
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol. 12, No. 8, August 2014, pp. 6338 ∼ 6345
DOI: 10.11591/telkomnika.v12.i8.5198 � 6338

A Complete Combinatorial Solution for a Coins
Change Puzzle and Its Computer Implementation

Daxin Zhu and Xiaodong Wang*
Quanzhou Normal University

362000 Quanzhou, Fujian, China
*Corresponding author, e-mail: wangxiaodong@qztc.edu.cn

Abstract
In this paper, we study a combinatorial problem encountered in monetary systems. The problem

concerned is to find an optimal solution R(k, n) of a combinatorial problem for some positive integers k and
n. To the authors’ knowledge, there is no efficient solutions for this problem in the literatures so far. We first
show how to find an efficient recursive construction algorithm based on the backtracking search strategy.
Furthermore, we can give an explicit formula for finding the maximal elements of the solution. Our new
techniques have improved the time complexities of the search algorithm dramatically.

Keywords: Coins Change Puzzle, combinatorial solution, linear time, optimal algorithm

Copyright c© 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
In this paper, we consider the following combinatorial problem encountered in monetary

systems. Suppose C(k) is a monetary system that divides the currency denomination into k + 1
decimal levels: {1, 2, 5}; {10, 20, 50}; · · · ; {10i, 2 × 10i, 5 × 10i}; · · · ; {10k}. For example, China’s
currency system (RMB) can be classified as C(4).

Notation: c(i, j), 0 ≤ i ≤ k, 0 ≤ j ≤ 2 denote the levels of monetary values.
The monetary value of level i can be written as ci = (c(i, 0), c(i, 1), c(i, 2))>, 0 ≤ i ≤ k. In

particular, when i = k, ck = (10k, 0, 0)>.
For any integer n ∈ I+ we can obviously express n by the above currency system as

follows

n =

k∑
i=0

2∑
j=0

a(i, j)c(i, j) (1)

where a(i, j) ∈ I+, 0 ≤ i ≤ k, 0 ≤ j ≤ 2.
Denote ai = (a(i, 0), a(i, 1), a(i, 2))>, g(ai, ci) = a>i ci, 0 ≤ i ≤ k and a = (a0, a1, · · · , ak)>.

Then, the integer n can be expressed by

n =

k∑
i=0

a>i ci =

k∑
i=0

g(ai, ci) , f(k, a) (2)

For a given n ∈ I+ , the above representation is obviously not unique in general. The different
values of a satisfying (1) will give different representations of the positive integer n. Set A(k, n) =
{a | f(k, a) = n} constitutes all representations of a positive integer n in the given currency
system. For example, when k = 4, n = 3 we have

A(4, 3) =




1 1 0
0 0 0
0 0 0
0 0 0
0 0 0

 ,


3 0 0
0 0 0
0 0 0
0 0 0
0 0 0




Received November 24, 2013; Revised March 5, 2014; Accepted March 26, 2014

TELKOMNIKA ISSN: 2302-4046 � 6339

Definition 1. Let a and b be two-dimensional arrays. b ≤ a if and only if b(i, j) ≤ a(i, j),
0 ≤ i ≤ k, and 0 ≤ j ≤ 2; b < a if and only if both b ≤ a and b 6= a.

Definition 2. Let

s(k, a) = {f(k, b) | f(k, a) = n, 0 < b ≤ a} (3)

Set s(k, a) is defined as an implication set of the positive integer n, which is the collection of all
the money under the representation a. For example, when

a =


1 1 0
0 0 0
0 0 0
0 0 0
0 0 0

 ∈ A(4, 3)
we have s(4, a) = {1, 2, 3}.

