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 This article centers around the development and analysis of machine 

learning (ML) and deep learning models aimed at enhancing diabetes 

diagnosis. In the swiftly evolving landscape of data technologies, it becomes 

crucial to explore the applications of these methods for accurate predictions 

and improved medical decision-making. Our research encompasses diverse 

datasets, leveraging state-of-the-art algorithms and technologies for model 

training and testing. The primary emphasis lies in evaluating the accuracy, 

sensitivity, and specificity of models within the realm of diabetes diagnosis. 

The study results reveal significant advancements in disease prediction, 

underscoring the potential of ML and deep learning in medical applications. 

This work introduces fresh perspectives on the utilization of computational 

methods in healthcare and serves as a foundation for prospective research in 

this domain. 
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1. INTRODUCTION 

In the evolving landscape of modern healthcare, the management and analysis of health data have 

become pivotal. The introduction of the electronic health passport (EHP) represents a leap towards enhancing 

patient data handling, offering a comprehensive tool for the collection, storage, and processing of health 

information. This innovation aligns with the World Health Organization's (WHO) Global Strategy for Digital 

Health 2020-2025 [1], [2] which aspires to universally improve health care via digital technologies [3], [4] 

with an emphasis on equity [5] and inclusion [6]. Despite these advances, the implementation of such 

strategies across varying national landscapes poses considerable challenges. 

Background: The foundation for constructing systems that gather, store, and analyze medical 

information from patients across various countries globally lies in the realm of extensive data. Processing this 

vast amount of data, commonly referred to as big data, empowers us to formulate methodologies for 

anticipating factors such as illness rates, mortality, complications, and beyond [7]. Big data processing has made 

it possible to develop intelligent decision-making systems, including in medicine [8]–[12]. Authors contend that 

the application of artificial intelligence (AI) and machine learning (ML) has contributed to enhancing outcomes 

in the diagnosis, treatment, and prognosis for Chronic Limb-Threatening Ischemia (CLTI) patients [13]. 

The efficacy of employing ML technologies in medicine is substantiated by numerous studies across 

various medical fields. In their examination of the diagnostic properties of ML algorithms in peripheral artery 

disease, the authors conclude that ML enables more precise classification and prediction of the disease [14]. 

https://creativecommons.org/licenses/by-sa/4.0/
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ML methodologies are employed to predict biological age by utilizing data linked to identifiable mental traits 

that are correlated with accelerated aging [15]. The authors of studies on Parkinson's disease [16], high-

fatality cancers [17]–[20], and inherited arrhythmia syndromes [21] reach the same conclusion. The utilization 

of deep learning algorithms reduces the likelihood of a false-positive diagnosis, thereby eliminating the negative 

psychological impact faced by the patient [22]. The utilization of ML methods and deep learning algorithms in 

diagnosing COVID-19 contributed to bringing the pandemic under control [23]-[35]. 

ML and deep learning methods, with their inherent capacity to independently extract valuable insights 

from data, offer a significant advantage in prediction, leading to their widespread utilization in the medical field, 

particularly underscoring the importance and high significance of DL Methods in healthcare [36]–[39]. 

Analyzing patient records and selection criteria for developed models enables predictions of contagion, 

survivability, and the risk of critical conditions [11], [40]–[43]. A comparison of 14 different ML algorithms 

revealed an accuracy of over 90% in identifying individuals with and without diabetes [44]. Researchers 

combine multiple algorithms to determine the accuracy of predicting diabetes [45]–[47]. 

Researchers have demonstrated the efficacy of ML models in disease identification and prognosis 

with notable accuracy. Yet, the utility of these technologies in the nuanced field of diabetes prediction 

remains underexplored. This occurs partly due to the algorithms employed. For instance, within the realm of 

alternative ML algorithms, conventional methods like naive Bayes, logistic regression, and support vector 

machines (SVMs) lead to exponential growth in computational complexity due to data expansion, resulting in 

inadequate outcomes [7], [33], [48], [49]. In contrast, tree algorithms provide a more robust alternative, 

alleviating certain limitations encountered by traditional methods [8], [9], [50]. Ensemble methods and the 

decision tree algorithm in ML offer approaches to high-precision diagnosis and prognosis for breast cancer 

[51]-[53], cardiovascular disease [54], [55], and COVID-19 [56]. 

