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Abstract 
In this paper, a complete lattice lossless compression storage model is proposed to improve the 

storage efficiency. In order to build the proposed model, first all the upper and lower irreducible elements 
of the complete lattice are identified respectively, then an isomorphic mapping form the complete lattice to 
a concept lattice is founded, and finally a matrix is used to store the formal context of the concept lattice. 
Compared with using adjacent matrix, example and analysis show that the proposed method can improve 
the storage efficiency of complete lattice. 
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1. Introduction 

Lattice describes the partial order relations between objects, and is widely used in 
object clustering and hierarchical structure analysis. In recent years, lattice theory, especially 
the complete lattice theory, is used in many fields, such as graph querying [1], situation 
hierarchy manipulate [2], metabolic pathway analysis [3], set-valued variable representation [4], 
and so on. In theoretical research, adjacency matrix as the storage model is acceptable. 
However, in real applications the lattice usually contains numerous nodes and has a 
complicated structure. At this circumstance, adjacency matrix as the storage model will cost a 
lot of storage space and is not conducive to lattice retrieval and lattice isomorphism judgment. 
Lattice storage is no longer a insignificant problem, but a key theoretical issues of practical 
application value. 

Formal Concept Analysis (FCA) after being produced by professor R. Wille [5], its core 
structure concept lattice has attracted broad attention and being used in various fields. As its 
unique advantages in data analysis and knowledge system development, it has become a 
means for external recognition [6]. For this reason, in this article we will propose a complete 
lattice storage model based on the theory of FCA. 

 
 

2. Preliminaries 
Before proceeding, we briefly recall the lattice terminology and properties[7], as well as 

fundamental definitions in FCA [8, 9].  
Definition 2.1. Let P be a set. An order on P is a binary relation   such that, for all 

, ,x y z P , 

(1) x x , 
(2) x y  and y x  imply x y , 

(3) x y  and y z  imply x z . 

These conditions are referred to, respectively, as reflexivity, anti-symmetry and 
transitivity. 

Definition 2.2. Let P be an ordered set and let ,x y P . We say x is covered by y  (or

y covers x ), and write x y  or y x , if x y and x z y  implies z x . Moreover, x is 

called the lower neighbor of y and y is called the upper neighbor of x . 
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Definition 2.3. Let P be an ordered set and let S P . An element x P is an upper 

bound of S if s x  for all s S . An lower bound is dually. The set of all upper bounds of S  is 

denoted by uS  and the set of all lower bounds by lS : 

{ | ( ): }uS x P s S s x      and { | ( }:  )lS x P s S s x     . 

If uS has a least element x , then x  is called the least upper bound of S . Dually, if lS
has a greatest element x , then x  is called the greatest lower bound of S . 

The least upper bound of S is also called the supermum of S and is denoted by sup S
; the greatest lower bound of S is also called the infimum of S and is denoted by inf S . 

Notation 2.1. We write x y in place of sup ,x y  when it exists and x y  in place of 

inf ,x y when it exists. Similarly, we write S  and S  instead of sup S  and inf S . It is 

sometimes necessary to indicate that the join or meet is being found in a particular ordered set 

P , in which case we write P S  or P S . 

Definition 2.4. Let P be an non-empty ordered set. 
(1) If x y  and x y  exists for all ,x y P , then P is called a lattice; 

(2) If S  and S  exists for all S P , then P is called a complete lattice. 

Definition 2.5. Let L  be a lattice. An elements x L is join-irreducible if 

(1) 0x   (in case L  has a zero) 

(2) x a b   implies x a  or x b  for all ,a b L . 

A meet-irreducible element is defined dually. 
Definition 2.6. Let P be an ordered set and Q P . Then Q  is called join-dense in P

if for every element a P there is a subset A  of Q  such that Pa A  . The dual of join-

dense is meet-dense. 

