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 Detecting pedestrians and cars in smart cities is a major task for autonomous 

vehicles (AV) to prevent accidents. Occlusion, distortion, and multi-instance 

pictures make pedestrian and rider detection difficult. Recently, deep 

learning (DL) systems have shown promise for AV pedestrian identification. 

The restricted resources of internet of things (IoT) devices have made it 
difficult to integrate DL with pedestrian detection. Tiny machine learning 

(TinyML) was used to recognize pedestrians and cyclists in the EuroCity 

persons (ECP) dataset. After preliminary testing, we propose five 

microcontroller-deployable lightweight DL models in this study. We applied 
SqueezeNet, AlexNet, and convolution neural network (CNN) DL models. 

We also use two pre-trained models, MobileNet-V2 and MobileNet-V3, to 

determine the optimal size and accuracy model. Quantization aware training 

(QAT), full integer quantization (FIQ), and dynamic range quantization 
(DRQ) were used. The CNN model had the shortest size with 0.07 MB using 

the DRQ approach, followed by SqueezeNet, AlexNet, MobileNet-V2, and 

MobileNet-V2 with 0.161 MB, 0.69 MB, 1.824 MB, and 1.95 MB, 

respectively. The MobileNet-V3 model’s DRQ accuracy after optimization 
was 99.60% for day photos and 98.86% for night images, outperforming 

other models. The MobileNet-V2 model followed with DRQ accuracy of 

99.27% and 98.24% for day and night images. 
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1. INTRODUCTION 
Intelligent transportation systems have been developed in recent years, especially in smart cities, to 

reduce the amount of traffic in metropolitan areas. Furthermore, it can decrease the number of accidents, 
injuries, and deaths that are caused by them, lowering the amount of fuel that is consumed, lowering the 
amount of pollution that is introduced into the environment, and so on. Different technologies, such as the 
internet of things (IoT), machine learning (ML), deep learning (DL), and image processing, are utilized by 
these systems to provide a wide range of applications [1]. 

One of the most important functions for autonomous vehicles (AV) is the ability to detect human 

motion in their path. Pedestrian detection is a computer vision (CV) technique that is used to detect human 

motion. This is helpful for ensuring the safety of people, identifying and pursuing a perpetrator in a crowd, 

preventing accidents, and avoiding moving vehicles and obstacles. A sophisticated array of sensors, including 

https://creativecommons.org/licenses/by-sa/4.0/
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radar, cameras, and light detection and ranging (LiDAR), can carry out such detection duties. A new system 

that helps prevent unexpected accidents called advanced driving assistance system (ADAS) was introduced 

recently [2]. The evolution of ADAS from assisted to fully autonomous driving is already the norm. 

Currently, the majority of sensors used in AVs rely on radars, LiDARs, and RGB images. In comparison to 

self-driving providers, image-based sensors have the advantage of being inexpensive, which allows for easy 

control over production costs. In addition to improving autonomous driving, using image sensors can lower 

accident rates. Above everything else, pedestrian safety is essential [3]. 

DL is an advanced branch of ML that finds complex representations of simpler ones. DL approaches 

often use artificial neural networks with multiple hidden layers and nonlinear processing units. Deep means 

numerous hidden layers utilized to adjust data display. Each hidden layer of neural networks depicts its input 

data using feature learning. The layer absorbs more abstraction than the previous layer. DL architectures map 

the hierarchy of features learnt at numerous levels to ML output in a single framework. Similar to ML 

methods, DL architecture has two main categories: unsupervised and supervised learning, including deep 

neural networks [1]. 

A smart transportation system that uses DL to identify pedestrians and vehicle riders is just one of 

several applications that combine IoT sensors with DL. This application will encounter new obstacles when it 

incorporates DL with IoT devices. There are a lot of obstacles to integrating DL with the IoT in image-based 

pedestrian and vehicle-rider detection scenarios. Several studies and polls on pedestrian detection systems 

have found that training DL models are the biggest obstacle [1], [2]. In contrast, DL models require a 

substantial amount of training time because of their complexity, poor training speed, and high computation 

cost. The study in [1] surveyed the state of the art in AV pedestrian detecting systems in great detail. 

Although they claimed that DL learning-based models have solved many problems with pedestrian detection, 

these models are painfully slow, have poor interoperability, and require an excessive amount of time to train. 