The problem: The widespread application of ML across the nexus of medicine and information 

technology has significantly advanced our capabilities to address various challenges. Despite these 

advancements, the quest for innovative diagnostic methodologies through the meticulous analysis of patient 

data remains largely unexplored. Prevailing literature underscores the incremental adoption of digital health 

technologies, with strategic objectives focusing on governance, resource capacity, and data security. 

However, literature reveals a gap in the pragmatic analysis of big data to inform healthcare delivery. Existing 

research predominantly relies on established disease markers or singular types of medical information.  

The proposed solution: In contrast, we advocate for a novel methodology that leverages ML to uncover 

new diagnostic indicators. This approach aims to elucidate the connections between diseases and a 

comprehensive array of patient medical data, encompassing prior illnesses and all available health information. 

Such a strategy is not only pivotal but also necessitated by the integration of cutting-edge technologies within 

routine medical frameworks and the adoption of electronic health passports. We will elucidate our 

methodology, combining various ML models with deep learning classification techniques to forecast diabetes 

presence. The research will undertake a binary classification task, employing multiple evaluation criteria and 

hyperparameter tuning to forge robust algorithms. Through meticulous data preprocessing, we will also explore 

patient history and hospitalization levels to enhance our model's predictive capability. 

 

 

2. MATERIALS AND METHODS  

2.1.  Research description 

The study progresses through methodical steps designed to ensure replicability and robustness of the 

findings. Below is a detailed breakdown of each phase. 

A. Selection and preparation of data: 

− Exploratory data analysis (EDA) is conducted to identify and address data inconsistencies, missing 

values, and outliers. 

− Data quality is reassessed through verification protocols to ensure validity and reliability. 

− Structured dataframes are constructed for testing and training predictive models, with careful 

consideration of feature selection to balance the informative value against computational efficiency. 

B. Modeling: 

− A range of predictive models are delineated, including but not limited to, decision trees, random forests, 

and SVMs, each chosen for their proven efficacy in medical data analysis [38], [39], [56], [57]. 

− Model performance is rigorously evaluated against key metrics: accuracy, F1 score, precision, and 

recall to ensure a comprehensive understanding of each model's predictive power. 

C. Identification of the best model: 

− Comparative analysis is conducted to determine the most effective model. This involves a systematic 

review of performance metrics and alignment with the specific nuances of the dataset. 
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D. Optimization of the model: 

− Model accuracy is enhanced through a systematic optimization process utilizing Grid Search techniques 

to fine-tune hyperparameters within computationally feasible bounds. 

E. Application of deep learning: 

− Ensemble models and neural networks are deployed, selected for their capacity to model complex non-

linear relationships inherent in medical data [8], [9], [52]–[58]. 

− Hyperparameters are carefully chosen based on their impact on performance, with a focus on 

generalizability and prevention of overfitting. 

F. Obtaining and analyzing results: 

− Results are acquired from a randomized dataset to ensure the robustness of findings. 

− Key parameters influencing diagnosis are identified through feature importance analysis, which informs 

the interpretability of the model. 

− Collaboration with domain experts ensures the clinical relevance of the data analysis. 

− Additional testing is conducted where possible, using datasets from medical institutions to validate the 

model's applicability in a real-world setting. 

Data selection: Data selection for our study on diabetes mellitus follows diagnostic and treatment 

protocols, adhering to WHO standards, and utilizes indicators like symptoms and glucose levels for 

identification. We extracted and analyzed a comprehensive dataset from the MIMIC III database, covering 

various medical and patient-related categories to ensure data integrity. Data processing and model training: In 

data processing and model training, we used a broad range of indicators including laboratory and patient 

examination data. Our approach included data cleansing to eliminate duplicates and anomalies, followed by 

data integration to support our research objectives. Insights were drawn from specific MIMIC database tables 

like 'chartevents' and 'noteevents' to enhance our understanding of patient status and treatment efficacy. 