Definition 3. Set
R(k, n) =

⋂
a∈A(k,n)

s(k, a) (4)

is defined to be an accurate implication set of the positive integer n in the given currency system[1].
For any x ∈ R(k, n), regardless of the kind of par value of the currency that composes the

positive integer n, it certainly contains x. For example, suppose the currency system is in RMB.
A person has money $5.27 (n = 527). If his money is composed of one $5 piece (c(2, 2) = 500),
one 2 angle piece (c(1, 1) = 20) , one 5 cent coin (c(0, 2) = 5), and one 2 cent coin (c(0, 1) = 2).
In our definition, k = 4 and

a =


0 1 1
0 1 0
0 0 1
0 0 0
0 0 0

 ∈ A(4, 527).
In this case, he cannot come up with $0.17. That is, 17 6∈ s(4, a). However, regardless of the kind
of par value of the currency, he can certainly take out $0.02 because without one 2 cent coin or
two 1 cent coins he cannot scrape together $5.27. In other words, 2 ∈ R(4, 527). In addition to
$0.02, he can certainly take out $5.00, $0.2, $0.07, $5.2, $0.27, and so on. These amounts of
money, as they are called, are certainly taken out of the $5.27.

The main problem concerned in this paper is for the given positive integers k and n, how to
find the corresponding accurate implication setR(k, n) efficiently. To the authors’ knowledge, there
is no solutions for the problem in the literatures so far. A preliminary conference version of this
paper was presented at Advances in Information Technology and Education Communications in
Computer and Information Science[2]. In this paper the correctness and complexities are proved
rigorously, but not just stated in intuitively. More experiment details are described in this version
of the paper.

2. Backtracking Algorithm
2.1. A Simple Backtracking Algorithm

According to Definition 3, the accurate implication set of the given positive integers k and
n in the currency system C(k) can be formulated as (4). In the algorithm description, we use
operations + and - for a set U and a positive integer v defined as follows

U + v = {x+ v | x ∈ U}, U − v = {x− v | x ∈ U and x ≥ v}

Based on this formula we can design a simple backtracking algorithm [?, 3, 4] to find R(k, n) as
follows. Initially, R = {1, 2, · · · , n} and S = ∅. A recursive function call Backtrack(n) will compute
the set R = R(k, n).

A Complete Combinatorial Solution for a Coins Change Puzzle and Its Computer ... (D. Zhu)

6340 � ISSN: 2302-4046

Algorithm 1 Backtrack(t)

1: if t = 0 then
2: R← R

⋂
S

3: return R
4: else
5: for all c(i, j) ∈ C(k) such that c(i, j) ≤ t do
6: S ← S + c(i, j)
7: Backtrack(t− c(i, j))
8: S ← S − c(i, j)
9: end for

10: end if
11: return R

2.2. Backtrack Pruning
If par value 1, 2, and 5 are used to compose the money, then positive integer 10 can be

one of the following 10 different representations.

Table 1. Representations of 10

e1 = (10, 0, 0) e2 = (8, 1, 0) e3 = (6, 2, 0) e4 = (4, 3, 0) e5 = (2, 4, 0)
e6 = (0, 5, 0) e7 = (5, 0, 1) e8 = (3, 1, 1) e9 = (1, 2, 1) e10 = (0, 0, 2)

Let E = {ei, i = 1, · · · , 10}.
Lemma 1. For the positive integers m = 10, m = 12 and m ≥ 14, if m = g(a0, c0) =

2∑
j=0

a(0, j)c(0, j), then there must be an integer d ∈ E such that d ≤ a0.

Lemma 2. For any a ∈ A(k, n) we have,
(1) σ(a, i) ∈ A(k, n), 0 ≤ i ≤ k. (2) s(k, σ(a, i)) ⊆ s(k, a), 0 ≤ i ≤ k.
Theorem 3. Let S0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13},
B(k, n) = {a ∈ A(k, n) | σ(a, i) = a, 0 ≤ i ≤ k}, F (k, n) = {a ∈ B(k, n) | a>i c0 ∈ S0}.
Then, R(k, n) =

⋂
a∈A(k,n) s(k, a) =

⋂
a∈B(k,n) s(k, a)

⋂
a∈F (k,n) s(k, a).

By making use of the constraints of F (k, n) in Theorem 3, we can add pruning condition
in the backtracking algorithm to improve the searching speed as follows [5].

