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 Urban settings present considerable obstacles for those use personal mobility 

wheelchairs, especially when it comes to manoeuvring stairs. The objective 

of this study is to improve the safety and ease of use of wheelchairs designed 

for ascending stairs. The study aims to tackle the significant issue of 

instability and limited ability to adjust to different types of terrain. This 

research employs a holistic methodology that combines theoretical dynamic 

analysis, hardware design and simulation, and field testing, in addition to 

advanced machine learning approaches for surface prediction. Theoretical 

models guarantee the stability of the wheelchair, while hardware simulations 

offer valuable insights into its structural integrity. The data obtained from 

inertial measurement unit (IMU) sensors during field tests is analysed and 

categorised using models like random forest and gradient boosting, which 

exhibit exceptional accuracy in forecasting movement circumstances. The 

results demonstrate that the implementation of these combined techniques 

greatly enhances the wheelchair’s capacity to safely manoeuvre over urban 

barriers. The study finds that the suggested solutions show great potential for 

creating intelligent mobility aids, which might be used to improve 

accessibility for those with mobility limitations. 
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1. INTRODUCTION 

In recent years the personal mobility wheelchair market witnessed notable expansion, attributed to 

factors such as population growth and technological advancements [1]. Power wheelchairs notably dominate 

a significant segment of the overall market [2]. Despite the considerable size of the electric wheelchair 

market, various challenges hinder their widespread adoption. Accessibility emerges as a primary concern, as 

infrastructure designs often overlook the specific needs of personal mobility devices (PMD) users, 

predominantly reliant on wheeled mobility [3]. Globally, accessibility issues persist, posing significant 

obstacles for wheelchair users. Safety represents another prominent issue, with surveys indicating that a 

considerable percentage of power wheelchair users have experienced physical accidents or expressed feelings 

of vulnerability during operation [4]. While assessing physical security is relatively straightforward, 

comprehending its psychological dimensions proves intricate. Consequently, amidst the increasing utilization 

of PMDs for urban mobility, enhancing accessibility and ensuring both physical and psychological safety 

emerge as imperative considerations [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The increasing utilisation of personal mobility devices (PMDs) in urban settings underscores notable 

difficulties pertaining to safety and ease of usage, particularly when encountering staircases. Although 

electric wheelchairs have made significant progress, the problem of mounting stairs still persists, limiting the 

mobility and self-sufficiency of users. Nevertheless, various research and commercial endeavors have been 

undertaken to address this challenge. Previous research has explored various mechanisms for stair climbing, 

including foot-based, wheel cluster-based, hybrid, and tracked systems. While these studies have provided 

foundational knowledge, each approach presents limitations in terms of stability, maneuverability, and 

adaptability to different urban terrains. Classification studies have identified four main categories of stair 

climbing methods for wheelchairs: foot-based, wheel cluster-based, hybrid, and tracked mechanisms [6]. 

Stair climbing techniques based on feet manipulation utilize mechanical features to ascend stairs [7]. 

Likewise, within a wheel cluster-based system, multiple wheels positioned across various axes form a 

planetary configuration along a singular axis. This arrangement enables smooth movement by wheel rotation, 

permitting ascent aided by rotation around a common axis. Two-wheel clusters maintain dynamic stability by 

using an inverted pendulum-like control method, whereas three-wheel or hex-wheel clusters prioritise 

mechanical strength [8]. Hybrid mechanisms are a broad category of techniques that integrate legs and 

wheels through the use of kinematic arrangements that guarantee the ability to roll as well as climb [9]. 

While some studies recommend rolling legs for ascent, others combine standard wheels with movable rolling 

legs for a similar level of usefulness [10]. Furthermore, alternative hybrid designs feature powered 

omnidirectional wheels within a four-bar connecting leg framework [10]. Researchers have also introduced 

innovative concepts such as variable shape wheels tailored for both stair traversal and regular movement [11]. 

Additionally, unconventional methods including user-operated levers activating swivel legs have been 

explored [12]. In contrast, tracked drive mechanisms are favored for their simpler design and control 

dynamics. Models integrating variable geometry tracked fins have been devised to adapt to varying terrains. 