There was also a need for a substantial amount of data for accurate forecasting. To that end, accuracy and 

speed pose the greatest challenges to pedestrian detecting systems. Nevertheless, to keep a high level of 

accuracy, researchers were advised by [4] to employ lightweight sensors or to analyze biological signals 

using video data. 

New technology known as Tiny machine learning (TinyML) has emerged to address these issues 

and overcome the obstacles of DL integration with IoT devices. One definition of TinyML is the combination 

of ML/DL with IoT devices. With TinyML technology, DL models may be deployed on microcontroller-

powered devices with limited resources. The accuracy of the classifier is not sacrificed by the low-cost 

boards fitted with microcontrollers; they have restricted processing, extremely low power (mW range and 

less), and small memory sizes [5]-[7]. 

Therefore, this study set out to improve smart city transportation by using TinyML to pedestrian and 

vehicle-rider objects. We used three optimization strategies to implement five lightweight DL models in the 

present work. The three DLs that have been considered are convolution neural network (CNN) deep models, 

AlexNet, and SqueezeNet. In addition, we used the MobileNet-V2 and MobileNet-V3 deep models that had 

already been trained. A pair of quantization techniques, post-training quantization (PTQ) and quantization 

aware-training (QAT), are employed to carry out the optimization procedures. Following this, we will use the 

Interpreter to assess the DL models after they have been converted to the TensorFlow Lite (TFLite) format. 

Here is the outline for the remainder of the paper’s content. In section 2, we take a high-level look at 

TinyML, discussing its definition and the benefits it offers. The relevant research on pedestrian detection is 

reviewed in section 3. We show our methodology approach to the research in section 4. The application and 

evaluation of our methods are detailed in section 5. The results are discussed and compared in section 6. 

Finally, section 7 illustrates the final conclusions. 

 

 

2. OVERVIEW OF TINYML 

TinyML is an emerging field that accelerates IoT inventions in smart cities, such as smart 

transportation, autonomous driving, smart agriculture, and smart environment. TinyML implements DL tasks 

locally on machines under a milliwatt [8], [9]. Reduces computational power and data to improve DL 

algorithms [9]. TinyML is a tiny machine learning -aware framework, architectures, tools, techniques, and 

approaches that can perform on-device statistical analysis for a wide range of sensing modalities (vision, 

audio, speech, motion, chemical, physical, textual, and cognitive) at MilliWatt or below with targeting 

battery-operated embedded edge devices [10]. Hardware, software, and algorithms make up TinyML. 

Hardware can include IoT devices with or without accelerators. Microcontroller units (MCUs) are 

appropriate TinyML hardware platforms due to their specs [11]. A CPU, flash memory, random-access 

memory (RAM), and input/output peripherals make up the microcontroller chip. Microcontrollers are tiny 

(∼1 cm3), low-cost, and low-power [9]. Their clock speed is 8 MHz to 500 MHz, power is 15 mA, RAM 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

PRDTinyML: deep learning-based TinyML-based pedestrian detection … (Norah N. Alajlan) 

285 

storage is 8 KB to 320 KB, and flash memory is 32 KB to 2 MB. Recently, software titans have shown 

interest in TinyML. Microsoft offers EdgeML [12], Google has TFLite, which lets IoT devices run neural 

network (NN) models [13]. However, TinyML as DL algorithms should be tiny (a few KB). Quantization, 

pruning, and knowledge distillation may be used to condense DL models for IoT devices with limited 

resources [11]. 

Optimization and conversion of DL models: to enable IoT device DL inference, DL model 

optimization methods build lightweight models. The weight of DL models makes integrating them with IoT 

devices difficult. Devices that consume resources make DL inference difficult. DL model optimization 

compresses and accelerates superfluous parameters without affecting accuracy. The common DL model 

optimization strategies are quantization, network pruning, and weight factorization [14]. Quantization is a 

standard TinyML compression approach, thus this study uses it. Quantization methods use less flash memory 

and RAM while preserving model accuracy [15]. 

Quantization approaches use optimization principles to meet device restrictions with limited 

resources [15]. Quantization involves substituting high-precision DL parameters with low-precision ones 

without affecting model architecture. By 32-bit floating-point values [14], [16]. The quantization (1) 

uniformly maps real values to integer values. 