Algorithm 2 Backtrack(t)

1: if t = 0 then
2: R← R

⋂
S

3: return R
4: else
5: for all c(i, j) ∈ C(k) and c(i, j) ≤ t and a>i c0 ∈ S0 do
6: S ← S + c(i, j)
7: Backtrack(t− c(i, j))
8: S ← S − c(i, j)
9: end for

10: end if
11: return R

TELKOMNIKA Vol. 12, No. 8, August 2014 : 6338 ∼ 6345

TELKOMNIKA ISSN: 2302-4046 � 6341

2.3. Recursive Constructing Algorithm
Definition 5.

div(x, y) =

⌊
x

y

⌋
; mod(x, y) = x− y

⌊
x

y

⌋
.

Lemma 4. Let

G1(k, n) = {a ∈ F (k, n) | aT0 c0 = mod(n, 10)}
G2(k, n) = {a ∈ F (k, n) | aT0 c0 = 10 +mod(n, 10)}

(1) If mod(n, 10) /∈ {1, 3}, then F (k, n) = G1(k, n).
(2) If mod(n, 10) ∈ {1, 3}, then F (k, n) = G1(k, n)

⋃
G2(k, n).

Theorem 5.
(1) If mod(n, 10) /∈ {1, 3}, then R(k, n) =

⋂
a∈G1(k,n) s(k, a).

(2) If mod(n, 10) ∈ {1, 3}, then R(k, n) =
(⋂

a∈G1(k,n) s(k, a)
)⋂(⋂

a∈G2(k,n) s(k, a)
)
.

Proof. It can be readily proved by Theorem 3 and Lemma 4. �
Lemma 6. Let

s0(k, a) = {f(k, b) | 0 < b ≤ a, bi = 0, 0 ≤ i ≤ k},
s1(k, a) = {f(k, b) | 0 < b ≤ a, b0 = 0},
s2(k, a) = s(k, a)− s0(k, a)− s1(k, a).

Then
For any a ∈ G1(k, n)

⋃
G2(k, n), we have s(k, a) = s0(k, a)

⋃
s1(k, a)

⋃
s2(k, a);⋂

a∈G1(k,n)
s(k, a) = α1

⋃
β1
⋃
γ1;
⋂

a∈G2(k,n)
s(k, a) = α2

⋃
β2
⋃
γ2.

where
α1 =

⋂
a∈G1(k,n)

s0(k, a), α2 =
⋂

a∈G2(k,n)

s0(k, a)

β1 =
⋂

a∈G1(k,n)

s1(k, a), β2 =
⋂

a∈G2(k,n)

s1(k, a)

γ1 =
⋂

a∈G1(k,n)

s2(k, n), γ2 =
⋂

a∈G2(k,n)

s2(k, n)

Definition 6. Let U and V be two sets of integer. The circle plus operation for sets U and
V is defined as U ⊕ V = {x + y | x ∈ U, y ∈ V }. The multiplication of a set U by an integer m is
defined as m× U = {mx | x ∈ U}.

Definition 7.

T0 = R(k,mod(n, 10));T1 = 10×R(k − 1,div(n, 10));T2 =
⋂

a∈G2(k,n)

s0(k, a);

T3 = 10×R(k − 1,div(n, 10)− 1);T4 = R(k, 10 + mod(n, 10)).

Lemma 7. ⋂
a∈G1(k,n)

s0(k, a) = T0 (5)

⋂
a∈G1(k,n)

s1(k, a) = T1 (6)

⋂
a∈G1(k,n)

s2(k, a) = T0 ⊕ T1 (7)

⋂
a∈G2(k,n)

s1(k, a) = T3 (8)

A Complete Combinatorial Solution for a Coins Change Puzzle and Its Computer ... (D. Zhu)

6342 � ISSN: 2302-4046

⋂
a∈G2(k,n)

s2(k, a) = T2 ⊕ T3 (9)

Lemma 8. Let k > 1, x ∈ R(k, n) and mod(x, 10) > 0, then mod(x, 10) ∈ R(k,mod(n, 10)).
Theorem 9.
(1) If mod(n, 10) /∈ {1, 3}, then R(k, n) = T0

⋃
T1
⋃
(T0 ⊕ T1)

(2) If mod(n, 10) ∈ {1, 3}, then R(k, n) = (T0
⋃
T1
⋃
(T0 ⊕ T1))

⋂
(T3

⋃
T4
⋃
(T3 ⊕ T4)).