Moreover, advancements include the development of stair climber wheelchairs capable of transitioning 

between conventional wheel-driven motion and track-based locomotion, facilitated by a kinematic switching 

mechanism [13]. Notably, certain stair-climbing wheelchairs exclusively rely on a tracked locomotion 

system. Beyond mechanical considerations, the control aspects of PMD significantly impact performance. 

These devices often employ a human-in-the-loop approach, blending autonomous functions with manual 

input. In some cases, control extends to interpreting brain signals for the operation of smart wheelchairs [7]. 

However, wheelchairs face challenges when encountering obstacles of varying sizes, particularly in 

urban environments, due to their fixed wheel arrangement. Wheel-leg hybrid SCWs may not have an issue 

with this, but these robots find it difficult to manoeuvre around obstacles since they require more degrees of 

freedom (DOF) in order to assure safe climbing. These difficulties are further compounded by the hybrid 

robot’s overall length as shown in [14], exceeds that of a conventional wheelchair, complicating rotation in 

tight spaces. Additionally, the intricacies involved in movement planning hinder the timely overcoming of 

obstacles, as discussed in [15]. These robots can only move in one direction straight up when climbing stairs, 

this of course limits the space for the robots to move. The previous research highlighted the significant 

growth in the personal mobility wheelchair market in 2020, driven by factors such as population increase and 

technological advancements. However, despite the prevalence of power wheelchairs, accessibility issues 

persist due to infrastructure design limitations, hindering their widespread adoption. Safety concerns also 

pose significant challenges, with a notable percentage of users reporting physical accidents and feelings of 

vulnerability during use [16]. Existing stair-climbing mechanisms often fail to balance the requirements for 

stability, compactness, and adaptability in diverse urban environments. Furthermore, the challenge of 

predicting and responding to different surface conditions during stair climbing remains inadequately 

addressed. To address these challenges, the study leveraged data from inertial measurement units  

(IMU sensors) to help robots recognize the slope of stairs they encounter. In this research, pose recording 

was carried out using sensor data from an IMU based on terrain challenges. IMU sensor data was collected 

while riding a stair climbing wheelchair on various stair surfaces in a university environment. The task aimed 

to predict the type of stairs (slope, flat, steep) the robot would encounter based on sensor data, such as 

acceleration and speed. Based on the navigation dataset obtained from the IMU sensor, preliminary research 

was conducted on the SCW environmental classification. Several machine learning classification algorithms 

are applied and compared to obtain the best model. This research introduces an innovative design of a  

stair-climbing wheelchair that integrates theoretical dynamic analysis with machine learning-based surface 

prediction. This approach not only ensures the stability of the wheelchair across various terrains but also 

enhances its adaptability to different urban obstacles through real-time surface condition prediction. 

Machine learning classification involves training models to categorize input data into predefined 

classes, with evaluation serving as a critical process for assessing model performance [17]. Models like 

logistic regression, k-nearest neighbors (KNN), support vector classification (SVC), decision trees, random 

forest, gradient boosting, and adaptive boosting are commonly employed for this purpose [18]−[22]. 

Assessment criteria like accuracy, precision, recall, F1-score, and AUC are utilized to gauge the performance 
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of classifiers. Accuracy assesses the ratio of correctly classified instances, precision concentrates on the 

accuracy of positive predictions, recall underscores the model’s capability to detect positive instances, and 

the F1-score offers a balanced assessment of performance across both classes. The AUC score evaluates a 

classifier’s ability to discriminate between positive and negative instances across various threshold values [23]. 

Effective evaluation enables informed decisions regarding model selection and optimization, ensuring the 

suitability of classifiers for specific stairs being ascended using the wheelchair. Drawing from extant 

literature and technology, this study makes the following contributions: i) presenting a cutting-edge concept 

for a robotic wheelchair that can use both straight and diagonal navigation techniques to manoeuvre around a 

variety of urban obstacles, including stairs and ii) collecting navigation datasets for SCW and comparing the 

classifications of machine learning models. The following sections detail the development of a theoretical 

dynamic model, hardware design and simulation, field testing, and the application of machine learning for 

surface prediction. The study concludes with a discussion of the implications of our findings and potential 

future directions. 