 

𝑄𝑢𝑎𝑛𝑡(𝑅)  =  𝐼𝑛𝑡 (𝑅 ⁄ 𝑆)  +  𝑍 (1) (1) 

 

Where 𝐼𝑛𝑡 rounds to the nearest integer to set the output value. 𝑅 are real numbers, 𝑆 is a scaling factor, and 

𝑍 is an integer zero point. Scaling is a positive integer that determines quantization step size. Real number 

values depend on scaling factor. 𝑅 has several real number ranges, each mapped to a numerical value. 

Skirmantas Kligys of Google Mobile Vision pioneered QAT. Quantization methods like this 

innovation try to correct for quantization error and reduce accuracy loss. Train quantized deep neural 

networks during the forward pass. The training of DL models still uses floating-point or non-quantized 

values. The quantized model’s average outcomes improve and the learning phase stabilizes. Pre-training DL 

models using appropriate configuration parameters using floating point values [17]. 

After DL model training, post-training quantization (PTQ) quantifies DL parameters. Once DL 

model training is complete, freeze and quantize parameters. Unlike QAT, PTQ quantified parameter weight 

without training parameter modifications [17]. The quantization error of each parameter in the PTQ causes 

activation error. Additionally, decreasing weight values increase quantization error. Thus, accuracy 

decreases. PTQ’s downside is quantization errors at the output, which might cause the classifier model to 

misclassify the input data, lowering accuracy compared to the training model. PTQ’s three methods-Float16 

quantization, dynamic range quantization (DRQ), and full integer quantization (FIQ)-reduced the size of a 

training DL model with convolutional layers by four times and sped up execution by 10-50% [18]. DRQ and 

FIQ were chosen for current study because these methods scaled the models four times smaller and the  

16-bit floating point twice as small: (i) FIQ: it converts all model weight and activation parameters from  

32-bit floating-point to 8-bit integer integers. Although FIQ quantization has benefits, it reduces accuracy.  

It quantizes the model, reducing accuracy but keeping it within acceptable limits. In FIQ, weights and 

activations are quantized by scaling over 8-bit integers. (ii) DRQ: the default method for PTQ reduces model 

size and optimizes inference delay [19]. After training DL models from floating-point numbers to fixed-point 

integer numbers, PTQ quantizes and activates their weights. Operators dynamically quantize activations 

based on their range to 8-bit integers and conduct computations with 8-bit integer weights and activations to 

reduce inference time in “dynamic range”. After multiplication and accumulation, activation values are 

dequantized to 32-bit floating-point numbers. In contrast to FIQ, DRQ converts activation values to integers 

“on-the-fly” during inference time. Since DRQ quantization does not require a representative dataset, it has 

advantages over the whole integer. As DRQ stores activations values as floating-point numbers during the 

“stand-by” phase, Edge TPU cannot be used as quantized model custom hardware because it only supports 

integer arithmetic [20]. 

Most smart city apps function well in smart environments, transportation, agriculture, and homes 

using DL and IoT devices. This complicates survey and review research. New tech TinyML leverages DL in 

many IoT apps. It optimizes DL models for IoT devices’ limited resources to improve accuracy and 

performance. DL meets smart city IoT devices with TinyML. Next subsections explain how lightweight DL 

model training allows IoT devices with limited resources and power to infer. 

Train lightweight DL models: complex deep-learning models are needed for smart city apps. 

Training large DL models requires GPUs and hours. Large storage memory is needed for electric IoT 

devices. For accuracy, IoT devices must be powerful and resource-intensive. TinyML reduces DL model 

training for microcontroller deployment, making low-resource IoT devices smart. Pruning and quantization 

compress models. This lightweight training paradigm for IoT devices improves battery life and saves 

operational costs for smart city IoT users [21], [22]. 
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TinyML data is processed locally on computing devices to infer lightweight DL models in IoT 

devices. Real-time local data processing lets IoT devices assess and respond fast, especially in crises. Also 

decreases cloud burden [23], [24]. Gateways, cloud services, and DL models help IoT devices input and 

handle data. Large model sizes slow and delay device DL inference. For TinyML, inferring the DL model 

and processing data on the device solves response times, network bandwidth, and storage issues. Processing 

raw data on the device reduces latency and bandwidth [25], [26]. 

TinyML is good for IoT devices with MCUs because it uses small batteries and less electricity.  

