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Abstract 
This paper presents a brief overview of narrowband direction of arrival (DOA) estimation 

algorithms and techniques. A comprehensive study is carried out in this paper to investigate and evaluate 
the performance of variety of algorithms for DOA estimation. Two categories of DOA estimation algorithms 
are considered for discussion which are Classical methods and Subspace based techniques. Classical 
methods include Sum-and-Delay method and Capon’s Minimum Variance Distortionless Response 
(MVDR) while Subspace based techniques are multiple signal classification (MUSIC) and The Minimum 
Norm Technique. Also ESPIRIT technique is evaluated. Inefficiencies are pointed out and solutions are 
suggested to overcome these shortfalls. Simulation results shows that the MUSIC algorithm is able to 
better represent the DOAs of signals with more prominent peaks. The Min-Norm algorithm also identifies 
the DOAs of signals similar to the MUSIC algorithm, but produces spurious peaks at other locations. The 
MVDR method identifies the DOAs of signals, but the locations are not represented by sharp peaks, due to 
spectral leakage. The classical beamformer also produces several spurious peaks. MUSIC show higher 
accuracy and resolution than the other algorithms. It should be noted that MUSIC is more applicable 
because it can be used for different array geometries. 
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1. Introduction 

According to the definition of IEEE “Antenna is a transmitting or receiving system that is 
designed to radiate or receive electromagnetic waves” It has been long debated in 
electromagnetic systems literature whether antenna arrays play a significant role in satellite, 
RADAR, G.P.S and long distance communication. Findings of some recent empirical literature 
show that properly designed antenna array system, operating autonomously, along with 
optimized and robust algorithm plays an instrumental role in uplifting the performance of satellite 
navigation and communication systems. While engineers have generally reached a consensus 
on the central role of antenna arrays in Satellite navigation systems, G.P.S, RADARS and 
communication systems growth, theoretical and empirical work supporting this concept is still 
very much in progress. 

The antenna array refers to a set of microphones or antennas connected and arranged 
in a regular structure to form a single antenna that is able to produce a required directional 
radiation pattern, which we cannot achieve through individual antennas. For some applications 
single element antennas are unable to meet the gain or radiation pattern requirements. 
Combining several single antenna elements in an array can be a possible solution [1]. In GPS 
and satellite navigation system we often require very high directivity and the single-element 
antenna fails to achieve this requirement because the radiation pattern of single-element 
antenna is comparatively wide and has low directivity (gain). Though high directivity can be 
achieved by enlarging the dimensions of single element antenna but it may leads to the 
appearance of multiple side lobes and technologically inconvenient shapes and dimensions [2]. 
Another approach is to increase the electrical size of an antenna by constructing an assembly of 
radiating elements in a proper electrical and geometrical configuration – antenna array. Not 
necessarily but for sake of simplicity and convenience, the array elements are mostly assumed 
to be identical. The individual elements may be of any type like wire dipoles or loops, apertures, 
etc [2]. 
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During the twentieth century the world has become increasingly dependent on 
electromagnetic systems. Satellites orbiting the earth provide communications links vital to 
commerce and government. Radar systems help to navigate aircraft and ships as well as to 
control the traffic of these vehicles in very crowded skies and harbors. In wartime, the effective 
coordination and control of land, sea, and air forces require reliable communications. Radar 
systems are used to locate and track enemy forces, guide friendly forces to their targets, and 
direct shell and missile fire [3]. 

Estimation of parameters is one of the major applications of array signal processing 
when signals are impinged on the array. Number of signals, magnitudes, frequencies, direction 
of arrival (DOA), distances and speeds of signals are some common parameters that are to be 
identified by the antenna array system. Of all these parameters, the DOA estimation is very 
important and attracts most attention, especially in far-field signal applications, in which case 
the wave front of the signal may be treated planar, indicating that the distance is irrelevant. 
Thus, this paper presents the detailed investigation of DOA estimation and advancement in it 
with time in the past three decades. 

 
 

2. DOA Estimation 
DOA estimation is the prominent figure in the field of array signal processing applied in 

radars, sonar’s, seismic and communication systems. Various types of information can be 
extracted from an incoming wave impinged on antenna array which are the coupled signals at 
different points in space [4]. There are two types of data involved, one is the training data from 
which the adaptive weights are calculated and the other is primary data from which various type 
of information can be extracted like detection and parameter estimation (angle, range, Doppler 
estimation), including their direction of arrival (DOA) [5]. 

There are many applications where accurate estimation of a signals direction of arrival 
(DOA) is of particular interest. Radar, sonar, and mobile communication are but a few examples 
of the many possible applications. DOA methods can be used to design and adapt the directivity 
of array antennas; for example, an antenna array can be designed to accept signals from some 
specific direction, while rejecting signals from all other directions and declared as interference 
[6]. 

The main reason for choosing aspects of DOA estimation for research is that majority of 
systems nowadays solely rely on this unique technology for its successful operations, like the 
US Global Positioning System (GPS), Russian GLONASS etc and Europe, China, Japan and 
India are in process of developing navigation satellite systems [7]. 

 
  

3. Signal Model for Narrowband Antenna Array 
In this section we briefly introduce the basic signal model for narrowband antenna 

arrays which will be used throughout the paper. Structure of delay propagation, forming spatial 
covariance matrix and its spectral decomposition are the main contents of this signal model.  
For simplicity we will use the uniform linear array only for discussion. Subspaces are formed by 
considering associations of eigenvalues and eigenvectors with the signal and noise components 
of the signal.  

