are widely recognized as a favored tool for end-user programming languages [9]. They are frequently

employed for tasks such as data organization, the creation of custom functionalities, and even educational

purposes [10]. Although spreadsheets are versatile and user-friendly applications, this study explores the use

of Excel as a turing-complete functional programming environment [11]. It emphasizes the potential for new

functionalities within Excel and how these advancements could transform the way we develop spreadsheet

solutions [12]–[15]. The paper also examines how to move away from the informal end-user practices

commonly associated with traditional spreadsheets, advocating for approaches that align more closely with

formal programming methods. The overall contribution of this paper is to investigate emerging trends

stemming from innovative work within the Excel community and their potential effects on the business and

engineering sectors. The goals of this paper are to illustrate that, with Excel 365, it is now feasible to develop

solutions for problems that bear little resemblance to previous spreadsheet solutions. Also, it argues that

semantically meaningful coding practices could give more reliable results. This research has made significant

contributions to expanding Excel's capabilities. These works explore programming within Excel by utilizing

programming paradigms to build robust spreadsheet solutions. In the data science field, Python has a wide

range of uses. There exist different projects and libraries that aim to help spreadsheet users transfer data into

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1024-1032

1026

Python and aid in doing data analysis and statistics [16]. In addition to advantages like convenience and

accessibility. There exist different projects and libraries that aim to help spreadsheet users transfer data into

Python and aid in performing data analysis and statistics. One of those libraries is Pandas [17] widely used

for loading spreadsheets into Python as a form of dataframe. To manipulate spreadsheets in Python, there are

a wide range of tools to aid in. For instance, xlutils [18], openpyxl [19], and xlsxwriter [20] are among the

tools available for reading and writing spreadsheets. However, it is important to note that while these tools

simplify the process of handling spreadsheet data, they do not offer analysis assistance. Moreover, there are

various research methodologies that have sought to integrate Python into Excel, allowing users to call Python

functions directly within a spreadsheet setting. One example of this is PyXLL, which allows for the creation

of Excel add-ins using Python instead of VBA [21]. This paper explores Python integration by simplifying

data analysis by facilitating data transfer and analysis with Python libraries. In the oil industry, there is a

study highlighting the effectiveness of IronPython in streamlining analysis through the development of

shortcuts and automation. This aligns with the goal of integrating IronPython with Excel, where automation

plays a crucial role in improving productivity and efficiency. To integrate IronPython with Excel and

spreadsheets, using its capabilities for automation and data analysis, one can draw inspiration from the use of

IronPython scripts in the oil industry for reservoir management. By utilizing IronPython scripts, similar to

how they were employed in the oil industry for data analysis and workflow optimization, using custom

solutions for Excel and spreadsheet integration. These scripts can be tailored to work with Excel, allowing

them to manipulate data, carry out calculations, and automatically generate reports [22]. This paper explores,

automation with Python and IronPython and enhancing productivity by automating tasks within Excel. This

work paves the way for innovative approaches to Excel. It builds upon this foundation by conducting an

experimental investigation. The goal is to develop a prototype for integrating Python with Excel through a

standalone desktop application, emphasizing a desktop-based solution. This involves using Python-based

UDFs to harness Python for custom functionalities within Excel. The integration leverages key technologies

such as Excel-DNA and IronPython. Overall, this paper contributes to the ongoing efforts to enhance Excel's

capabilities through tailored programming solutions.

3. METHOD

In this section, our prototype presents an end-user engineering approach to empower users with

custom Python-based UDFs. The objective is to present a standalone desktop application as an alternative to

cloud-based architecture, maintaining local functionalities. This prototype seeks to address potential latency

problems and provide a more seamless user experience for data analysis within Excel compared to cloud

solutions.

This approach utilizes Python-based UDFs developed with Excel-DNA and IronPython Figure 1

shows our standalone desktop architecture. To achieve this objective, there are elements in consideration.

Firstly, C# language programming will be employed to build the core components of the prototype,

encompassing the integration layer and any necessary back-end functionality. Additionally, VSTO add-ins

will seamlessly integrate Python-based UDFs into the Excel environment. These add-ins will facilitate

communication between Python scripts and Excel. Moreover, IronPython Excel spreadsheet integration

directly executes Python-based UDFs within the spreadsheet environment. Furthermore, Additionally, it is

feasible to develop new worksheet functions that work seamlessly with Excel's calculation framework.