Due to their strong processors and GPUs, IoT devices demand lots of power. TinyML, requiring 150 μW to 

23.5 mW, connects IoT devices, such as scooters and segways, from anywhere [27]. Itinerant cognitive apps 

can help smart cities.  

TinyML uses little resources to infer DL models to smarten low-resource IoT devices. TinyML fixes 

smart city IoT difficulties. Smart city apps collect, process, and store data using sensors and microcontrollers 

and cloud DL. Cloud computing uses TFLOPs, GPUs, and TPUs. to run 16-32 GB DL models quickly, 

delaying data and leveraging network capacity. Second, GPUs and microprocessors enable real-time DL 

model processing in smart cities without cloud computing. Laptops, tablets, and smartphones with NPU 

technology with 8 RAM can handle huge storage and computing capacity. Mobile smart city apps need lots 

of computer power, storage, and battery life [28], [29]. TinyML uses DL on a 2MB RAM microcontroller to 

save money and resources. TinyML advances smart city innovation across sectors. 

 

 

3. RELATED WORKS 

In order to identify pedestrians from images and videos collected by IoT devices, a number of 

studies have utilized a wide range of DL models, including CNN, region-convolutional neural networks  

(R-CNN), visual geometry group-16 (VGG-16), you only live once (YOLO) variants, AlexNet, and much 

more. For instance, Zhu et al. [30], used background removal and DL to study long-distance pedestrian 

recognition challenges. This process comprises two steps. First, this model presents ML detachment 

framework facts. The attention module improves RefineDet’s recognition of small pedestrians in the second 

step. This approach requires additional benchmarks from various cartographic regions with high foot activity 

to assure validity. Kim et al. [31] investigated the detection of pedestrians in smart buildings. owing to the 

fact that the identification of pedestrians is difficult owing to noise in images as well as certain environmental 

conditions and parameters. The deep CNN was utilized by the researchers in order to develop a vision-based 

model. Additionally, the optimized version of the VGG-16, which was referred to as the OVGG-16, served as 

the architectural core that was utilized in order to differentiate pedestrians from the numerous available 

images. For the purpose of evaluating the suggested method, the researchers utilized the INRIA dataset, 

which comprised 6,817 photos, including 3,239 photographs of pedestrians. The image quality in this dataset 

was 227×227 pixels. In comparison to previous approaches to ML, the proposed method has a high level of 

accuracy (about 98.8%) when it comes to the accurate identification of pedestrians. This was demonstrated 

by the findings of the researchers’ investigations.  

Tomè et al. [32] proposed a system for the identification of pedestrians that makes use of DL 

principles. In addition to this, the researchers suggested a new paradigm for recognizing pedestrians. DL 

models called AlexNet and GoogLeNet were utilized by the researchers in order to facilitate the 

implementation of their proposed algorithm on contemporary hardware. Additionally, the researchers 

proposed new methods for various stages of pedestrian identification. They utilized the NVIDIA Jetson TK1, 

a computing platform that is based on graphics processing units (GPUs), as well as the Caltech Pedestrian 

dataset in order to implement and assess the offered methodologies and solutions. This particular dataset 

includes approximately ten hours of video content that pertains to autos and was gathered in a variety of 

weather conditions. This dataset had 137 minutes of video content with a total of 2,300 different pedestrians 

and 250 thousand frames each minute. Half of the frames contained no pedestrians, whereas thirty percent of 

the frames contained two or three pedestrians. As a result of the execution of their proposed technology, the 

accuracy of the AlexNet model is 80.1% and for GoogLeNet model is 80.3%. these researchers were able to 

demonstrate that it is highly efficient and accurate in spotting pedestrians in real time. Further researchers 

proposed multimodal imaging and ML methods to design, implement, and evaluate pedestrian detection 

methods [33]. Two cameras were calibrated using a specially designed reference checkerboard. They 

proposed method for superimposing multimodal images using RGB data and thermal to produce the final 

images. They created new dataset with 8,000 multimodal images in good and limited visibility. For detect 

pedestrian in a new representation of multimodal data, they proposed adapted YOLO model which contain 

edge device variant for TFLite. The best result achieved by adapted YOLOv5s model for subset images for 

good visibility with 93.4% for edge devices. Sequent, YOLOv5s model achieved 87.8% and 86.8% for 

limited visibility. 
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Within the context of the automated driving approach, Chen et al. [34] investigated the various 

architectures that are currently in use for pedestrian detection. Following an explanation of the necessity of 

employing ways to identify a pedestrian and ascertain his or her itinerary, these researchers went on to 

explore the procedure of detecting a person while driving a vehicle. They then described how to use DL 

techniques (such as R-CNN and support vector machine (SVM)) to discover two-step and one-step patterns, 

and then they tested the usefulness of the patterns that were identified to detect pedestrians from the patterns 

that were discovered. Last but not least, the researchers investigated and contrasted the approaches that were 

suggested by other researchers in order to identify pedestrians. The KTH dataset, the UCF series dataset, the 