 

 

2. METHOD 

2.1.  Theoretical dynamic analysis model 

The proposed development of an all-terrain wheelchair was initially carried out with a solid 

conceptual model using solid modeling software. The conceptual model is further modified by considering 

the dynamic stability of a tracked mechanism for an all-terrain wheelchair. An in-depth analysis was carried 

out by considering the following points: i) most importantly, the tracked mechanism not only helps in 

climbing stairs, but is also best suited for all different terrains; ii) the mechanism must maintain stability 

when climbing any slope; iii) climb stairs comfortably without the possibility of falling; and  iv) this will help 

in transmissibility through different standards of stairs irrespective of their dimensions. In tracked 

mechanisms there are two main types, namely one-part tracked and two-part tracked. The double-section 

track mechanism is more suitable for climbing stairs without discomfort and takes more into account the 

stability of the system’s center of gravity. 

Adapting a double track mechanism: After thorough evaluation of different stair climbing 

mechanism concepts, it was found that the integration of a double track mechanism with a three-wheel belt 

drive system is a more stable and economical solution. The mechanism is shown as shown in the Figure 1. 

wheel 1 can be rotated in the center of wheel 2 or can be adjusted, according to the angle of inclination 

between the width of the tread and the rise of the stairs. The 3 wheels are able to rotate according to their 

center in the middle of the middle wheel or 2 wheels, also helping the system prepare itself safely when 

climbing hills and stairs. Because there is a requirement for the racket to be attached electrolytically to the 

end wheel connection, the need for which is to maintain the angle of inclination relative to the angle of 

inclination of the stairs or incline used by the wheelchair. 

 

 

 
 

Figure 1. Stair climbing wheelchair mechanical design 

 

 

Figure 2 shows the theoretical dynamic analysis model of the stair climbing wheelchair where 

Figure 2(a) presents the conditions when descending the slope, and Figure 2(b) ascending the slope. First, the 

center of mass of the entire conceptual model is searched theoretically using the averaging method for the 

moments generated by the centers of mass of the fragments that make up the whole complex system. The 

center of mass of the system is found first, then the center of mass of the human body is found in a sitting 
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position, after that the center of mass of the system is found when the human is sitting. Since the mechanism 

involves rotation of the seat by 35 degrees, when climbing a slope or stairs, the center of mass of the system 

when the seat is rotated by an angle of 35 degrees is found. Basic analysis of dynamic theory is carried out 

based on the center of mass and its stability. Overturning becomes unavoidable if the center of mass balance 

fails. The following analysis was made. 

 

 

  
(a)  (b)  

  

Figure 2. Theoretical dynamic analysis model (a) the conditions when descending the slope and  

(b) ascending the slope 

 

 

As shown in the Figure 3, wheelchair while climbing the stairs or slope. The system moves upwards 

dynamically, the friction force acts in the upward direction on the plane because the track tries to push itself 

upwards by moving downwards (1) (if and only if the upward force is greater than mgsinθ then the system 

can move upwards) overturning occurs when the moment created by mgsinθ is greater than or equal to the 

moment created by mgcosθ or the normal reaction along the distance from the center of gravity to the center 

of the front wheel; (2) the equilibrium point is where overturning occurs, (3) and (4) for the maximum design 

angle θ=35 degrees. If (4) Then toppling can occur, cotθ=455/5502.127≠0.87 based on (5) and (6). Therefore, 

it is theoretically proven that the designed wheelchair will not topple when climbing stairs. Likewise, with 

wheelchairs when going down stairs. 