Python functions will be created to perform various operations, including mathematical calculations such as

sum, minimum, and maximum values within Excel spreadsheets. Importantly, the collection of Python-based

UDFs is flexible, allowing for the incorporation of any general-purpose function in the future to tackle new

challenges as they arise. Lastly, Excel-DNA will facilitate the integration of .NET components, including C#

and IronPython code, into Microsoft Excel, supporting the deployment of the prototype and the management

of add-ins. In the following subsections, this paper will outline the underlying architecture of VSTO and

explain how this architecture enables communication between the Excel environment and Python-based user-

defined functions.

3.1. Underlaying architecture

This paper explores the potential of the VSTO add-in architecture. VSTO add-ins serve as a link

between software developers and end-users within Microsoft Excel. These plug-ins can monitor actions

occurring in the office environment and respond to user interactions, such as clicking a button added via the

add-in. Additionally, the VSTO add-in architecture enables smooth communication between the user

interface and the UDFs "engine," effectively converting user requests into executable functions within the

add-in. This allows users to directly engage with UDFs in the application interface, inputting data into cells

and utilizing UDFs for advanced calculations and task automation in their familiar office setting. The VSTO

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

End-user software engineering approach: improve spreadsheets capabilities … (Tamer Bahgat Elserwy)

1027

add-in architecture also provides a solid development framework for building the foundational logic of

UDFs. Using visual studio and .NET languages, developers can define UDF functionality while accessing the

Office Application's object model to perform tasks that exceed standard capabilities. Moreover, the VSTO

add-in framework enhances UDF logic design, allowing customization to precisely address user

requirements. Integration within this architecture is facilitated as Excel uses a manifest to load the VSTO

add-in assembly [23]. Subsequently, Figure 2 illustrates how the VSTO addins assembly initiates seamless

communication with Excel through object model calls, events, and callbacks, ensuring a cohesive and

integrated experience for users.

Figure 1. Empowering Excel with Python-based UDFs: An on-premises desktop architecture overview

Figure 2. Excel utilizes a manifest to load the VSTO add-in assembly, enabling smooth communication via

object model invocations, events, and callbacks

In this context, the integration of VSTO add-in architecture enables a smooth workflow where

Python scripts are embedded in Excel as custom Python-based UDFs tailored to meet specific user

requirements. End users take advantage of a seamless incorporation of these Python-based UDFs within the

familiar Excel interface, enhancing Excel's capabilities and allowing them to undertake more complex tasks.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1024-1032

1028

When an end user launches a Microsoft Office application, it utilizes both the deployment manifest and the

application manifest to find and load the latest version of the VSTO add-ins assembly [24]. The VSTO add-in

assembly is injected into the application's process space. After it is loaded, the VSTO add-in assembly can

communicate with the application via its object model. This interaction enables the VSTO add-in to enhance

the application's functionality and offer extra features to users. For instance, a VSTO add-in designed for

Microsoft Excel may introduce a new button on the ribbon that enables users to automatically generate a

table of contents. Additionally, a VSTO add-in for Excel could offer a custom function that performs

calculations for complex mathematical formulas.

3.2. The experiment setup

This revised section details the experimental setup, including the necessary references required

within the C# project to integrate Python-based UDFs with Excel using visual studio and VSTO add-ins.

i) development environment: visual studio, the development environment remains the same. Ensure visual

studio is installed and configured properly; ii) VSTO add-in: project creation, it start by creating a new

VSTO add-in project in visual studio then navigate to Office/SharePoint, select Excel, and choose the Excel

add-in template. References: a) Microsoft.Office.Interop.Excel, this reference is automatically added when

creating a VSTO add-in for Excel. It provides access to the Excel object model; b) IronPython, use NuGet

package manager to search for and install the "IronPython" package. This will add the necessary references

for interacting with the IronPython interpreter; c) Excel-DNA is similarly, search for and install the "Excel-

DNA" package. This will provide the required references for integrating .NET components into Excel;

iii) Python interpreter: IronPython, the IronPython package installed in step 2 ensures that the Python

interpreter is embedded within the VSTO add-in; iv) Excel-DNA: NuGet Package, the Excel-DNA package

installed in step 2 provides the necessary infrastructure for integrating .NET components into Excel; v) Excel

Spreadsheet: no additional references required, the Excel spreadsheet is the end-user interface and does not

require any specific references within the VSTO add-in.