Definition 2.7. A context is a triple  , ,K G M I  where G  and M  are sets and 

I G M  . The elements of G  and M  are called objects and attributes respectively. As 

usual, instead of  ,g m I  we write gIm  and say ‘the object g has the attribute m’.  

Definition 2.8. Given a formal context  , ,K G M I , the derivation functions  .f

and  .g  are defined for A G  and B M  as follows: 

  { | }:f A m M g A gIm    ;   { | }:g B g G m B gIm    . 

Definition 2.9. A formal concept of formal context  , ,K G M I  is a pair  ,A B , 

where A G , B M ,  f A B , and  g B A .  

A concept  ,A B  is subconcept of  ,C D  if A C  (equivalently, D B ). In this 

case,  ,C D  is called a superconcept of  ,A B . We write    , ,A B C D  and define the 

relations  ,  , and   as usual.  
The set of all concepts ordered by the relation   forms a lattice, which is denoted by 

 L K  and called the concept lattice of the context K . The relation defines the covering graph 

of  L K . 

 
 
 
 
 
 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 8, August 2014:  6332 – 6337 

6334

 3. Complete Lattice Storage Model Based on FCA  

Definition 3.1. Let  , ,K G M I  be a formal context, object g  is called a full 

attributes object, if and only if  f g M . Dually, attribute m  is called a largest common 

attribute if and only if  g m G  [10]. 

Definition 3.2. Let  , ,K G M I  be a formal context, object g  is called a shaded 

object, if and only if there are a series of objects { }i i Tg  and T is index set, that makes 

( ) ( )i
i T

f g f g


 . Dually, attribute m  is called a shaded attribute, if and only if there are a 

series of attributes { }i i Tm   and T is index set, that makes ( ) ( )i
i T

g m g m


 . 

Definition 3.3. Let  , ,K G M I  be a formal context, K  is called a purified formal 

context, if and only if there is no full attributes object, no largest common attribute, no shaded 
object and no shaded attribute. 

Definition 3.4. Let  , ,K G M I  be a formal context, a concept is called a object 

concept if it has the form      ,  g f g f g , g G , and g  is called its object label; a 

concept is called a property concept if it has that has the form      ,  g m f g m , m M , 

and m  is called its attribute label. 
Proposition 3.1. In a complete lattice, a join-irreducible element has only one lower 

neighbor, and a meet-irreducible element has only one upper neighbor [7]. 

Theorem 3.1. Let  , ,K G M I  be a purified formal context, a object concept of K  

must be a join-irreducible element, and vice versa. Dually, an attribute concept of K  must be a 
meet-irreducible element, and vice versa. 

Proof: Proof by contraction and assume that a object concept  ,A B  is not a join-

irreducible element, then  ,A B  has at least two lower neighbors, and we denote all these 

lower neighbors as  ,t t t T
A B


, and T is the index set. Since  ,A B  is a object concept, then it 

must exist an object g  that makes  f g B . By basic theorem of concept lattice, we have 

( )t t
t T t T

B B f A
 

   , and also  f A B , then we get   ( )t
t T

f A f A


 , which means 

 ,A B  is a shaded object, and this is contradict to the condition of the theorem that K  is not a 

purified context. So the assumption fails, and the theorem holds. By Duality Principle, we 
directly get that an attribute concept of K  must be a meet-irreducible element, and vice versa. 

Theorem 3.2. [7] Let V be a complete lattice, let G  and M  be sets and assume that 

there exist mappings :G V   and : M V   such that ( )G  is join-dense in V  and 

( )M  is meet-dense in V . Define I by    gIm G M   , for all g G  m M . Then 

V is isomorphic to concept lattice  , ,L G M I . 