Optimal model determination: Subsequent to data preparation, we employ a combination of ML and 

ensemble methods to identify the optimal model. The selection of these methods is justified by their 

robustness in handling high-dimensional data and their proven track record in medical data analysis. 

 

2.2.  ML and ensemble methods 

Traditional ML models like Logistic Regression use a linear decision boundary, which may struggle 

with complex, high-dimensional data. To address this, ensemble methods such as Random Forests, which use 

multiple Decision Trees, and Bagging and Boosting techniques are used to improve model robustness and 

accuracy. Bagging trains multiple models on different data subsets and aggregates their predictions, while 

Boosting sequentially corrects the previous model's errors, weighing predictions based on their accuracy [57]. 

Artificial neural networks (ANNs), including convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs) [59]-[61], use layers of neurons to process data. CNNs are effective for automatic 

feature extraction through convolutional filters [62]-[64], whereas RNNs handle sequential data, with outputs 

from one layer fed back into the same layer as input [65]–[67]. Long short-term memory networks (LSTMs) 

improve RNNs by managing information flow with gates that regulate input, output, and forget functions [68]. 

Key to training these networks is minimizing a Cost Function [69], often using a Gradient Descent 

algorithm, which adjusts parameters to reduce prediction error [70]. Mini-batch gradient descent enhances 

efficiency by using subsets of data, while the Adam optimizer refines parameter updates by adjusting the 

learning rate based on gradient estimates [71]–[74]. These methods ensure effective learning and 

convergence during model training [65]–[74]. 

 

2.3.  Optimization process 

The optimization process involved the following steps, implemented using GridSearchCV, and 

explained through mathematical formulations: 

− Activation function and kernel initializer: The scaled exponential linear unit (SELU) function, defined 

as in (1): 
 

{
 𝑥                 𝑖𝑓 𝑥 > 0

𝛼𝑒𝑥 − 𝛼    𝑖𝑓 𝑥 ≤ 0
 (1) 

 

along with the LeCun normal initialization, has been employed to initialize weights and biases. SELU 

facilitates self-normalization by ensuring a mean of 0 and variance of 1 across layers, which is particularly 

effective in deep networks prone to the vanishing/exploding gradient problem. 

− Learning rate and optimizers: Through GridSearchCV, the learning rate η and optimizers like Nadam, a 

variant of Adam incorporating Nesterov momentum, were evaluated for optimal performance. 
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− Epochs and batch size: The number of epochs and the mini-batch size m were optimized to balance the 

trade-off between computational efficiency and model performance. 

By employing GridSearchCV, each hyperparameter was systematically varied and the model's performance 

was evaluated, leading to the selection of the hyperparameters that yielded the best validation performance. 

 

2.4.  Evaluation metrics for classification models 

In assessing the performance of classification models within ML and DL. Several key metrics are 

used: precision, recall [75], F1-score [75], [76], accuracy, and the confusion matrix. The confusion matrix is 

a crucial tool that categorizes predictions into four types (Figure 1): True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN). 

 

 

 
 

Figure 1. Confusion matrix or contingency table 

 

 

These quadrants enable us to compute the following metrics: 

A. Accuracy: The overall correctness of the model, presented in (2): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2) 

 

B. Precision: the ratio of correct positive predictions to all positive predictions, presented in (3): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

 

C. Recall (Sensitivity): the ratio of actual positives correctly identified, presented in (4): 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

 

D. F1-score: a harmonic mean of precision and recall, presented in (5): 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 

To systematize these computations, one may define a vector y representing actual class labels and a 

vector �̂� for predicted labels. These vectors serve as inputs to functions calculating each metric, effectively 

transforming the classification problem into a mathematical evaluation. It is presented in (6): 

 

𝑚𝑒𝑡𝑟𝑖𝑐(𝑦, �̂�) → 𝑅 (6) 

 

where the function "metric" could be any of the beforementioned metrics, and R represents the real numbers, 

indicating that each metric provides a real-valued outcome representing the model's performance. 