The following steps outline the flow of execution when a user calls a Python-based UDF within

Excel as illustrated in Figure 3: i) user calls a Python-based UDF, the user enters thePython-based UDF name

and specifies the required parameters within an Excel cell; ii) VSTO add-in receives call, the VSTO add-in

intercepts the function call and receives the necessary data from the Excel spreadsheet; iii) data passed to

Python interpreter, the VSTO add-in passes the received data to the IronPython interpreter for execution;

iv) Python script execution, the IronPython interpreter interprets and executes the Python script, performing

the specified calculations or operations; v) results returned to VSTO add-in, the results of the Python script

execution are returned to the VSTO add-in; and vi) results displayed in Excel, the VSTO add-in displays the

results within the Excel spreadsheet, making them available for further analysis or use.

Figure 3. The sequence diagram outlines the flow of execution when a user calls a Python-based UDF

within Excel

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

End-user software engineering approach: improve spreadsheets capabilities … (Tamer Bahgat Elserwy)

1029

3.3. Development

In this context, we created the Pythonista set of functions, which includes functions such as

PythonistaAverage(), PythonistaMax(), and PythonistaMIN(). As a prototype, we will focus on the

PythonistaMax(range) function. This function computes the maximum value from specified ranges of cell

values within an Excel environment established and integrated by Excel-DNA. Additionally, it allows for the

creation of new worksheet functions that work seamlessly with Excel's calculation model [25]. The

interaction within the described system involves a series of critical steps for executing a Python-based UDF

in Excel. Initially, during the initialization phase, a MaxFunctions object is instantiated. Within its

constructor, the IronPython interpreter is utilized to create a Python engine instance (referred to as 'engine')

and a scope instance (denoted as 'scope') through the methods Python.CreateEngine() and

engine.CreateScope(), respectively. Subsequently, when the PythonistaMax function is called, a new

MaxFunctions object (designated as 'python_function') is instantiated. The range data provided by the user is

assigned to the previously established Python scope. The system then executes the script file named

calculate_range_max.py utilizing the engine alongside its corresponding scope. During this execution, it

retrieves the calculate_max function from within the Python scope. The calculate_max function performs

several operations: it scans for non-empty cells within the specified range, computes the maximum value

among those cells, and subsequently returns this computed result. To further elucidate this process, an

algorithm is presented in listing 1, which outlines the conceptual framework and workflow involved in

integrating this Python-based UDF for calculating the maximum value of a specified range in Excel.

Algorithm 1. Integrates a Python-based user defined function in Excel
Require: Calculate the maximum value of a selected range of cells in Excel sheet.

Input:

range: A string representing the Excel range of cells (e.g., "A1:B5").

Output:

max_value: The maximum value found within the specified range of cells.

error_message: A string message indicating an error.

Class MaxFunctions:

 1.Declare engine as ScriptEngine

 2.Declare scope as ScriptScope

 Constructor MaxFunctions():

 3.engine <- Create new Python Engine

 4.scope <- Create new Scope using engine

 Function PythonistaMax(range):

 5.Declare python_function as new MaxFunctions object

 6.Set range variable in Python scope

 7.Declare script File as path to script file

 8.Execute script File using engine within scope

 9.Declare calculate_max as function from scope

 10.Return result of calculate_max function

End Class

Python script calculates_range_max.py:

 Function calculate_max(cells):

 1.If cells are not empty then

 2. Calculate max value of cells

 3. Return maximum value

 4.Else

 5. Return “Cells are empty, cannot calculate maximum value.”

End Class

Furthermore, when Excel invokes RequestComAddInAutomationService, a new instance of the

AverageFunctions class generated and returned. During add-in initialization, the InternalStartup method

registers event handlers ThisAddIn_Startup and ThisAddIn_Shutdown. Overall, this integration allows users

to call the Python-based UDF directly within Excel, leveraging Python's functionalities for data analysis

within the familiar Excel interface.