We define        : ,  g g f g f g   and        : ,m g m f g m  , then we 

have           ( ( ( ))  )gIm g g m g f g g f g m g m g m         and thus we 

have    gIm G M   , which means  g and  m satisfy Theorem 3.2. Moreover, 

by Definition 3.4 we know that  g  is a object concept, and  m  is an attribute concept. 
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According to the above discussion, given a complete lattice V , by using mapping 

 g and  m , we can get a concept lattice  , ,L G M I  which is isomorphic to the 

complete lattice V .  

In the following Algorithm 1, by labeling irreducible element on V , we can get the 

objects and attributes contained in  , ,L G M I , which is corresponding the elements 

contained in G  and M . Moreover, by using the connection between join-irreducible element 

and meet-irreducible element which is embodied in V , we can get the relation I . So we get 

the context 
 , ,K G M I

. 
Algorithm 1: formal context acquisition form complete lattice 
Input: complete lattice V ; 

Output: formal context K  
Step 1: Traverse complete lattice V upward form its minimal element, if the currently 

visited element has only one upper neighbor, then labeling this element with a unique letter; 
Step 2: Traverse complete lattice V downward form its maximal element, if the 

currently visited element has only one lower neighbor, then labeling this node with a unique 
digit; 

Step 3: If m different digits and n different letters are used, then establish a context with 

m rows and n columns and store it by using a matrix { }ij m nA a  , and each digit corresponding 

to a row while each letter corresponding to a column, and initialize it to be a nil-matrix; 
Step 4: Traverse complete lattice V , for each node labeled by a digit(assume this digit 

is i ), visit its upper neighbors until meet the maximal element. And in this process if there exist 

an element labeled by a letter(assume this letter is j ), then set the value of  ija  to 1; 

Step 5: Return A . 
Example 1. Let V  be a complete and is shown in Figure 1. By using Algorithm 1, firstly 

we find its irreducible elements, which is shown in Figure 2. Secondary, we get its 
corresponding formal context K  that is shown in Table 1. And according to K we get its 

storage matrix 

1

1 0 0 0 0 1 0 0

1 0 0 0 0 1 1 0

1 1 0 0 0 1 1 0

0 1 0 0 0 1 1 1

1 0 1 0 1 0 0 0

1 1 1 0 1 0 0 0

0 1 1 1 0 0 0 0

0 1 1 0 1 0 0 0

A

 
 
 
 
 
   
 
 
 
  
 

. 

 

 
 

 

Figure 1. Complete Lattice V  Figure 2. Irreducible Elements of V  
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Table 1. Formal Context K  
 a b c d e f g h

1 *     *   

2 *     * *  

3 * *    * *  

4  *    * * * 

5 *  *  *    

6 * * *  *    

7  * * *     

8  * *  *    

 
 

If using adjcent matrix to store complete lattice V ，we must establish a matrix 2A  with 

19 rows and 19 columns, and the number of 1 elements is twice of the number of links between 
the nodes, i.e. 62. 

The storage efficiency comparison between 1A  and 2A  is given is Table 2. 

 
 

Table 2. Storage Efficiency Comparison 
 size non-zero elements Percentage of the 

non-zero elements 

1A  8 8 26 40.6% 

2A  19 19  62 17.1% 

 
 

Other than saving storage space, our method is also helpful to improve the efficiency 
for judging complete lattice isomorphism. Complete lattice isomorphism judgment can be 
converted into graph isomorphism judgment, and this is seen as a NP - complete problem by a 
majority of scholars [11]. If we judge graph isomorphism by performing row and column 
exchange of adjacent matrix, at the worst case, the total number of exchange will reach ! !r c  
times( r  is the number of rows, as c is the of columns), and this is much greater than 
exponential time complexity. Our method reduces the scale of the storage matrix, thus it can 
improve the efficiency of complete lattice isomorphism judgment. 
 
 
4. Conclusion 

Based on Formal Concept Analysis, we propose a complete lattice storage method. 
The proposed method only stores irreducible elements, and the relationship between them. 
Compared with the adjacency matrix storage method, the proposed method can improve the 
storage efficiency.  
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