Hollywood2 dataset, and the Google AVA dataset are some of the datasets that they introduced. These 

datasets are utilized to investigate the proposed approaches for identifying pedestrian activity. The accuracy 

rate obtained by the R-CNN model is 85.5%. Moreover, according to the requirements of automated driving 

for real-time pedestrian detection, researchers in [35] proposed DL model called LeNet-5 convolutional 

neural network (LteNet-5CNN) to detect the pedestrians accurately. They train and test a model using 

Caltech dataset. The accuracy results were above 95%, which better than the results from SA-Fast R-CNN 

and classical LeNet-5 CNN models. After model training, they applied mode real-time on smart car using 

Intel Core i7 processor with 2.5 GHz, and a memory size of 4G. They experiment showed improved in 

detection time with 0.394 s compared with the mainstream LeNet CNN detection time and 0.155 s, in 

compared with SA-FastR-CNN. 

For the purpose of providing real-time reactions in driver assistance systems, Said and Barr [36] 

proposed a novel software that makes use of a DL algorithm for the purpose of detecting pedestrians in a 

quick and accurate manner. The utilization of item classification, pedestrian identification, and position 

tracking are all included in this program. Within the context of the implementation, learning, and testing of 

the proposed method, the TensorFlow DL framework, the NVIDIA, cuDNN, and OpenCV acceleration 

libraries, as well as the Caltech dataset, were utilized. For the purpose of developing driver assistance 

systems, this program is installed for deployment in mobile phones or embedded systems that are connected 

to self-driving cars.  

Ahmed et al. [37] contrasted the approaches taken to diagnose bicycles and pedestrians. A self-

driving vehicle’s detection stage is crucial for building smart applications, according to their statement, since 

it’s there that objects can be located and detected using deep learning techniques like fast R-CNN, faster  

R-CNN, and single shot detector (SSD) in video and image frames. Lastly, it is possible to monitor and 

identify bikes or pedestrians using tracking findings. The primary objective of this research was to examine 

the current techniques used to detect bicycles. According to their research, one way to keep roads safe is to 

use methods that can accurately identify people on foot and bikes, such as sensor fusion and intent estimate 

and the accuracy of the R-CNN is 91%. On another hand, researcher’s impalement fine tuning on Faster  

R-CNN model. Wherein, fine-tuning has great interest due to its retraining convolutional networks, and 

shown state-of-the-art performance for detection, and segmentation [38]. Thus, they evaluate and comparing 

of Faster R-CNN Inception v2, single shot multibox detector (SSD) Inception v2, and SSD Mobilenet v2 

models. They trained the models on MS COCO dataset and tested on their own dataset and public domain 

dataset introduced by the Cityscapes project. The best accuracy results of DL models were 81.0%, 78.1% and 

64.3% for Faster R-CNN Inception v2, SSD Inception v2 and SSD Mobilenet v2 models respectively. 

A system for tracking and detecting pedestrians using deep neural networks was proposed by  

Yu et al. [39]. This system utilized a unmanned aerial vehicle (UAV) and Kalman Filter forecasting approach 

to monitor objects and pedestrians. Additionally, a dataset (YOLOv3) was utilized in order to put the 

proposed method into action. Examining the accuracy and execution time of the suggested approach for 

monitoring and recognizing pedestrians, as well as watching and identifying items, was done in order to 

determine how effective the method is. When it came to identifying pedestrians, the proposed method was 

shown to have less errors, as demonstrated by the results of the testing studies. 