(3) R(0, n) = {1, 2, · · · , n}.
Proof.
(1) It follows from Theorem 5 and Lemma 7 that if mod(n, 10) /∈ {1, 3}, then

R(k, n) =
⋂

a∈G1(k,n)

s(k, a) = T0
⋃
T1
⋃

(T0 ⊕ T1).

(2) It follows from Theorem 5, Lemma 6 and Lemma 7 that if mod(n, 10) ∈ {1, 3}, then

R(k, n) = (T0
⋃
T1
⋃

(T0 ⊕ T1))
⋂

(T3
⋃
T2
⋃

(T3 ⊕ T2)).

If k > 1 and mod(n, 10) = 1, then

R(k, 11) = {11} ⊆ {2, 4, 5, 6, 7, 9, 11} =
⋂

a∈G2(k,n)
s0(k, a) = T2

If k > 1 and mod(n, 10) = 3, then

R(k, 13) = {2, 11, 13} ⊆ {2, 4, 5, 6, 7, 8, 9, 10, 11, 13} =
⋂

a∈G2(k,n)
s0(k, a) = T2

Therefore, T4 = R(k, 10 + mod(n, 10)) ⊆ T2
and thus, T3

⋃
T4
⋃
(T3 ⊕ T4) ⊆ T3

⋃
T2
⋃
(T3 ⊕ T2).

It follows that

(T0
⋃
T1
⋃
(T0 ⊕ T1))

⋂
(T3

⋃
T4
⋃
(T3 ⊕ T4)) ⊆ (T0

⋃
T1
⋃
(T0 ⊕ T1))

⋂
(T3

⋃
T2
⋃
(T3 ⊕ T2)) = R(k, n)

On the other hand, for any x ∈ R(k, n), we have x ∈ T3
⋃
T2
⋃
(T3 ⊕ T2). If mod(x, 10) = 0, then

x ∈ T3. If mod(x, 10) > 0, then x ∈ T2
⋃
(T3 ⊕ T2). It follows from Lemma 8 that mod(x, 10) ∈

R(k,mod(n, 10)).
(2.1) If mod(n, 10) = 1, thenR(k,mod(n, 10)) = {1}. If x ∈ T2, then x ∈ {11} = R(k, 11) =

T4; If x ∈ T3 ⊕ T2, then x = 11 + y,y ∈ T3 and thus, x ∈ T3 ⊕ T4. Therefore, x ∈ T4
⋃
(T3 ⊕ T4).

(2.2) If mod(n, 10) = 3, then R(k,mod(n, 10)) = {1, 2, 3}. If x ∈ T2, then x ∈ {2, 11} =
R(k, 13) = T4; If x ∈ T3 ⊕ T2, then x = y + z, y ∈ T4, z ∈ T3 and thus, x ∈ T3 ⊕ T4. Therefore,
x ∈ T4

⋃
(T3 ⊕ T4).
It follows from the arbitrariness of x that

R(k, n) ⊆ (T0
⋃
T1
⋃

(T0 ⊕ T1))
⋂

(T3
⋃
T4
⋃

(T3 ⊕ T4)).

In summary, we have

R(k, n) = (T0
⋃
T1
⋃

(T0 ⊕ T1))
⋂

(T3
⋃
T4
⋃

(T3 ⊕ T4)).

(3) R(0, n) = {1, 2, · · · , n} is obvious. �
According to Theorem 9, we can design a recursive constructing algorithmRecurConst(k, n)

for computing R(k, n) as follows [4].
In the algorithm description above, the sub-algorithmDirect(k, n) compute the setR(k, n)

directly by a pre-computed solution table.