Further in the study we will build a visual representation in the form of a mixing matrix using the 

Python library Matplotlib or Seaborn, which allows an immediate graphical interpretation of the classifier 

results. In practice, metrics are of paramount importance when fine-tuning classification models, especially in 

domains with unbalanced datasets, where accuracy alone may not reflect the true predictive power of the 

model. Thus, the selection of appropriate metrics is necessary to ensure that the performance of the model is 

truly indicative of its ability to generalize to new, as-yet-unacquired data. 

 

2.5.  Data preparation and pre-processing 

Data from the MIMIC-III database was used, focusing on diabetic patient records including 

demographics, medical history, medications, and hospitalizations. The broad scope of the data, beyond just 

diabetes-related information, was considered crucial for identifying new predictive factors. Data cleansing 

involved removing records with missing essential information, using imputation for some missing values, or 
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excluding such records entirely. Numerical data was standardized, for instance using the Z-transform, and 

categorical data was encoded using methods like one-hot encoding to facilitate ML processing. These 

preprocessing steps ensured data quality and consistency, critical for the accuracy of ML models. Model 

selection was based on data characteristics relevant to diabetes classification tasks. 

Decision tree, random forest, and AdaBoost models were used for their unique advantages: decision 

trees for interpretability, random forests for handling large datasets and resistance to overfitting, and 

AdaBoost for boosting the performance of weaker classifiers [59]. Hyperparameter tuning was carried out 

using Grid Search or Random Search to optimize model settings, focusing on parameters like tree number 

and depth for random forests, and iteration count and learning rate for AdaBoost. This tuning helps improve 

model performance and address overfitting or underfitting. Feature importance analysis, like the 

feature_importances_ attribute in random forests, was utilized to identify key predictors such as blood 

glucose level, BMI, age, and gender, aiding in model interpretation and focusing on critical data aspects. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Methods of comparison and results obtained 

The performance of the models was assessed using metrics such as accuracy, F1-score, recall, and 

precision. This enables comparison of the models both in overall terms and in specific aspects of 

classification. 

The following steps were undertaken: 

A. Imported all the necessary libraries:  

− pandas  

− numpy  

− matplotlip 

− seaborn 

− sklearn 

B. Loaded processed diabetes data from the Diseases table and anonymized patient data from the Patients 

table. We also merged these data by key columns. We obtained the final dataframe with the following 

dimensions:  

− Number of Patients with Diabetes: (552336, 13) 

− Number of Patients without Diabetes: (15969, 13) 

− Number of Final balanced Dataframe: (31938, 13) 

C. Next, we begin our modeling 

− Importing the necessary libraries. The code starts by importing classes from the sklearn library used for 

cross-validation and various classification algorithms. 

− Set the initial state of the random number generator. Random_state = 2 ensures reproducibility of results 

by setting the initial state for the random number generator. 

− Creating a list of classifiers. Various classification algorithms are added to the list of classifiers, 

including decision tree classifier and ensemble methods such as AdaBoost classifier, random forest 

classifier, extra trees classifier, and gradient boosting classifier. 

− Using cross-validation with five partitions (kfold = 5), the code evaluates each classifier on the training 

dataset X_train with y_train responses using the accuracy metric. 

− For each classifier, the average accuracy and standard deviation of the cross-validation results are 

computed. 

− A bar chart is created that shows the average accuracy (mean of the cross-validation scores) for each 

algorithm with the standard deviation of the errors. The bar chart has been illustrated in Figure 2. 

The diagram shows that gradient boosting classifier has the highest average accuracy while decision tree 

classifier has the lowest. This suggests that ensemble learning based models generally outperform the simple 

decision tree classifier, probably due to their ability to generalize better and reduce overfitting. 

The Figure 3 delineates a quantitative evaluation of five distinct classification algorithms. 