 
3.1. Propagation Delays in Uniform Linear Arrays 

Consider a system of M elements uniform linear array, numbered 0, 1, …, M - 1. 
Considering half-a-wavelength spacing between the adjacent array elements, it can be 
assumed that signals received by the array elements are correlated. Half-a-wavelength 
(d/λ=1/2) is often referred to as the design wavelength of the array since it characterize 
compromise between a narrow beamwidth and grating lobes. A baseband signal s(t) is received 
by each array element at a different time instant. The phase of the baseband signal, s(t), 
received at element 0 is taken as zero and the phase of s(t) received at other elements will be 
calculated with respect to this. To measure the phase difference, it is necessary to measure the 
difference in the time the signal s(t) arrives at element 0 and the time it arrives at element k. 
From Figure 1 the time delay between the 0th element and k element using basic trigonometry 
can be computed as [6]: 
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ݐ∆ ൌ
 ୱ୧୬ఏ


                                                                           (1) 

 
Where C is the speed of light. 

If we Suppose s(t) to be  a narrowband digitally modulated signal with lowpass 
equivalent sl (t), carrier frequency fc, and symbol period T. It can be written as: 

 
ሻݐሺݏ ൌ ܴ݁ሼݏሺݐሻ݁

ଶగ௧ሽ                                                                   (2) 
 

The signal received by the kth element is given by: 
 

ሻݐሺݔ ൌ ܴ݁൛ݏሺݐ െ ሻ݁ݐ∆
ଶగሺ௧ି∆௧ೖሻൟ                                                       (3) 

 

 
 

Figure 1. Uniform Linear Array 
 
 

Now suppose that the received signal at the kth element is downconverted to the 
baseband. In that case, the baseband received signal is: 

 
ሻݐሺݔ ൌ ݐሺݏ െ ሻ݁ݐ∆

ିଶగ∆௧ೖ                                                              (4) 
 

Now sample the received baseband signal with symbol period T seconds i.e.,  
 

ሺ݊ܶሻݔ ൌ ሺ݊ܶݏ െ ሻ݁ݐ∆
ିଶగ∆௧ೖ                                                         (5) 

 
In practice, 
 
ܶ ≫ ,  ݐ∆ ݇ ൌ 0,1,2,3, …… . . ܯ, െ 1                                                        (6) 
 

So Equation (5) can be rewritten as:  
 

ሺ݊ܶሻݔ ൎ ሺ݊ܶሻ݁ݏ
ିଶగ∆௧ೖ                                                                (7) 

 
Where  ܥ ൌ ߣ ݂, where ߣ is the wavelength of thepropagating wave. The element spacing can 
be computed in wavelengths as d = D/λ. Using these Equation, (7) can be written as: 
 

ሺ݊ܶሻݔ ൎ ሺ݊ܶሻ݁ݏ
ିଶగௗ  ୱ୧୬ఏ                                                             (8) 

 
To avoid aliasing in space,  D ≤ λ/2.  Equation (8) is simplified to: 
 

ሺ݊ܶሻݔ ൎ ሺ݊ܶሻ݁ݏ
ିగ  ୱ୧୬ఏ                                                                 (9) 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 8, August 2014:  6297 – 6312 

6300

In discrete time notation with time index n Equation (9) can be written as: 
 
ሾ݊ሿݔ ൎ  ሾ݊ሿ݁ିగݏ ୱ୧୬ఏ ൌ  ሻ                                                (10)ߠሾ݊ሿܽሺݏ
 
Let the nth sample of the baseband signal at the kth element be denoted as  ݔሾ݊ሿ. 

When there are r signals present, the nth symbol of the ith signal will be denoted ݏሾ݊ሿ for i = 0, 
1, …, r – 1. The baseband, sampled signal at the kth element can be expressed as: 
 

ሾ݊ሿݔ ൎ ∑ ሾ݊ሿݏ
ିଵ
ୀ ܽሺߠሻ         (11) 

 
If the propagating signal is not digitally modulated and is narrowband, the approximation shown 
in (8) is still valid. 

Equation (11) can be written in matrix form as follows: 
 

ۏ
ێ
ێ
ێ
ۍ
xሾ݊ሿ

xଵሾ݊ሿ
.
.

xேିଵሾ݊ሿے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
ܽሺߠሻ ܽሺߠଵሻ . . ܽሺߠିଵሻ
ܽଵሺߠሻ . . . .

. . . . .

. . . . .
ܽேିଵሺߠሻ . . . ܽேିଵሺߠିଵሻے

ۑ
ۑ
ۑ
ې

 

ۏ
ێ
ێ
ێ
ۍ
ሾ݊ሿݏ

ଵሾ݊ሿݏ
.
.

ےିଵሾ݊ሿݏ
ۑ
ۑ
ۑ
ې



ۏ
ێ
ێ
ێ
ۍ
ሾ݊ሿݒ

ଵሾ݊ሿݒ
.
.

ےିଵሾ݊ሿݒ
ۑ
ۑ
ۑ
ې

               (12) 

 
Where additive noise, ݒሾ݊ሿ, is considered at each element. Equation (12) can be written in 
compact matrix notation, as follows: 
 

x୬ ൌ ሾ܉ሺߠሻ ଵሻߠሺ܉ . . . ܛିଵሻሿߠሺ܉  ܞ ൌ ܛۯ                              (13)ܞ
 

Where; 
ܯ = ܠ ൈ 1 vector 
A = ܯ ൈ   matrix ݎ
  = signal vectors, andܛ
 .= noise vectorܞ
The matrix A composed of columns ܉ሺθ୧ሻ, are called the steering vectors (direction 

vectors) of the signals ݏሺݐሻ. The set of all possible steering vectors is known as the array 
manifold. The array manifold can be computed in two ways that is analytically and 
experimentally. Mostly for linear, planar, or circular array configurations, it is computed 
analytically, while it can be computed experimentally for more complex antenna array 
geometries. In the absence of noise, the signal received by each element of the array can be 
written as: 

 
x ൌ                                                                      (14)ܛۯ
 
From above equation it is clear that linear combination of the columns of A forms the 

data vector  ܠ. These elements span the signal subspace. In the absence of noise, one can 
obtain observations of several vectors xn and once we estimate r linearly independent vectors, a 
basis for the signal subspace can be calculated.  