TELKOMNIKA Vol. 12, No. 8, August 2014 : 6338 ∼ 6345

TELKOMNIKA ISSN: 2302-4046 � 6343

Algorithm 3 RecurConst(k, n)

1: if k = 0 or n < 14 then
2: return Direct(k, n)
3: end if
4: T0 ← Direct(k,mod(n, 10))
5: T1 ← RecurConst(k − 1,div(n, 10))
6: R← T0

⋃
T1
⋃
(T0 ⊕ T1)

7: if k = 0 or n < 14 then
8: T3 ← Direct(k, 10 + mod(n, 10))
9: T4 ← RecurConst(k − 1,div(n, 10)− 1)

10: R← R
⋂
(T3

⋃
T4
⋃
(T3 ⊕ T4))

11: end if
12: return R

3. Finding the Maximal Elements
Definition 8.
g(k, n) = max

1≤i≤n
{|R(k, i)|}; h(k, n) satisfying g(k, n) = |R(k, h(k, n))|[4].

Lemma 10. g(0, n) = n; h(0, n) = n.
Proof. It follows from R(0, n) = {1, 2, · · · , n}. �
Lemma 11. If div(n, 10k) ≤ 1 and m ≥ k, then R(k, n) = R(m,n).
Proof. It follows from div(n, 10k) ≤ 1 that for any a ∈ A(k, n), we have n = f(k, a) =

k∑
i=0

a>i ci; div(n, 10k) = div(a>k ck, 10
k) = a>k c0 ≤ 1, and thus, A(k, 1) = A(k, 2) = 0.

If m ≥ k, then for any a ∈ A(m,n), we have n = f(m, a) =

m∑
i=0

a>i ci; div(n, 10k) =

div(a>k ck, 10
k) ≤ 1, and thus, ai = 0 for all i > k; A(k, 1) = A(k, 2) = 0.

Therefore, R(k, n) = R(m,n). �
Theorem 12. If div(n, 10k) ≤ 1, then
(1) If n ≥ 40, then

g(k, n) = 6g(k, div(n+ 1, 10)− 1) + 5 (10)

(2) If n > 3, then

g(k, n) ≤ 3

2
g(k, n− 1) +

1

2
(11)

Proof. The theorem will be proved by mathematical induction. Formula (2) can be verified
directly if 3 < n ≤ 40. Induction hypothesis: For all 40 ≤ m < n, we have g(k,m) = 6g(k,div(m+
1, 10)− 1) + 5; For all 3 < m < n, we have g(k,m) ≤ 3

2g(k,m− 1) + 1
2 .

(1) We first prove Formula (1) by induction.
(1.1) The case of mod(n, 10) = 9. In this case, div(n + 1, 10) − 1 = div(n, 10). Let

g(k, div(n, 10)) = |R(k,m)|. Then, for any 40 ≤ i ≤ n, we have |R(k, i)| ≤ 6 |R(k − 1,div(i, 10)|+5.
It follows from div(n, 10k) ≤ 1 and i < n that div(div(i, 10), 10k−1) = div(i, 10k) ≤ div(n, 10k) ≤ 1.

From Lemma 11, we know R(k − 1,div(i, 10) = R(k,div(i, 10). Therefore,

|R(k, i)| ≤ 6 |R(k − 1,div(i, 10)|+ 5 ≤ 6g(k,div(n, 10)) + 5

On the other hand, from m ≤ div(n, 10), we know 10m+ 9 ≤ n. Thus,

|R(k, 10m+ 9)| = 6 |R(k − 1,m)|+ 5 = 6g(k, div(n, 10)) + 5

Therefore, g(k, n) = 6g(k, div(n, 10)) + 5 = 6g(k, div(n+ 1, 10)− 1) + 5 .