Performance metrics are aggregated from cross-validation procedures, which are instrumental in assessing 

the robustness of each model. The metrics considered are the mean accuracy (CrossValMeans) and the 

associated standard error (CrossValerrors), derived from the cross-validation scores. 

Variables described: 

− CrossValMeans: This column represents the mean accuracy score obtained from the cross-validation 

process. Accuracy is a common metric in model evaluation, indicating the ratio of correctly predicted 

observations to the total observations. 
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− CrossValerrors: This column indicates the standard error of the mean accuracy scores across the cross-

validation folds. A lower value here suggests higher stability in the model's performance across 

different data subsets. 
 

 

 
 

Figure 2. The diagram shows the cross-validation results for each of the algorithms 
 

 

 
 

Figure 3. Comparative performance of classification algorithms 
 

 

From the data provided, we can infer the following: 

− The AdaBoost algorithm exhibits the highest mean accuracy (0.915459) with a standard error of 

0.004543, suggesting it not only performs well on average but also maintains consistent performance 

across different subsets of the data. 

− The GradientBoosting algorithm shows significantly lower mean accuracy (0.633432) with a relatively 

higher standard error (0.004944), which could indicate less reliable performance across the cross-

validation folds. 

− The remaining algorithms — DecisionTree, RandomForest, and ExtraTrees — display moderate mean 

accuracies with DecisionTree having the least consistency, as suggested by the higher standard error. 

This comparison is crucial for model selection in a data science project. The AdaBoost model would 

be a strong candidate for further refinement and testing, given its superior mean accuracy and consistent 

cross-validation performance. In contrast, the lower accuracy of GradientBoosting warrants an investigation 

into whether the model's complexity is appropriate for the data or if its parameters need adjustment. 

D. Next, we started to implement hyperparameter selection for various ML algorithms using Grid Search 

parameter enumeration and estimation using cross-validation. Detailed description: 

− Initialization of EstimatorSelectionHelper (EstimatorSelectionHelper). The constructor accepts 

dictionaries with models and their corresponding hyperparameters. It is checked that parameters are 

provided for each model. 

− Fit function. A GridSearchCV is executed for each model, which systematically works through the 

combinations of parameters provided in params, evaluating each combination using cv fold cross-validation. 

− Score_summary function. Collects GridSearchCV results and creates a summary table including the 

minimum, maximum, mean, and standard deviation of test scores. The table is sorted by the mean score 

(or other specified criterion) to show the best combinations of parameters. 
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− Creating models and params. In models and params, the classifiers and hyperparameters for the search 

are specified. For example, max_depth is selected for the DecisionTreeClassifier and learning_rate and 

n_estimators are selected for the AdaBoostClassifier. 

− An instance of EstimatorSelectionHelper is created with the specified models and parameters. 

The result is a console output of model names and a table that sorts the models by their performance 

given the configured hyperparameters. This table helps to determine which models and parameter sets work 

best for a given classification task. This table has been illustrated in Figure 4, which presents the results of 

hyperparameter selection for different classification algorithms using Grid Search. Each row of the table 

corresponds to a particular combination of parameters for a particular algorithm. 

The table provides the following information on the hyperparameters: 

− estimator. This parameter indicates the classifier for which the parameters were fitted. 

− min_score, mean_score, max_score. These parameters indicate the minimum, mean and maximum 

accuracy achieved by the model on the cross-validation datasets. 

− std_score. This parameter indicates the standard deviation of accuracy, reflecting the variation in model 

performance on different cross-validation folds. 

− learning_rate, max_depth, max_features. These hyperparameters were picked up during the Grid Search 

process. NaN values mean that the parameter was not applied to this model. 

The table shows that gradient boosting classifier generally performs better in terms of mean 

accuracy (mean_score) with different combinations of hyperparameters. Models with a maximum tree depth 

(max_depth) of 9 and max_features set to auto or sqrt give the best results. This may indicate that more 

complex models perform better, but it is important to keep an eye on overtraining. The learning_rate and 

max_features columns do not apply to all models due to the specific nature of the algorithms. For example, 

max_features does not apply to AdaBoost classifier and decision tree classifier in this setting. 