4. RESULTS AND DISCUSSION

With the methodology and experiments established, we now discuss the debugging process

employed to verify the accuracy and reliability of the implemented prototype of the Pythonista function set.

To begin, users should start Microsoft Excel and run the PythonistaMax(range), a Python-based UDF. Step-

by-step execution: i) select a new empty cell (e.g., C2); ii) type=PythonistaMax() to invoke the function,

similar to standard Excel functions; and iii) specify the range by entering=PythonistaMax(A1:B3) as shown

in Figure 4, then press enter to calculate the values.

This testing process validated the successful implementation of Pythonista functions as UDFs within

the Excel prototype. Users can directly invoke the PythonistaMax(range) function in their spreadsheets.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1024-1032

1030

By entering the name of the Python-based UDF and selecting a desired range in a cell (e.g., C2), users can

trigger the execution of the corresponding Python script. The VSTO add-in architecture facilitates this

interaction by directing data to the Python function within the add-in and returning calculated results to the

user's spreadsheet. For example, it displays the calculated maximum value directly in Excel. The experiments

confirm that we adhered to a consistent methodology throughout this study. Initially, we developed a

managed code assembly that integrates with Microsoft Office applications. Once loaded, the VSTO add-in

actively responds to events generated within Excel.

Figure 4. A python-based UDF appears similar to any typical Excel function

This add-in utilizes the object model to automate and enhance application features, with full access

to .NET Framework classes for further customization. It interacts effectively with COM components,

enabling calls to Python-based UDFs while directing data to custom functions that operate using Python

scripts. As such, VSTO add-ins are essential tools for enhancing capabilities within Office Applications. This

paper presents a novel method for integrating Python-based UDFs into Excel, addressing latency issues

associated with cloud-based integrations. The C# and VSTO-built standalone desktop application allows

seamless interaction between Python scripts and Excel, enabling users to perform operations such as data

analysis and visualization directly within spreadsheets. The findings confirm the efficacy of this

methodology, highlighting how VSTO add-ins can transform standard Office applications into powerful

tools. This paper advances end-user engineering and paves the way for future studies on expanding available

Pythonista functions and examining user experiences related to data analysis approaches within Excel. While

demonstrating the feasibility of integrating Python UDFs in Excel, further research is necessary to evaluate

performance impacts on large-scale script execution and scalability for complex datasets. Future directions

may include expanding available Pythonista functions for data visualization and machine learning, as well as

developing platforms for custom function creation. In conclusion, this paper emphasizes an innovative

method for incorporating Python-based UDFs into Excel, empowering users with enhanced data analysis

capabilities while setting a foundation for ongoing exploration in this area.

5. CONCLUSION

In conclusion, this paper introduces an innovative method for improving spreadsheet functionalities

by integrating python-based UDFs within the Excel environment, successfully tackling the latency challenges

linked to cloud-based Python integration. This paper demonstrated a standalone desktop application,

developed with C# programming and VSTO add-ins, facilitates smooth interaction between Python scripts

and Excel, allowing users to execute a variety of tasks directly within their spreadsheets. The successful

implementation of Pythonista functions as python-based UDFs within the Excel prototype, as confirmed by

our testing process, demonstrates the practical application of this approach. Users can now call the

PythonistaMax(range) function directly in their spreadsheets, similar to any typical Excel function,

revolutionizing the way they interact with data analysis. Moreover, this paper experiments confirm the

efficacy of the methodology, demonstrating how VSTO add-ins can convert standard Office applications into

robust tools. This research marks an important advancement in end-user engineering, setting the groundwork

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

End-user software engineering approach: improve spreadsheets capabilities … (Tamer Bahgat Elserwy)

1031

for future studies to investigate the expansion of available Pythonista functions and to examine user

experiences with this novel method of data analysis in Excel. To further enhance the capabilities of this

approach, future research could focus on expanding Pythonista functions by implementing a wider range of

Python functions as python-based UDFs. This would include functions for data visualization, machine

learning, and statistical analysis. Additionally, custom function development could be facilitated by

providing a platform or framework that allows users to create their own custom python functions as UDFs,

tailored to specific needs and domains.