A Complete Combinatorial Solution for a Coins Change Puzzle and Its Computer ... (D. Zhu)

6344 � ISSN: 2302-4046

(1.2) The case of mod(n, 10) 6= 9. In this case, div(n + 1, 10) − 1 = div(n, 10) − 1. For
any 10div(n, 10) ≤ i ≤ n, we have |R(k, i)| ≤ 4 |R(k − 1,div(i, 10)| + 3 = 4 |R(k,div(i, 10)| + 3 ≤
4g(k,div(n, 10) + 3.

It follows from n ≥ 40 that div(n, 10) ≥ 4 > 3. By induction hypothesis, g(k,div(n, 10)) ≤
3
2g(k,div(n, 10)− 1) + 1

2 . It follows that

|R(k, i)| ≤ 4
(
3
2g(k, div(n, 10)− 1) + 1

2

)
+ 3 = 6g(k, div(n, 10)− 1) + 5 .

For any 1 ≤ i < 10div(n, 10), let g(k, div(n, 10)−1) = |R(k,m)|, then |R(k, i)| ≤ 6 |R(k, div(i, 10))|+
5. In this time, we have div(i, 10) ≤ div(n, 10) − 1. Thus, |R(k, i)| ≤ 6g(k,div(n, 10) − 1) + 5.
On the other hand, from m ≤ div(n, 10) − 1, we know 10m + 9 ≤ n. Thus, |R(k, 10m+ 9)| =
6 |R(k − 1,m)| + 5 = 6g(k, div(n, 10)) + 5. g(k, n) = 6g(k, div(n, 10) − 1) + 5 = 6g(k,div(n +
1, 10)− 1) + 5. Therefore, Formula (1) is held by induction.

(2) We now prove Formula (2) by induction.
From Formula (1), we know
g(k, n) = 6g(k, div(n+ 1, 10)− 1) + 5; g(k, n− 1) = 6g(k, div(n, 10)− 1) + 5.
(2.1) The case of mod(n, 10) = 9. In this case, div(n+1, 10)−1 = div(n, 10). By induction

hypothesis, g(k, div(n, 10)) ≤ 3
2g(k,div(n, 10)− 1) + 1

2 . It follows that

g(k, n) ≤ 6
(
3
2g(k, div(n, 10)− 1) + 1

2

)
+ 5 = 9g(k,div(n, 10)− 1) + 8

= 3
2 (6g(k, div(n, 10)− 1) + 5) + 1

2 = 3
2g(k, n− 1) + 1

2

(2.2) The case of mod(n, 10) 6= 9. In this case, div(n + 1, 10) − 1 = div(n, 10) − 1. From
Formula (1), we know g(k, n) = g(k, n − 1) ≤ 3

2g(k, n − 1) + 1
2 . Therefore, Formula (2) is held by

induction.�
Theorem 13. Suppose m,n ∈ I+, n =

∑m
i=0 ai10

i, and

p =

 n− 1 m = 0
div(n+ 1, 10m−1)− 1 1 ≤ m ≤ k, ak ≤ 1
100 k < m or k = m, ak > 1

. Then,

h(k, n) =



1 0 ≤ p ≤ 1
3 2 ≤ p ≤ 7
9 p = 8
10m − 1 9 ≤ p ≤ 16
18× 10m−1 − 1 17 ≤ p ≤ 18
2× 10m − 1 19 ≤ p ≤ 36
38× 10m−1 − 1 37 ≤ p ≤ 38
4× 10m − 1 39 ≤ p ≤ 98
n p = 99
div(n+ 1, 10k)× 10k − 1 p = 100

(12)

g(k, n) =



1 0 ≤ p ≤ 1
3 2 ≤ p ≤ 7
5 p = 8
6m − 1 9 ≤ p ≤ 16
8× 6m−1 − 1 17 ≤ p ≤ 18
2× 6m − 1 19 ≤ p ≤ 36
16× 6m−1 − 1 37 ≤ p ≤ 38
4× 6m − 1 39 ≤ p ≤ 98
6m − 1 p = 99
div(n+ 1, 10k)× 6k − 1 p = 100

(13)