 

 

 
 

Figure 4. Results of models and selected hyperparameters 

 
 

E. Subsequently, we conducted the final tuning and evaluation of several classification models on test data. 

Utilizing training and testing accuracy data, as well as precision, recall, and F1-score metrics for model 

comparison, the following procedures were executed: 

− Importation of the metrics library. The code commences with the importation of functions for 

computing the model's quality metrics. 

− Initialization of classifiers with specific hyperparameters. A list of classifiers is generated, each 

equipped with the optimal hyperparameters determined during the previous Grid Search phase. 

− Model training and prediction. Each model is trained on the training dataset (X_train, y_train) and 

subsequently makes predictions on the test dataset (X_test). 

− Calculation of metrics. For each model, accuracy, precision, recall, and F1-score are computed both on 

the training and the test datasets. 

− Reporting of results. The calculated metrics for each model are outputted, along with a classification 

report and confusion matrix. 

The calculated metrics, confusion matrix (7) and classification report as shown in Table 1 for 

DecisionTree model are represented below: 

− Accuracy: 1.0; F1 score: 1.0; Recall: 1.0; Precision: 1.0 
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[
3617 1165
2273 2527

] (7) 

 

 

Table 1. The classification report for decision tree model  
Precision Recall F1-score Support 

False 0.61 0.76 0.68 4782 

True 0.68 0.53 0.60 4800 
accuracy 

  
0.64 9582 

macro avg 0.65 0.64 0.64 9582 

weighted avg 0.65 0.64 0.64 9582 

 
 

The calculated metrics, confusion matrix (8) and classification report as shown in Table 2 for 

AdaBoost model are represented below: 

− Accuracy: 1.0; F1 score: 1.0; Recall: 0.0; Precision: 1.0 
 

[
3526 1256
2720 2080

] (8) 

 
 

Table 2. The classification report for AdaBoost model  
Precision Recall F1-score Support 

False 0.56 0.74 0.64 4782 

True 0.62 0.43 0.51 4800 
accuracy 

  
0.59 9582 

macro avg 0.59 0.59 0.58 9582 

weighted avg 0.59 0.59 0.58 9582 

 
 

The calculated metrics, confusion matrix (9) and classification report as shown in Table 3 for 

RandomForest model are represented below: 

− Accuracy: 1.0; F1 score: 1.0; Recall: 1.0; Precision: 1.0 
 

[
3511 1271
1877 2923

] (9) 

 
 

Table 3. The classification report for random forest model  
Precision Recall F1-score Support 

False 0.65 0.73 0.69 4782 

True 0.70 0.61 0.65 4800 

accuracy 
  

0.67 9582 
macro avg 0.67 0.67 0.67 9582 

weighted avg 0.67 0.67 0.67 9582 

 
 

The calculated metrics, confusion matrix (10) and classification report as shown in Table 4 for 

ExtraTrees model are represented below: 

− Accuracy: 1.0; F1 score: 1.0; Recall: 1.0; Precision: 1.0 
 

[
3462 1320
2097 2703

] (10) 

 

 

Table 4. The classification report for ExtraTrees model  
Precision Recall F1-score Support 

False 0.62 0.72 0.67 4782 

True 0.67 0.56 0.61 4800 
accuracy 

  
0.64 9582 

macro avg 0.65 0.64 0.64 9582 

weighted avg 0.65 0.64 0.64 9582 

 

 

The calculated metrics, confusion matrix (11) and classification report as shown in Table 5 for 

GradientBoosting model are represented below: 

− Accuracy: 1.0; F1 score: 1.0; Recall: 1.0; Precision: 1.0 
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[
4655  127
675 4125

] (11) 

 

 

Table 5. The classification report for gradient boosting model  
Precision Recall F1-score Support 

False 0.87 0.97 0.92 4782 

True 0.97 0.86 0.91 4800 
accuracy 

  
0.92 9582 

macro avg 0.92 0.92 0.92 9582 

weighted avg 0.92 0.92 0.92 9582 

 
 

− Creating and outputting a summary table, represented in Figure 5. It collects information on each metric 

for all models. 