Next we will compute the spatial covariance matrix of the antenna array. Assume that 
the signal and noise vectors are uncorrelated and zero mean. Also the noise vector is a vector 
of Gaussian, white noise samples with zero mean and correlation matrix σଶ۷.  Let ܀௦௦ ൌ
ܛܛሾܧ

ୌሿ.  Then we can write the spatial covariance matrix as: 
 
௫௫܀ ൌ ܠܠሾܧ

ୌሿ ൌ ܛۯሾሺܧ  ܛۯሻሺܞ  ሻܞ
ୌሿ ൌ ܛܛሾܧۯ

ୌሿۯୌ  ܞܞሾܧ
ୌሿ ൌ ۯୱୱ܀ۯ

ୌ 
σଶ۷ ேൈே                                                               (15) 
 
Since the matrix ܀௫௫ can be unitarily decomposed and has real eigenvalues because it 

is Hermitian (complex conjugate transpose). Using the data matrix X, we can find the 
eigenvectors of the autocorrelation matrix by an alternative method. The rows of the matrix X 
are complex conjugate transpose of the data vectors obtained from the array of sensors. 
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Suppose that the data matrix X contains K snapshots of data obtained from N sensors in a 
linear array. The matrix X is ܭ ൈ ܰ and can be written as: 

 
ࢄ ൌ  ு                                                                 (16)ࢂࡰࢁ
 

Where; 
U is a ܭ ൈ   ,matrix whose columns are orthonormal ܭ
D is a diagonal ܭ ൈ ܰ matrix, and  
V is an ܰ ൈ ܰ matrix whose columns are also orthonormal.  

This decomposition is known as the singular value decomposition (SVD). The SVD of X is 
related to the spectral decomposition (eigen decomposition) of the spatial covariance matrix 
 ௫௫ and the diagonal elements of theࡾ ௫௫.  The columns of the matrix V will be eigenvectors ofࡾ
matrix D will be square roots of the eigen values of ࡾ௫௫. In practice, the ܰ െ  smallest ݎ
eigenvalues will not be precisely σଶ; rather, they will all have small values compared to the 
signal Eigen values. This is because the matrix ࡾ௫௫ is not known perfectly, but must be 
estimated from the data. A common estimator for the spatial covariance matrix is the sample 
spatial covariance matrix, which is obtained by averaging rank-one data matrices of the 
form ሺܠܠ

ுሻ, i.e. 
 

௫௫ࡾ ൌ
ଵ


∑ xx

ୌିଵ
ୀ          (17) 

 
Where K is the total number of snapshots of data available from the sensors. Although the 
discussion so far has focused on the uniform linear array, the principles of signal and noise 
subspaces also apply to other array geometries such as the uniform planar and the 
semispherical arrays. 
 
 
4. Classification of DOA 

There are many ways to classify the DOA estimation methods. Here we have broadly 
categorized Direction of Arrival (DOA) estimation into four groups that are [8]: 

a) Conventional Techniques 
b) Subspace Based Techniques 
c) Maximum Likelihood Techniques 
d) Integrated Techniques (Combine Property Restoral Techniques and Subspace 

Based Techniques) 
A large number of elements are required to achieve high resolution in case of 

Conventional Techniques since they are based on classical beamforming techniques. Subspace 
based methods are high resolution sub-optimal techniques which exploit the Eigen structure of 
the input data matrix. Maximum likelihood techniques are the optimal techniques which show 
tremendous performance under low SNR conditions even but are computationally intensive. 
The integrated approach use property restoral based techniques to separate multiple signals 
and estimate their spatial signatures from which their direction of arrival (DOA) can be 
estimated using subspace techniques [6-9]. 

DOA estimation is one of the main focusing content and area of research in array signal 
processing, and expansively applied in the field of radar, sonar, GPS and was extended to 
communication in the last decade. There are two types of techniques available to do DOA 
estimation, which are currently attracting focus of the researchers towards this technology.  

 
4.1. Non-Subspace Techniques 

These methods depend on spatial spectrum, and locations of peaks in the spectrum 
determine the DOAs of signals. These methods are conceptually simple but offer modest or 
poor performance in terms of resolution. One of the main advantages of these techniques is that 
can be used in situations where we lack of information about properties of signal [10]. 

 
4.2.  Subspace Techniques 

There are certain limitations in resolution which is hindering the growth of non-subspace 
or classical methods of DOA estimation. They do not exploit the structure of narrowband input 
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data model of the measurements which give rise to certain limitations. Subspace-based 
methods depend on observations concerning the Eigen decomposition of the covariance matrix 
into a signal subspace and a noise subspace. Two of these methods MUSIC and ESPRIT were 
applied here to determine DOA [10-11]. 