 

 

 
 

Figure 3. Theoretical dynamic analysis model with mounted wheelchair 

 

 

𝑓 = 𝑚𝑔𝑠𝑖𝑛𝜃 (1) 

 

𝑚𝑔𝑠𝑖𝑛𝜃 + 1 ≥ 𝑚𝑔𝑐𝑜𝑠𝜃 + 1 (2) 

 

𝑚𝑔𝑠𝑖𝑛𝜃 × 𝐻 = 𝑚𝑔𝑐𝑜𝑠𝜃 × 𝐿 (3) 

 

𝑐𝑜𝑡𝜃 = 𝐻/𝐿 (4) 
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𝐻 = 455 𝑚𝑚 (5) 

 

𝐿 = (580 − 30) = 550 𝑚𝑚 (6) 

 

A conventional wheelchair design typically involves considering multiple factors, including loading 

conditions, terrain characteristics, accessibility for individuals with various disabilities, ergonomics, and 

other relevant aspects. Designing wheelchairs with specialized capabilities necessitates integrating factors 

such as mechanisms adapted for climbing terrain and considerations influencing the design of standard 

wheelchairs. Human dimensions, specifically those of the 85th percentile of Thai people based on global 

anthropometric data, play a significant role. These dimensions inform both the internal and external 

dimensions of the wheelchair. External dimensions are particularly influenced by safety-related and  

space-limiting factors. Safety considerations encompass factors like wheelchair stability, as represented by 

the equation w×mgcosθ>h×mgsinθ only then the wheelchair can overcome the steep incline as shown in the 

first picture, if L×mgcosθ>h×mgsinθ only, then the wheelchair can go transversely, downhill. where w 

represents width, h represents height, m represents mass, g represents gravity, and θ represents the angle of 

inclination. Moreover, space limitations, dictated by universally accepted standards for stair width, lift 

dimensions, and door width, are carefully accounted for in the wheelchair design process. Detailed 

evaluations of wheel width, diameter, and offset, along with chassis unit structural elements, are conducted to 

enhance user safety and comfort. The final design integrates all these factors to ensure a balance between 

functionality, safety, and ergonomic comfort. 

 

2.2.  Hardware design and simulation 

Development of virtual 3D models: 3D solid models of each component are designed, taking into 

account the conceptual model and customized modifications. All components are assembled and checked for 

compatibility. The assembled model and it is explosive appearance are shown in the Figure 4. The software 

used for modeling is SOLIDWORKS 2019. Testing of this design was carried out by measuring simulations 

of Von Mises stress, deformation scale, resultant displacement, and factor of safety. As seen in Figure 4, a 

mechanical design rather than a wheelchair has been created. Sequentially, Figures 4(a)-4(c) are arranged 

from the top, left, and rear view. 

 

 

   
(a) (b) (c) 

   

Figure 4. 3D CAD design (a) top view, (b) side view, and (c) back view 

 

 

2.2.  Evaluation scenario 

In addition to simulations, evaluation is also carried out by conducting field testing. There are three 

scenario conditions, where the scenario is seen in Figure 5. In the first scenario, the wheelchair is run on a 

fairly steep staircase as illustrated in Figure 5(a). The second scenario as shown in Figure 5(b) was tested on 

a flat slope with 10 slope degrees. While the third scenario as shown in Figure 5(c) is carried out on stairs 

with a large enough width and a slope that is not too steep. These three scenarios are then carried out twice, 

the first data taken will be a training dataset while the second data will be dataset testing. 

 

2.3.  Data collecting, preprocessing, and exploratory analysis 

Data recording is also carried out during this testing process, while the stages of the process can be 

seen in Figure 6. Several measurement features are used in data recording such as gyroscope, accelerometer, 

magnetometer, gravity, linear velocity, and orientation. The raw data obtained is then processed into a form 

that is easier to understand and annotated or labeled. Annotations are carried out with six classes of 

wheelchair movement conditions when climbing or descending stairs, namely i) down_stairs; ii) up_stairs;  

iii) down_slope; iv) up_slope; v) down_largestair; vi) up_largestair. After that, the data is then saved into csv 
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form and visualized using Python programming language on Google Colab. As the final stage of data 

collection and preparation, correlation matrix calculations of each feature are carried out. 

 

 

   
(a) (b) (c) 

   

Figure 5. Evaluation scenario (a) down and upstairs, (b) down and upslope, and (c) down and up large stair 

 

 

 
 

Figure 6. Data collecting and visualization phase 

 

 

2.4.  Machine learning flow and evaluation 

The dataset that has been successfully collected is then divided into two, training and testing.  