− Graph construction. The subcategory bar function is used to construct a graph comparing the models on 

different metrics. The model comparison is represented in Figure 6. 
 
 

 
 

Figure 5. Summary table of each metric for all models 
 

 

 
 

Figure 6. Graph comparing the models on different metrics 
 

 

Based on the table and graph, it can be seen that the GradientBoostingClassifier model has the highest 

accuracy on the test dataset, as well as high scores on the other metrics, making it the preferred model for real-

world applications. The results in the console, which show accuracy, F1-score, completeness, and precision 

equal to 1.0, are likely the result of prediction on the training dataset (trainprediction) where the model has 

already seen all the answers, leading to overfitting. However, in a real situation, it is important to look at the 

results of the test dataset (prediction), which is new data that was not involved in training the model. 

 

3.2.  Discussion of the limitations of current methods 

The current study utilized computers with limited computational resources, which imposed 

limitations on the sample size to be processed and the complexity of the ML models used. In turn, this can 

lead to models trained on smaller samples not fully reflecting the complexity of the data in larger and more 

diverse sets, which can reduce the generalizability of the model and the accuracy of the predictions. 
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Limitations of the chosen model, i.e. the algorithms used, such as decision trees and random forest, 

although good at classification tasks, may be susceptible to overtraining and may not capture all the nuances in 

the data, which is particularly important in disease prediction. Suggestions for model improvement: 

− Improved computational resources are justified because the use of more powerful computational 

hardware will allow processing of larger amounts of data, which will improve the accuracy and 

reliability of ML models. 

− More powerful resources will also allow the use of more sophisticated models, such as deep neural 

networks, which can provide better performance for prediction tasks. 

− Expanding the dataset. Using a larger and more diverse dataset will help improve the generalizability of 

models and make predictions more accurate and reliable. 

− Application of dimensionality reduction techniques. Dimensionality reduction techniques such as PCA 

(principal component analysis) can help reduce data complexity and improve model performance on 

limited computational resources. 

 

 

4. CONCLUSION 

This paper identifies a crucial gap: the lack of integrated ML and deep learning approaches tailored 

for the prediction of diabetes, a burgeoning global health concern. Existing models demonstrate substantial 

potential, yet they require refinement to enhance predictive accuracy and to incorporate diverse patient 

datasets. Our study seeks to bridge this gap by unveiling non-standard correlations within diabetes prediction 

models, leveraging the strengths of both ML and deep learning. We aim to transcend traditional diagnostic 

models, probing deeper into the parameters that govern them and unveiling new diagnostic correlations. 

It is important to note that the incorporation of machine and deep learning methods in the medical 

diagnosis of diabetes signifies a noteworthy advancement in the realm of precision medicine. Our study's 

findings underscore that sophisticated ML algorithms can attain elevated levels of accuracy, sensitivity, and 

specificity in predicting diabetes. This, in turn, enhances the quality of healthcare and augments the 

efficiency of clinical decision-making. Nevertheless, it is imperative to emphasize that optimal results 

necessitate meticulous data preparation and pre-processing, along with consideration of the unique 

characteristics inherent in a given clinical situation. 

In conclusion, this study does not merely connect contemporary health issues with burgeoning WHO 

research but innovatively applies advanced computational techniques to diabetes prediction. The implications 

of our findings may significantly refine decision-making processes in medical practice and provide a scaffold 

for future research in predictive healthcare analytics.  

To enhance the models and their practical application in clinical settings, it is recommended to 

persist in research efforts in this domain. This entails delving into extensive datasets and crafting algorithms 

capable of adapting to evolving conditions and patient-specific characteristics. Consequently, this project 

significantly contributes to the advancement of artificial intelligence methods in medicine, paving the way 

for new possibilities in the diagnosis and treatment of chronic diseases. 
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