 
 

5. DOA Estimation Based on Classical Method 
Classical direction of arrival (DOA) methods are essentially based on beamforming. The 

two classical techniques for DOA are the delay-and-sum method and the minimum variance 
distortionless response (MVDR) method. The basic idea behind the classical methods is to scan 
a beam through space and measure the power received from each direction. Directions from 
which the largest amount of power is received are taken to be the DOAs [9-12]. 

 
5.1. Delay and Sum Method 

Delay-and-Sum method is the simplest classical method based on beam forming for 
estimation of DOA. Figure 2 shows classical narrowband beamformer structure where the 
output signal y(k) is given by a linearly weighted sum of the sensor elements output [13]. That 
is: 

 
ሺ݇ሻݕ ൌ  ሺ݇ሻ                                                                    (18)࢞ு࢝

 

 
 

Figure 2. Delay-and-Sum Method 
 
 

The total output power of the above conventional beamformer can be expressed as: 
 

ܲ ൌ ሺ݇ሻ|ଶሿݕ|ሾܧ ൌ ሺ݇ሻ|ଶሿ࢞ு࢝|ሾܧ ൌ ࢝ுሺ݇ሻሿ࢞ሺ݇ሻ࢞ሾܧு࢝ ൌ  (19)             ࢝௫௫ࡾு࢝
 

Where ࡾ௫௫ is the auto correlation matrix of the array input data and contains useful information 
about both the array response vectors and the signal themselves, and by careful interpretation 
of ࡾ௫௫ we can estimate signal parameters. This equation plays an important role in the in all the 
conventional DOA estimation algorithms.  

Consider a signal ݏሺ݇ሻ impinging on the array at an angle θ0. Using the narrowband 
input data model, the power at the beamformer output can be expressed as: 

 

 ܲሺߠሻ ൌ ሺ݇ሻ|ଶሿݕ|ሾܧ ൌ ሺ݇ሻ|ଶሿ࢞ு࢝|ሾܧ ൌ ܧ ቂห࢝ு൫ࢇሺߠሻ࢙ሺ݇ሻ  ሺ݇ሻ൯ห
ଶ
ቃ 

ൌ    ሺ|࢝ுࢇሺߠሻ|
ଶሺߪ௦

ଶ  ߪ
ଶሻሻ                                               (20) 

 
Where: 

 ሻ = Steering vector associated with the DOA angle θ0ߠሺࢇ 
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  ሺ݇ሻ = Noise vector at the array input and
௦ߪ ൌ ߪ ሺ݇ሻଶሿ andݏሾܧ ൌ  .ሾ݊ሺ݇ሻଶሿ are the signal power and noise power respectivelyܧ

The above equation clearly demonstrates that output power is maximized when ࢝ ൌ  .ሻߠሺࢇ 
Therefore all of the possible weight vectors, the receiver antenna has the highest gain 

in the direction θ0, when ࢝ ൌ ࢝ ሻ. This is becauseߠሺࢇ  ൌ  ሻ aligns the phases of the signalߠሺࢇ 
components arriving from θ0 at the sensors, causing them to add constructively. 

In classical beamforming approach to DOA estimation, the beam is scanned over the 
angular region of interest in discrete steps by forming weights ࢝ ൌ  ሻ for different θ, and theߠሺࢇ
output power is measured. Using Equation (19), the output power at the classical beamformer 
as a function of the angle of arrival is given by: 

   
ሻߠሺࡼ ൌ ࢝௫௫ࡾு࢝ ൌ  ሻ                                        (21)ߠሺࢇ௫௫ࡾሻߠுሺࢇ
 
Therefore if we have an estimate of autocorrelation matrix and know the steering vector 

 ሻ for all θ’s of interest (either through calibration or analytical computation), it is possible toߠሺࢇ
estimate the output power as a function of the angle of arrival θ. The output power as a function 
of the angle of arrival is often termed as the spatial spectrum. Clearly the direction of arrival can 
be estimated by locating peaks in the spatial spectrum defined in Equation (21). 

The delay and sum method has many disadvantages. The width of the beam and the 
height of the sidelobes limit the effectiveness when signal arriving from multiple directions 
and/or sources are present because the signal over a wide angular region contribute to the 
measured average power at each look direction. Hence this technique has poor resolution [14]. 
Although it is possible to increase the resolution by adding more sensor elements, increasing 
the number of sensors increase the number of receivers and the amount of storage required for 
the calibration data i.e. ࢇሺߠሻ. 
 
5.2. Capon’s Minimum Variance Method 

This method has a similarity with the previously described delay-and-sum technique in 
which the power of the received signal is measured in all possible directions. In simple words in 
forming the beam in the desired look direction, all the degrees of freedom accessible to the 
array were utilized. This work goes very well when the single signal is available else contribution 
from both desired and undesired signals is contained by the array output power. Capon’s 
Method contributes in solving the poor resolution problem by using the idea to utilize some of 
the degrees of freedom to form a beam in the desired look direction and at the same time using 
the remaining degrees of freedom to form nulls in the direction of interfering signal [15-16]. 

To measure the power from DOA, θ, the gain of beamformer is constrained to be 1 in 
that direction and contribution to the output power from the signals approaching from all other 
directions is minimized by using the remaining degrees of freedom. Mathematically this problem 
is known as a constrained minimization process [15]. For every probable angle, θ, the power of 
the signal is minimized pertaining to ࢝ subject to the constraint that ࢝ுࢇሺߠሻ ൌ 1, this is the 
basic idea behind the constrained minimization process. 