Proof.
If m ≤ 1, we can compute the values of h(k, n) and g(k, n) directly as shown in Table 2.
(1) The case of m = 0 corresponds to 1 ≤ n ≤ 9 , 0 ≤ p ≤ 8, and can thus be computed

directly from Table 2. If 1 ≤ m ≤ k and ak ≤ 1, then from Theorem 12, we know that if n ≥ 40,

TELKOMNIKA Vol. 12, No. 8, August 2014 : 6338 ∼ 6345

TELKOMNIKA ISSN: 2302-4046 � 6345

Table 2. values of h(k, n) and g(k, n)

n 1-2 3-8 9-16 17-18 19-36 37-38 39-98 99
h(k, n) 1 3 9 17 19 37 39 99
g(k, n) 1 3 5 7 11 15 23 35

then h(k, n) = 10h(k, div(n+ 1, 10)− 1) + 9; g(k, n) = 6g(k, div(n+ 1, 10)− 1) + 5. In this way, we
can compute recursively that

h(k, n) = 10m−1h(k, div(n+ 1, 10m−1)− 1) + 9

m−2∑
i=0

10i = 10m−1h(k, div(n+ 1, 10m−1)− 1) + 10m−1 − 1

= 10m−1
(
h(k, div(n+ 1, 10m−1)− 1) + 1

)
− 1;

g(k, n) = 6m−1g(k, div(n+ 1, 10m−1)− 1) + 5

m−2∑
i=0

6i = 6m−1g(k, div(n+ 1, 10m−1)− 1) + 6m−1 − 1

= 6m−1
(
g(k, div(n+ 1, 10m−1)− 1) + 1

)
− 1.

Now, we have 9 ≤ p = div(n + 1, 10m−1) − 1 ≤ 99. The values of h(k, n) and g(k, n) can now
be computed directly from Table 2. By substituting the values into the above formula, we get the
results.

(2) Ifm < k orm = k and ak > 1, then from the recursive formula of h(k, n) and g(k, n), we
know h(k, n) = 10kh(0,div(n+1, 10k)−1)+9

∑k−1
i=0 10i, h(0,div(n+1, 10k)−1) = div(n+1, 10k)−1.

It follows from Lemma 10 that h(0,div(n+ 1, 10k)− 1) = div(n+ 1, 10k)− 1, g(0,div(n+
1, 10k)− 1) = div(n+ 1, 10k)− 1.

By substituting them into the above formula we get

h(k, n) = 10k(div(n+ 1, 10k)− 1) + 9

k−1∑
i=0

10i = 10k(div(n+ 1, 10k)− 1) + 10k − 1

= div(n+ 1, 10k)× 10k − 1;

g(k, n) = 6k(div(n+ 1, 10k)− 1) + 5

k−1∑
i=0

6i = 6k(div(n+ 1, 10k)− 1) + 6k − 1 = div(n+ 1, 10k)6k − 1

The proof is completed. �

Acknowledgment
This work was supported by the Natural Science Foundation of Fujian under Grant No.2013J01247,

Fujian Provincial Key Laboratory of Data-Intensive Computing and Fujian University Laboratory
of Intelligent Computing and Information Processing.

References
[1] R. Bird. Pearls of Functional Algorithm Design. Cambridge University Press. 2010:258-274.
[2] Xiaodong Wang. Generation and Enumeration of Implication Sets. Advances in Information

Technology and Education Communications in Computer and Information Science. 2011;
201: 87-92.

[3] TH Cormen, CE Leiserson, RL Rivest. Introduction to Algorithms. MIT Press, Cambridge,
MA, 2001: 429-433.

[4] DL Kreher and D Stinson. Combinatorial Algorithms: Generation, Enumeration and Search,
CRC Press, 1998: 125-133.

[5] D Zhu, X Wang. A Practical Algorithm and Data Structures for Range Selection Queries.
TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014; 12(3): 2406-2413.

A Complete Combinatorial Solution for a Coins Change Puzzle and Its Computer ... (D. Zhu)