In Figure 7, you can see the training dataset used to train models from each machine learning algorithm.  

Then from the model that has been obtained, tested using dataset testing. The results of this model are then 

validated and evaluated using accuracy, precision, recall, and F1 measurements. In addition, confusion matrix 

and ROC charts are used to visualize results rather than evaluations [24], [25]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑙𝑎𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑙𝑎𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (9) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 
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Figure 7. Conceptual research design for classification 

 

 

3. RESULTS AND DISCUSSION 

3.1.  3D CAD simulation evaluation 

At this stage, the wheelchair design is tested using von mises stress simulation. Several weight 

parameters are given to test the maximum weight limit that can be handled by this tool. Table 1 presents the 

results of a von mises stress simulation and evaluation for varying weights. The von mises stress, measured 

in N/m², represents the maximum stress experienced by the material, indicating its susceptibility to failure 

under the given loads. Deformation scale illustrates the extent of deformation in the structure, with both 

minimum and maximum values provided. Resultant displacement, measured in millimeters, denotes the 

magnitude of displacement resulting from the applied load. Additionally, the factor of safety is presented, 

indicating the margin of safety between the applied load and the material’s capacity to withstand it. As 

weight increases from 80 to 120 kg, von mises stress and resultant displacement also increase, while the 

factor of safety decreases, suggesting a decrease in structural stability relative to the applied load. Figure 8 

shows the results of test simulations on the SolidWorks application, showcasing two critical analyses: 8(a) 

the von mises stress distribution, which highlights areas of maximum stress, and 8(b) the factor of safety, 

which evaluates the structural reliability under applied loads. 
 

 

Table 1. Von Mises stress simulation and evaluation 
Weight 

(kg) 
Von Mises stress (N/m2) Deformation scale Resultant displacement (mm) Factor of 

safety Min Max  Min Max 

80 6.196e-01 2.715e+08 62.0224 0.000e+00 1.427e+00 2.3 

90 1.113e+00 4.877e+08 34.5352 0.000e+00 2.564e+00 1.3 

100 1.239e+00 5.431e+08 31.0112 0.000e+00 2.855e+00 1.1 
110 1.363e+00 5.974e+08 28.0192 0.000e+00 3.141e+00 1.0 

120 1.488e+00 6.523e+08 25.8207 0.000e+00 3.429e+00 0.95 

 

 

  
(a) (b) 

  

Figure 8. 3D CAD structure evaluation (a) von mises stress and (b) factor of safety 
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3.2.  Field testing and data collecting 

Field testing of the stair climbing wheelchair was carried out on a total of three stair and slope 

conditions. Figure 9 presents evidence of experiments carried out in climbing and descending steep stairs as 

shown in Figure 9(a) and 9(b), sloping stairs as shown in Figure 9(c), and slope conditions as shown in 

Figure 9(d). The dataset is taken based on these three conditions, while Figures 9(e)-9(f) are additional tests 

to determine the reliability of the mechanical design that has been made in passing obstacles. 

 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

 

Figure 9. SCW field testing (a) up steep stairs, (b) down steep stairs, (c) sloping stairs, (d) flat derivative 

plane, (e) flat surface with obstacle, and (f) flat surface with obstacle diagonal view 

 

 

3.3.  Data visualization and analysis 

The collected datasets are then combined and visualized in the form of timeseries graphs in  

Figure 10, highlighting various sensor data types: Figure 10(a) gyroscope data, Figure 10(b) accelerometer 

data, Figure 10(c) magnetometer data, Figure 10(d) linear acceleration data, and Figure 10(e) gravity data, 

providing a comprehensive view of the sensor readings. Sequentially, the data is grouped based on their id 

labels, namely i) down_stairs; ii) up_stairs; iii) down_slope; iv) up_slope; v) down_largestair; and vi) 

up_largestair. From this data visualization, it can be seen that several patterns are formed from several 

recording features. Further analysis was carried out on the correlation between data features, where there is a 

strong correlation between several features as presented in Figure 11.  