 
݉݅݊௪ܧሾ|ݕሺ݇ሻ|

ଶሿ ൌ ݉݅݊௪࢝
ுࡾ௫௫(22)                                           ࢝ 

 
After solving this equation the weight vector which is obtained, is termed as Minimum 

Variance Distortionless Response (MVDR) beamformer weight, since for a specific look 
direction, it minimize the variance (average power) of the output signal while passing the signal 
coming  in the look direction without distortion (unity gain and zero phase shift). 

The above equation (22) has peaks for the certain angles, represents the estimates of 
the angles of arrival of the signals.  

Using Lagrange multiplier, its weights are given by [17]: 
 

࢝ ൌ
ೣೣࡾ
షభࢇሺఏሻ

ೣೣࡾಹሺఏሻࢇ
షభࢇሺఏሻ

                                                                (23) 

 
Now using the Capon’s beam forming method as the output power of the array as an 

angle of arrival’s function, given by the Capon’s spatial spectrum is as follows: 
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ܲሺߠሻ ൌ
ଵ

ೣೣࡾಹሺఏሻࢇ
షభࢇሺఏሻ

                                                      (24) 

 
The DOA’s can be assessed by computing and plotting the Capon’s spectrum over the 

whole range of θ and detecting the peaks in the spectrum. 
The drawback of this method includes the requirement of an inverse matrix computation 

which may become ill-conditioned if highly correlated signals are present and expensive for 
large arrays. As compared to the delay-and-sum beam former this method provides higher and 
better resolution. 

Suppose if other signals that are correlated with the signal of interest are present 
because it inadvertently uses that correlation to reduce the processor output power without 
spatially nulling it. In other words, we can say that the correlated components may be united 
detrimentally in the process of minimizing the output power. 

 
 

6. Subspace Methods For DOA Estimation 
Low resolution is the major limiting factor, in spite of broader use of classical beam-

forming based methods due to the less computational complexity, affecting the development of 
non-subspace based techniques for the DOA estimation. The efforts of the researchers become 
more on the subspace based DOA estimators to achieve and attain the high resolution, by 
making use of the signal subspace. These methods termed as the signal subspace methods are 
originated during the research on spectral estimation where the estimation of autocorrelation of 
a signal and the noise model is made and then used to achieve a matrix whose Eigen structure 
produces the signal and the noise subspaces. By functioning the spatial covariance matrix, this 
similar technique can also be used in array antenna DOA estimation [18]. 

 
6.1. Music Algorithm 

In lots of DOA estimation algorithms with excellent performance, one of the earliest 
proposed algorithm is the multiple signal classification (MUSIC) based on eigenvalue 
decomposition of the signal covariance matrix [19]. MUSIC stands for Multiple Signal 
Classification. MUSIC gives the estimation of number of sources and hence their direction of 
arrival. MUSIC is a technique based on exploiting the Eigen structure of input covariance matrix. 
Using Singular Value Decomposition (SVD) of the data matrix or Eigen decomposition of 
sample covariance matrix, we can obtain Eigen vectors easily.  

Due to orthogonality between the signal subspace and noise subspace as shown 
previously, the MUSIC try to find all the possible steering vectors of the incoming signals lie in 
the signal subspace that are orthogonal to the noise subspace [19-20]. If ࢇሺߠሻ is the steering 
vector corresponding to one of the incoming signals, then ࢇሺߠሻுࡽ ൌ 0. The function for MUSIC 
spectrum can be written as: 

 

ሻߠሺࡵࡿࢁܲࡹ ൌ
ଵ

ࡽࡽಹሺఏሻࢇ
ಹࢇሺఏሻ

                                                     (25) 

 
The above function will assume a very large value when θ is equal to the DOA of one of 

the signals. The MUSIC algorithm was proposed in 1979 by Schmidt [21]. In first phase MUSIC 
estimates a basis for the noise subspace, ࡽ, afterwards, determines the r peaks in (25); the 
associated angles provide the DOA estimates. 

The MUSIC algorithm may be summarized as [21]: 
Step 1:  Estimate the input covariance matrixܴ௫௫  in accordance to {ݔሺ݇ሻ, ݇ ൌ

 .{ܯ……1,2,3
 

௫௫ࡾ  ൌ
ଵ

ெ
∑ ୌெݔݔ
ୀଵ  

 
Step 2:  Perform eigen decomposition on ࡾ௫௫ 
 
௫௫ܳࡾ  ൌ  ߉ࡽ
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Where  ߉ ൌ ݀݅ܽ݃ሼߣଵ , , ଶߣ …… , ,ெሽߣ ଵߣ      ଶߣ   , …… ,    ࡽ ெ  are the eigen values andߣ ൌ
 ሼݍଵ , , ଶݍ …… . . ,  .௫௫ࡾ ெሽ are the corresponding eigen vectors ofݍ

Step 3: Estimate the number of signals D, from the multiplicity K, of the smallest eigen 
value ߣ as: 

 
ܦ  ൌ ܯ െܭ 

 
Step 4: The MUSIC spectrum can be obtained as follow: 
 

ሻߠሺࡵࡿࢁܲࡹ  ൌ
ሺఏሻࢇ ಹሺఏሻࢇ

ࡽࡽಹሺఏሻࢇ
ಹࢇሺఏሻ

ൌ
ଵ

ࡽࡽಹሺఏሻࢇ
ಹࢇሺఏሻ

 

 
Where ࡽ  ൌ   ሼݍାଵ , …… ,  ெሽݍ

Step 5: D is the largest peak of ெܲௌூሺߠሻ which correspond to estimates of the 
Direction-Of-Arrival. 