REFERENCES
[1] Global Market Insights, “End-user-computing-EUC-market,” 2023. [Online]. Available: https://www.gminsights.com/industry-

analysis/end-user-computing-euc-market. (accessed Mar. 04, 2024).
[2] J. Borghouts, A. D. Gordon, A. Sarkar, and N. Toronto, “End-user probabilistic programming,” pp. 3–24, 2019, doi: 10.1007/978-

3-030-30281-8_1.

[3] M. Tallis, R. Waltzman, and R. Blazer, “Adding deductive logic to a COTS spreadsheet,” Knowledge Engineering Review,

vol. 22, no. 3, pp. 255–268, 2007, doi: 10.1017/S0269888907001166.

[4] Microsoft, “Announcing python in excel combining the power of python and the flexibility of Excel,”

Techcommunity.Microsoft.Com, 2023. [Online]. Available: https://techcommunity.microsoft.com/t5/excel-blog/announcing-
python-in-excel-combining-the-power-of-python-and-the/ba-p/3893439-combining-the-power-of-python-and-the/ba-p/3893439.

(accessed: Mar. 05, 2024).

[5] R. Gyorodi, M. I. Pavel, C. Gyorodi, and D. Zmaranda, “Performance of OnPrem versus azure SQL server: a case study,” IEEE
Access, vol. 7, pp. 15894–15902, 2019, doi: 10.1109/ACCESS.2019.2893333.

[6] A. Harris, “Introduction to IronPython,” Pro IronPython, pp. 1–14, 2009, doi: 10.1007/978-1-4302-1963-7_1.

[7] T. Turk, “SDFunc: modular spreadsheet design with sheet-defined functions in Microsoft Excel,” Software - Practice and
Experience, vol. 52, no. 2, pp. 415–426, 2022, doi: 10.1002/spe.3027.

[8] Microsoft, “Architecture of VSTO add-ins,” 2023. [Online]. Available: https://learn.microsoft.com/en-

us/visualstudio/vsto/architecture-of-vsto-add-ins?view=vs-2022 (accessed Mar. 03, 2024).
[9] C. Chambers, M. Erwig, and M. Luckey, “SheetDiff: A tool for identifying changes in spreadsheets,” in Proceedings - 2010 IEEE

Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2010, 2010, pp. 85–92, doi:

10.1109/VLHCC.2010.21.
[10] A. A. Bock and F. Biermann, “Puncalc: Task-based parallelism and speculative reevaluation in spreadsheets,” Journal of

Supercomputing, vol. 76, no. 7, pp. 4977–4997, 2020, doi: 10.1007/s11227-019-02823-8.

[11] F. Hermans, M. Pinzger, and A. Van Deursen, “Supporting professional spreadsheet users by generating leveled dataflow
diagrams,” in Proceedings - International Conference on Software Engineering, 2011, pp. 451–460, doi:

10.1145/1985793.1985855.

[12] P. Bartholomew, “Excel as a turing-complete functional programming environment,” 2023, arXiv:2309.00115.
[13] R. Abraham, M. Burnett, and M. Erwig, “Spreadsheet programming,” Wiley Encyclopedia of Computer Science and Engineering,

pp. 2804–2810, 2009, doi: 10.1002/9780470050118.ecse415.

[14] M. A. T. T. Mccutchen, J. Borghouts, A. D. Gordon, S. I. M. O. N. Peyton Jones, and A. Sarkar, “Elastic sheet-defined functions:
Generalising spreadsheet functions to variable-size input arrays,” Journal of Functional Programming, vol. 30, 2020,

doi: 10.1017/S0956796820000234.

[15] K. T. Klasson, “QXLA: Adding upper quantiles for the studentized range to excel for multiple comparison procedures,”
Journal of Statistical Software, vol. 85, 2018, doi: 10.18637/jss.v085.c01.

[16] A. Nassereldine, P. Chen, and J. Xiong, “Excel spreadsheet analyzer,” 2022, arXiv:2211.06333.

[17] W McKinney, “Pandas: a foundational Python library for data analysis and statistics,” Python for high performance and scientific
computing, 2011.

[18] T. B. Elserwy, A. T. N. E.-D. Raslan, T. Ali, and M. H. Gheith, “Building custom spreadsheet functions with Python: end-user
software engineering approach,” Journal of Software Engineering and Applications, vol. 17, no. 5, pp. 246–258, 2024,

doi: 10.4236/jsea.2024.175014.