Positive correlations suggest that when one variable increases, the other variable also tends to 

increase. In the context of an IMU like MPU6050, strong positive correlations could indicate synchronized 

movements or measurements along different axes or components. For instance, a strong positive correlation 

between accelerometer readings along different axes (‘ax’, ‘ay’, ‘az’) may suggest that movements in one 

direction are often accompanied by movements in another direction, which is common in many physical 

activities. Similarly, strong positive correlations between orientation readings along different axes (‘ox’, ‘oy’, 

‘oz’) might indicate consistent rotations or tilting movements happening simultaneously along multiple axes.  

Negative correlations indicate that as one variable increases, the other tends to decrease, and vice 

versa. In the context of an IMU, strong negative correlations could indicate opposing or counteracting effects 

between different measurements. For instance, a strong negative correlation between orientation along the z-
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axis (‘oz’) and accelerometer readings along the y-axis (‘ay’) might suggest that tilting or rotating the device 

along the z-axis leads to a decrease in acceleration along the y-axis, and vice versa. This makes sense since 

gravity influences both orientation and acceleration but in opposite directions. Another example could be a 

strong negative correlation between orientation along one axis (‘ox’, ‘oy’, ‘oz’) and gravitational readings 

(‘grx’, ‘gry’, ‘grz’). When the device is tilted or rotated along one axis, the gravitational readings along other 

axes may decrease due to the change in orientation. Based on the correlation between these features, several 

classification methods can be applied to determine the SCW is in certain staircase environment conditions. 

Therefore, the application of machine learning as a classification and prediction of ladder types is carried out 

in the next section. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

Figure 10. SCW IMU dataset visualization (a) gyroscope, (b) accelerometer, (c) magnetometer, (d) linear, 

and (e) gravity data 
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Figure 11. SCW IMU correlation matrix 

 

 

3.3.  Wheelchair movement and environment prediction 

These results depict the accuracies of various machine learning classifiers on a dataset. Table 2 

presents the evaluation metrics for various machine learning models applied to a classification task. 

Precision, recall, F1-score, and accuracy are reported for each model. Logistic regression achieved  

a precision of 0.77, recall of 0.81, F1-score of 0.79, and accuracy of 0.776, indicating moderate performance. 

KNN exhibited high precision (0.97) and accuracy (0.973), with slightly lower recall (0.92) and F1-score 

(0.95). Support vector classifier (SVC) demonstrated strong performance with a precision of 0.96, recall of 

0.93, F1-score of 0.94, and accuracy of 0.946. Decision tree and random forest classifiers both achieved  

near-perfect scores across all metrics, indicating excellent performance. Gradient boosting classifier also 

performed exceptionally well with perfect scores in all metrics except for a slightly lower accuracy of 0.997. 

Conversely, AdaBoost classifier displayed relatively poor performance, with a precision of 0.54, recall of 

0.49, F1-score of 0.45, and accuracy of 0.488. Overall, the models varied significantly in their performance, 

with ensemble methods generally outperforming simpler classifiers, and AdaBoost being the least effective in 

this particular classification task. 

 

 

Table 2. Model evaluation 
Model Precision Recall F1-Score Accuracy 

RandomForestClassifier 1 1 1 0.9982978723404256 

GradientBoostingClassifier 1 1 1 0.9974468085106383 
DecisionTreeClassifier 0.98 0.96 0.97 0.9880851063829788 

KNeighborsClassifier 0.97  0.92 0.95 0.9727659574468085 

SVC 0.96 0.93 0.94 0.9463829787234043 
LogisticRegression 0.77  0.81 0.79 0.7761702127659574 

AdaBoostClassifier 0.54 0.49 0.45 0.4876595744680851 

 

 

The provided AUC (area under the ROC curve) scores reveal the discriminative performance of 

various machine learning classifiers in binary classification tasks (Figure 12). Logistic regression 

demonstrates strong discriminative power with an AUC of 0.97, while K-nearest neighbors classifier 

achieves perfection with an AUC of 1, indicating optimal classification performance. SVC also performs 

exceptionally well with an AUC of 0.99, as do decision tree and random forest classifiers with AUC scores of 

0.99 and 1.00, respectively. Gradient boosting classifier achieves a perfect AUC of 1.00, reflecting 

outstanding discriminative ability. However, AdaBoost classifier lags behind with a lower AUC of 0.85, 

suggesting comparatively weaker discrimination between classes. These results offer valuable insights into 

the efficacy of different classifiers in separating classes and can inform the selection of the most suitable 

model for the specific classification task at hand. 