 
6.1.1. Disadvantages of MUSIC Algorithm 

The MUSIC algorithm has good performance and is widely used till now because of its 
super resolution capability. Although there are many positives in MUSIC algorithm, there are 
numerous barriers and competing existing solutions that are hindering the growth of MUSIC 
algorithm. Inefficiencies from which MUSIC algorithm is suffering are given below: 

Its performance degraded when the signals are correlated and so is not able to identify 
DOAs of correlated signals. 

MUSIC algorithm is also computationally complex and expensive because it involves a 
search over the function ெܲௌூ for the peaks.  

If the numbers of sources are overestimated, it is possible that MUSIC algorithm gives 
spurious peaks and this happened usually when the steering vector is not in the signal 
subspace and is perpendicular to some of the noise eigenvectors [20].  

 
6.1.2. Proposed Solutions 

The above mentioned inefficiencies pose challenge for sustaining the growth of MUSIC 
algorithm. Many innovative techniques were proposed in the past to make the MUSIC algorithm 
more robust and efficient. These innovations include Prime MUSIC, Root MUSIC etc. [22]. 

There are numerous techniques available in the literature to overcome these 
deficiencies. One such techniques is known as Spatial smoothing, which is an essential 
technique in multipath propagation environment and can be applied to overcome this problem. 
To perform spatial smoothing, the array must be divided up into smaller, possibly overlapping 
subarrays and the spatial covariance matrix of each subarray is averaged to form a single, 
spatially smoothed covariance matrix. The MUSIC algorithm is then applied on the spatially 
smoothed matrix [23]. 

 
6.2. The Minimum Norm Method 

Kumaresan and Tufts, proposed a method called the Minimum Norm Method, which is 
applied in a manner similar to MUSIC algorithm over the DOA estimation problem and is 
defined as “the vector lying in the noise subspace whose first element is one having minimum 
norm” [24-25]. 

The vector is given as: 
 

ࢍ ൌ 

ෝࢍ
൨                                                                       (26) 

 
As soon as the minimum norm vector is known, the DOAs are specified by the largest 

peaks of the function as follows [25]: 
 

ெܲேሺߠሻ ൌ
ଵ

ฬࢇಹሺఏሻ
ଵ
ෝ൨ฬࢍ

                                                               (27) 
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Now the objective is to determine and establish the minimum norm vector “g”. So for 
that purpose let ࢙ࡽ be the matrix whose columns develop the basis for the signal subspace. ࢙ࡽ, 
can be divided as [25]: 

 

௦ࡽ ൌ 
∗ߙ

ഥ௦ࡽ
൨                                                                      (28) 

 
In the meantime, the vector g lies in the subspace of noise and will be orthogonal to the 

 :so we come up with the equation as follows [25] ,(signal subspace) ࢙ࡽ
 

௦ࡽ
ு 
1
ෝࢍ
൨ ൌ 0                                                                   (29) 

 
The system of equations above will be underdetermined; therefore we are going to use 

the minimum Frobenius norm solution enlightened below:  
 
ෝࢍ ൌ െࡽഥ௦ሺࡽഥ௦

ுࡽഥ௦ሻ
ିଵ(30)                                                        ߙ 

 
From Equation (29), we can write as: 
 

ࡵ ൌ ௦ࡽ
ுࡽ௦ ൌ ∗ߙߙ െ ഥ௦ࡽ

ுࡽഥ௦                                                (31) 
 

From this equation, we can have: 
 

ࡵ ൌ ሺࡽഥ௦
ுࡽഥ௦ሻ

ିଵߙ ൌ ሺࡵ െ ߙሻିଵ∗ߙߙ ൌ ߙ ሺ1 െ ⁄ଶ‖ߙ‖ ሻ                           (32) 
 
By using the above Equation (32), we can eliminate the calculation of the inverse matrix 

in Equation (30). Now we can compute g based only on the signal subspace orthonormal basis, 
given below: 
 

ෝࢍ ൌ െࡽഥ௦ߙ ሺ1 െ ⁄ଶሻ‖ߙ‖                                               (33) 
 
As soon as g has been computed, the evaluation of Min-Norm function given above is 

done and the angles of arrival are also specified by the r peaks. This technique called the Min-
Norm technique is commonly reflected as a high-resolution method although it is inferior to both 
MUSIC and ESPRIT algorithms. 

 
6.3.  ESPRIT Algorithm 

A novel and a vital approach for the signal parameter estimation problem was proposed 
and then termed as “ESPRIT”. ESPRIT is alike the MUSIC algorithm that works by exploiting 
the underlying data model, then generates estimates that are effective, effective and 
asymptotically unbiased. In addition to this, it has numerous advantages over MUSIC. 

Roy and Kailath proposed this method for the DOA estimation called the ESPRIT which 
stands for “Estimation of Signal Parameter via Rotational Invariance Technique” [26]. 

It is observed that in terms of array imperfections this algorithm in more vigorous and 
robust as compared with the MUSIC algorithm. Other than that its storage constraints and 
computation complexity are lesser than MUSIC. This is because this algorithm does not take in 
extensive search throughout all the probable steering vectors. Nonetheless it investigates the 
rotational invariance property generated by the two sub-arrays in the signal subspace, resulted 
from the original array with a translation invariance structure. ESPRIT does not need the exact 
knowledge of the array manifold vectors unlike the MUSIC algorithm so the array adjustment 
requirements are not strict, so with the two sub array’s corresponding elements, it is 
decomposed into equal sized two sub-arrays, expatriate from each other by a static translational 
distance [26-27]. 