[19] J. Hunt, “Working with Excel files,” in Advanced Guide to Python 3 Programming, 2019, pp. 249–255.
[20] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020, doi: 10.1038/s41586-020-

2649-2.

[21] O. Ed-daymouni et al., “Efficient KPIs analysis: Harnessing the power of Excel and VBA programming for data visualization and
analysis,” in International Conference on Digital Technologies and Applications, 2024, pp. 23–31, doi: 10.1007/978-3-031-

68675-7_3.

[22] R. R. Fatra, E. A. Flodin, C. Bawono, M. I. Arshanda, F. Rivano, and D. Rachmanto, “Teasing insight out of reams of data using
advanced data visualization and analytics software for improved reservoir management, rokan light oil, Indonesia,” 2019,

doi: 10.2118/196318-ms.

[23] K. McGrath and P. Stubbs, VSTO for mere mortals: a VBA developer’s guide to microsoft development using visual studio 2005
tools for office. Addison-Wesley Professional, 2006.

[24] L. Wang, J. Chen, C. Zheng, and J. Feng, “Application research on table structure recognition and information extraction in sci-

tech academic journals based on visual studio tools for Office technology,” Editing Practice, vol. 1, 2023, doi:
10.54844/ep.2023.0412.

[25] DNAKode, “Excel-DNA,” 2023. [Online]. Available: https://excel-dna.net/docs/introduction (accessed Mar. 15, 2024).

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1024-1032

1032

BIOGRAPHIES OF AUTHORS

Tamer Bahgat Elserwy is a seasoned professional with over 10 years of

experience in the software field and quality management. He holds a master of science degree

in software engineering from the Department of Software Engineering, Faculty of Graduate

Studies for Statistical Research, Cairo University, Egypt. He has demonstrated his proficiency

in developing and implementing web-based applications using C# and Microsoft visual studio

.Net. As a Microsoft certified solutions developer (MCSD), he has shown his expertise in

designing and developing solutions using Microsoft technologies such as .NET framework

and SQL server. He excels in software development with agile experience (scrum master) and

quality assurance (certified auditor). He can be contacted at email: tamer.elserwy@gmail.com.

Tarek Aly is a respected member of the Computer Science Department at the

Faculty of Graduate Studies for Statistical Research, Cairo University, located in Giza, Egypt.

He possesses a broad range of skills and expertise in various areas of computer science and

information technology. His areas of proficiency include knowledge management, user

experience, prototyping, interaction, information management, IT project management,

information system management, design thinking, information technology, and designing.

Throughout his career, he has made significant contributions to his field. He has published 6

research papers, which have been read 1,882 times by scholars and researchers worldwide. His

contributions have significantly advanced the field of computer science and continue to

influence researchers and practitioners alike. He can be contacted at email:

Tarekmmmmt@pg.cu.edu.eg.

Basma E. El-Demerdash is an associate professor at the Department of

Operations Research and Management, Faculty of Graduate Studies for Statistical Research

(FGSSR), Cairo University. She graduated with a B.Sc. in Operations Research and Decision

Support from the Faculty of Computers and Artificial Intelligence, Cairo University, in 2007.

Her outstanding academic performance earned her a position as a teaching assistant in the

department. She then went on to receive her M.Sc. degree from the same department in 2011.

Her thesis focused on evaluating higher education systems in Egypt using data envelopment

analysis. Finally, she went on to receive her Ph.D. degree from the same department in 2019.

Her thesis focused on developing a data envelopment analysis model under different

uncertainty environments with different orientation types and return-to-scale types. Her

academic career began as a teaching assistant in 2007. Since then, she has accumulated 17

years of teaching experience at the Faculty of Computers and Artificial Intelligence, Cairo

University. She can be contacted at basma.ezzat@cu.edu.eg.

https://orcid.org/0009-0001-3682-0188
https://scholar.google.com/citations?user=q-be0jwAAAAJ
https://orcid.org/0009-0008-8609-4787
https://orcid.org/0000-0002-9841-1048
https://scholar.google.com/citations?user=kqy5JiQAAAAJ&hl=ar&oi=sra