The evaluation of various machine learning classifiers, considering both AUC (area under the ROC 

curve) and traditional classification metrics like precision, recall, F1-score, and accuracy, provides a 

comprehensive understanding of their performance across different aspects of binary classification tasks. 

Models such as KNN and RF achieve perfection in both AUC and accuracy, indicating optimal 
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discrimination and overall correctness in class predictions. Similarly, gradient boosting classifier exhibits 

excellence across all metrics, showcasing superior discriminative ability and precision in classifying 

instances. SVC and decision tree classifier also perform admirably, demonstrating high AUC values, strong 

precision, recall, F1-scores, and accuracy. Logistic regression, while achieving a slightly lower AUC 

compared to other top-performing models, maintains respectable performance across traditional metrics, 

indicating robustness in classification tasks. In contrast, AdaBoost classifier lags behind, exhibiting a lower 

AUC and subpar performance in precision, recall, F1-score, and accuracy. 

Our findings demonstrate that the integration of a double-track mechanism with machine learning-

based surface prediction significantly enhances the stability and adaptability of stair-climbing wheelchairs. 

Unlike previous models that rely solely on mechanical stability, our approach enables real-time adaptation to 

varying terrains, thereby improving both safety and user confidence. The successful implementation of 

machine learning in predicting surface conditions suggests promising avenues for future research. Further 

refinement of the algorithm and integration with advanced sensors could lead to even more responsive and 

intelligent mobility solutions for individuals with disabilities. Additionally, exploring the scalability of this 

approach for different types of urban environments and wheelchair models will be crucial. This study 

represents a significant advancement in the design and functionality of stair-climbing wheelchairs, offering a 

practical solution to the challenges of urban mobility for individuals with disabilities. The integration of 

machine learning for surface prediction sets the stage for the development of more intelligent, adaptable, and 

user-friendly mobility devices. 

 

 

 
 

Figure 12. ROC curve and AUC graph 

 

 

4. CONCLUSION 

This study examines the key obstacles related to safety and ease of use for individuals utilising 

personal mobility wheelchairs in urban settings, with a specific emphasis on equipment designed to climb 

stairs. The research employs a comprehensive strategy that integrates theoretical dynamic analysis, hardware 

design and simulation, field testing, and machine learning categorisation to enhance the design, performance, 

and prediction capabilities of these wheelchairs. Theoretical analysis has played a vital role in guaranteeing 

stability and flexibility in various environments, establishing a strong basis for practical implementation. The 

utilisation of SolidWorks for hardware design and simulations has yielded significant insights into the 

structural integrity, facilitating essential modifications. The design’s effectiveness has been proven by real-

world validation, which involved field testing on different stair and slope circumstances. Additionally, 

reliable environmental classification has been made possible by collecting data from IMU sensors. Machine 

learning models, such as RF, gradient boosting, and decision tree classifiers, have shown great accuracy and 

precision in predicting movement conditions. This progress has opened up possibilities for creating 

intelligent wheelchairs that can safely and efficiently navigate urban environments. 

The importance of these discoveries rests in their ability to improve the safety and autonomy of 

people with mobility limitations in difficult urban environments. This study not only enhances the technology 

of mobility aids but also contributes to the broader objective of developing more inclusive and accessible 

urban environments. Future research should prioritise the improvement of designs, the incorporation of 

cutting-edge sensor technologies, and the exploration of innovative machine learning methods to further 

optimise performance. Furthermore, conducting tests in diverse and unregulated settings will be essential to 
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guarantee the scalability and practicality of these advancements in real-world scenarios. This continuing 

project has the potential to greatly enhance the quality of life for users, by making urban mobility safer and 

more accessible for everyone. 
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