The TLS ESPRIT algorithm is sum up below [26-27]: 
Step 1:  Obtain an estimate of ࡾ௫௫ of ࡾ௫௫ from measurement. 
Step 2: Perform Eigen decomposition on ࡾ௫௫ , i.e. 
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௫௫ࡾ  ൌ  ࢂ߉ࢂ
 

Where  ߉ ൌ ݀݅ܽ݃ሼߣଵ, ,ଶߣ , …… , ࢂ ெሽ,  andߣ ൌ ሼ ଵܸ , ଶܸ  , …… . . , ெܸሽ are the Eigen values and Eigen 
vectors respectively. 

Step 3: Estimate the number of signals ܦ, from the multiplicity K, of the smallest Eigen 
value ߣ as: 

 
ܦ  ൌ ܯ െܭ 

 
Step 4: obtain the signal subspace estimate  ࢂ௦ ൌ ሾࢂଵ, …… . . ,  ሿ and decompose it intoࢂ

subarray matrices.  
 

௦ࢂ  ൌ ቈ
ࢂ
ଵࢂ
 

 
Step 5: Compute the Eigen decomposition ሺߣଵ  ଶߣ ,…… ,      ଶሻߣ
 

ଵࢂ 
ு
ଵࢂ ൌ ቈ

ࢂ
ு

ଵࢂ
ு ሾࢂ ଵሿࢂ ൌ  ࢂ߉ࢂ

 
And partition V into Ď x Ď Sub matrices 
 

ࢂ  ൌ 
ଵଵࢂ ଵଶࢂ
ଶଵࢂ ଶଶࢂ

൨ 

 
Step 6: Calculate the Eigen values of     Ψ ൌ െࢂଵଶࢂଶଶ

ିଵ 
 

 Φ୩ ൌ eigen values of ሺെࢂଵଶࢂଶଶ
ିଵሻ, ∀݇ ൌ 1,………  ܦ,

 
Step 7: Estimate the angle of arrival as: 
 

ߠ  ൌ ଵሾܿିݏܿ
ሺୟ୰ ሺΦౡሻሻ

௪బ∆
ሿ 

 
As comprehended from the above argument, ESPRIT eliminates the search procedure 

which is inherent in most of the DOA estimation methods. In terms of Eigen values ESPRIT 
produces the DOA estimates directly. 
 
 
7. Simulation Results & Discussions 

To analyze the performance of these algorithms, a 10-element uniform linear array 
having half-wavelength inter-element spacing with two signals of equal power impinged on the 
array is simulated in Matlab. The data vectors are generated using (12) and ࡾ௫௫ is computed 
using (2.20).  

a) Sum-and-Delay Method and Capon’s Minimum Variance method: 
For two signals arriving on array at at (a) െ30°  and 30° and (b) 30°  and 40, Sum-and-

Delay method and Capon’s Minimum Variance Method (MVDR) are plotted for angles between -
90° and +90° using (21) and (22). Figure 3 and Figure 4 shows the corresponding plots.  
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Figure 3. Comparison of Sum-and-Delay 
Method and Capon’s Minimum Variance 

Method 

Figure 4. Comparison of Resolution 
Performance of Sum-and-Delay Method and 

Capon’s Minimum Variance Method 
 

 
In the first scenario with maximum angle separation ሺߠଵ ൌ െ30° ܽ݊݀ ߠଶ ൌ  30°ሻ, both the 

methods estimate the DOA accurately but the problem with Sum-and-Delay method is that it 
produce spurious peaks. Additionally the width of the beam and the height of the sidelobes in 
Sum-and-Delay method limit the effectiveness. The resolution of MVDR method is better than 
Classical Sum-and-Delay method.   

From the second scenario it is obvious that when the DOAs of the signals impinged on 
the array are close ሺߠଵ ൌ ଶߠ ݀݊ܽ 30° ൌ  40°ሻ, then Sum-and-Delay method fails to differentiate 
between the two signals while the MVDR method can estimate the DOAs of two signal by giving 
two different peaks in its spectrum for the corresponded DOA. 

It is clear from the above discussion that the MVDR method offers superior 
performance and high resolution than Sum-and-Delay method. 

b) MUSIC Algorithm and The Minimum Norm method: 
Assuming space has two signals, the angle of incidence ߠଵ ൌ 30° and ߠଶ ൌ െ30°, Figure 5 is the 
space that corresponds to the signal spectrum for MUSIC and the Min Norm technique.  
 

 
 

Figure 5. Comparison of MUSIC and Min Norm Technique 
 
 

From the above Figure 5 it is clear that both MUSIC and Min Norm technique estimate 
the DOAs of impinged signal accurately. Both MUSIC and Min Norm technique are generally 
considered to be high resolution techniques but from the figure it is clear that Min Norm 
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technique produce spurious peaks at other locations, so it is still inferior to MUSIC and other 
high resolution techniques.  

c) MUSIC Algorithm and Capon’s Minimum Variance method 
A simulation is performed with 10 sensors uniform linear array tracking two signals 

(െ30°  and 30°), each with an SNR of 10dB. Figure 6 and 7 shows the comparative 
performance results using the MUSIC algorithm and the Capon algorithm (MVDR).  
 

 
 

 

Figure 6. Comparison of Resolution 
performance of MUSIC and Capon’s Minimum 

Variance Technique 

Figure 7. Comparison of Resolution 
performance of MUSIC and Capon’s Minimum 

Variance Technique 
 
 

It can be seen that in first scenario (Fig.6) the DOAs of the two signals are correctly 
estimated by the two algorithms. The peaks of the MUSIC algorithm are more prominent 
comparatively to that of MVDR method. The resolution of MUSIC algorithm is high than that of 
MVDR method that’s why the peaks of MVDR is not as much prominent as that of MUSIC. 

In Figure 7 it is clear that when the angle separation is less between the two signals 
then MVDR algorithm is unable to track the DOAs of signals while the MUSIC algorithm 
accurately estimate the DOAs of two signal by producing two distinct peaks. Though MVDR 
algorithm is simpler but the problem is that it cannot distinguish between two signals when their 
DOAs lie very close to each other and also the resolution of MVDR method is very low that’s 
why it cannot produce very prominent peaks for the estimated DOA as compared to MUSIC 
algorithm. 

d) The Minimum Norm method and Classical methods 
Under the same array condition, simulations were performed to analyze the 

performance of Min Norm technique against the classical Sum-and-Delay method and MVDR 
algorithm. 

Figure 8 represents the plot for the Min Norm technique and MVDR algorithm. It is clear 
that the DOAs estimated by both the methods are accurate. The peaks for Min Norm Technique 
is more prominent compared to MVDR algorithm which means that the resolution of Min Norm 
technique is higher than that of MVDR algorithm. But the Min Norm technique produces 
spurious peaks at other locations which can limit the performance of this technique, while 
MVDR algorithm does not produce spurious peaks. 

Figure 9 is the corresponding plot for the Min Norm technique and classical Sum-and-
Delay method. The resolution of Min Norm technique is higher and Classical Sum-and-Delay 
method produces much higher spurious peaks.  

So Min Norm technique shows superior performance over the Sum-and-Delay method 
but shows comparatively equivalent performance as that of MVDR method. The resolution of 
Min Norm is high but it produces spurious peaks at other locations while the resolution of MVDR 
is low but it does not produce spurious peaks. 
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Figure 8. Comparison of Resolution 
Performance of The Min Norm and Capon’s 

Minimum Variance Technique 

Figure 9. Comparison of Resolution 
Performance of The Min Norm Technique and 

Sum-and-Delay Method 
 

 
Figure 10 depicts the comparative spectrums of all the previously discussed algorithms 

to estimate DOA of the signals impinged on uniform linear array. These algorithms are Classical 
Methods (Sum-and-Delay method and Capon’s Minimum Variance method), Subspace based 
techniques (The Minimum Norm method and MUSIC).  

It can be seen in figure above that the MUSIC algorithm and the MVDR method identify 
the two signals and have no other spurious components. Of the two, the MUSIC algorithm is 
able to better represent the locations with more prominent peaks. The Min-Norm algorithm also 
identifies the signals similar to the MUSIC algorithm, but produces spurious peaks at other 
locations. The low-resolution classical beamformer identifies the two signals, but the locations 
are not represented by sharp peaks, due to spectral leakage. The classical beamformer also 
produces several spurious peaks. 

 

 
Figure 10. Spatial Spectrum for MUSIC, Capon’s Minimum Variance, Min Norm and Sum-and-

Delay Method 
 
 
8. Conclusion 

DOA estimation is an important content of array signal processing. There are many 
Positioning and timing systems such as GPS, radars, seismic communication and other satellite 
navigation systems which are widely used in today’s human life, requires accurate estimation of 
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a signals direction of arrival (DOA). There are two popular groups of algorithm used for 
estimation of DOA that are classical methods (Sum-and-Delay method and MVDR method) and 
Subspace based techniques (Min Norm technique and MUSIC algorithm). A detailed analysis is 
carried out in this paper to show the performance of these algorithms.  

From simulation results it is clear that the classical methods are very simple and have 
less compute load but these methods suffers from low resolution. In Sum-and-Delay method the 
width of the beam and the height of the sidelobes limit the effectiveness Hence this technique 
has poor resolution. Although it is possible to increase the resolution by adding more sensor 
elements, increasing the number of sensors increase the number of receivers and the amount 
of storage required for the calibration data i.e. ࢇሺߠሻ. 

To improve the resolution of classical Sum-and-Delay method there is another 
algorithm belongs to the same category known as Capon’s Minimum Variance Distortionless 
Response method. The resolution problem in Sum-and-Delay method was addressed and 
solved  in this algorithm. But the drawback of this method includes the requirement of an 
inverse matrix computation which may become ill-conditioned if highly correlated signals are 
present and expensive for large arrays.  

To have much better performance, there are algorithms proposed which are known as 
subspace based techniques (MUSIC, Min Norm, and ESPRIT). The MUSIC algorithm has good 
performance and is widely used till now because of its super resolution capability. Although 
there are many positives in MUSIC algorithm, there are Inefficiencies from which MUSIC 
algorithm is suffering. The performance of MUSIC algorithm degraded when the signals are 
correlated and so is not able to identify DOAs of correlated signals. MUSIC algorithm is also 
computationally complex and expensive because it involves a search over the function ெܲௌூ 
for the peaks.  If the numbers of sources are overestimated, it is possible that MUSIC algorithm 
gives spurious peaks and this happened usually when the steering vector is not in the signal 
subspace and is perpendicular to some of the noise eigenvectors. 

The Min Norm technique address the problem of high computational complexity but the 
problem it faces is that this technique produces spurious peaks at other locations which limits 
the performance of algorithm. 

ESPRIT algorithms solve the problem and came up with the solution to both 
computational complexity and maintaining the resolution performance. ESPRIT eliminates the 
search procedure which is inherent in most of the DOA estimation methods. In terms of Eigen 
values ESPRIT produces the DOA estimates directly. Also there are variants of MUSIC 
algorithm which addresses the problem of high computational complexity. These proposed 
solution were root MUSIC, and spatial smoothing is the most notable technique to address the 
problem. 
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