Recent research, Liu et al. [40], address the challenges faced dense pedestrian detection such as 

complex models which are difficult to deploy on IoT devices, high computational weight, low detection 

accuracy for occluded pedestrians and small targets. They proposed lightweight cascade fusion network 

(CFNet) and a CBAM attention module. The WiderPerson public dataset was chosen that contains real street 

intersection images, they created a pedestrian detection dataset suitable for dense scenes, accounting for 

varied pedestrian occlusion scenarios. The experiment results show the accuracy is improved approximately 

2.4% with 88% for pedestrian, 43.3% for rider and 32.9% for partially visible person. Finally, the number of 

parameters is reduced by 0.5 MB with 2.7 M. The experiment verified that the proposed method is valuable 

for device with limited computational resources. In addition, for low-cost DL model [41] Researchers 

proposed low-cost DL model on intelligent vehicles for road-segmentation and pedestrian detection. Firstly, 

they used DL-based consecutive triple filter size (CTFS) approach to segment the road. Secondly, detect the 

pedestrian using YOLOv7 model. Two datasets were used which are camVid dataset for roed segmentation 
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and PascalVOC dataset for pedestrian detection. The results were 95.84% for road segmentation for using 

Jaccard index value, along with 65.50% for the pedestrian detection using average precision value. 

For optimize the AVs system for pedestrian’s detection and effective collision risk reduction on 

complex scenarios. Researchers on [42] strive to optimize the reliability and the efficacy of pedestrian 

detection in complex scenarios. They introduced a new pedestrian tracking models that leverages both the 

YOLOv8 and the StrongSORT model, that is an advanced DL multi-object tracking method. The experiment 

applied on the MOT16 and MOT17 datasets. Three evaluation metrices were used namely IDentity F1 

(IDF1), higher order tracking accuracy (HOTA), and multiple objects tracking accuracy (MOTA). The best 

result of YOLOv8 model was 0.92 using IDF1 metrics. For StrongSORT model the best result was 55.338 

using IDF1 on MOT17 dataset. In another case, Lee et al. [43] introduced novel system called NAVIBox that 

designed to detect the vehicle-pedestrian by using various of vision sensors that deployed on IoT devices in 

the field. They utilized YOLOv8 for object detection real-time. The results of their experiment were 0.71 

0.67 of precision and recall for pedestrian and 0.81, 0.85 precision and recall for vehicles. 

Generative adversarial networks (GANs) were proposed by Dinakaran et al. [44] in order to develop 

a novel cascaded SSD architecture for the purpose of remote pedestrian detection. Additionally, DCGAN is 

utilized in this architecture in order to enhance the image quality for the purpose of distant pedestrian 

detection. For the purpose of identifying the objects depicted in the image, this proposed method makes use 

of a number of factors. In order to put the strategy that has been suggested into action, the dataset that is from 

the Canadian Institute for advanced research (CIFAR) is utilized. It has been demonstrated through the 

results of trials that the proposed method possesses a high degree of accuracy equal 80.7% when it comes to 

distinguishing pedestrians and cars from a considerable distance. 

 

 

4. METHOD 

This section describes the proposed methodology of our experiment for the pedestrian and vehicle-

rider detection case using TinyML, which we called PRD-TinyML model. Which aims to detect pedestrian 

and vehicle-rider using small DL models. The workflow of methodology is divided into many phases each 

phase is linked to the next phase. Figure 1, illustrates the phases of implementing the proposed method, 

whilst the details of the implementation are described as follows: 

 

4.1.  Phase 1: data collection and pre-processing 

 In this phase, EuroCity persons (ECP) dataset is used to detect the pedestrians in the road which 

indicates the it is pedestrian or rider [45]. In case of rider, there are seven objects or types of drivers: bicycle, 

motorbike, scooter, tricycle, wheelchair, buggy, and co-rider. In addition, for each category from the 

pedestrian or the riders there are images during day and also during night. Subsequently, implement pre-

processing on the dataset images by detecting the objects using three methods namely single shot multibox 

detection (SSD), Dlip library (Dlip), and Haar-based cascading classifier (Haar) in order to use as input for 

DL models to detect of pedestrians. 

 

4.2.  Phase 2: model training and evaluation 

In this phase, several types of supervised DL models are developed to detect the pedestrian objects, 

aim to examine their performance, and obtained the best of them in size and accuracy. Three DL models we 

developed namely SqueezeNet, AlexNet, and CNN, further adapt two pre-trained models which are 

MobileNet-V2 and MobileNet-V3 models. These models were pre-trained on ImageNet dataset. 

Subsequently, save models for fed to the optimization model phase. 

 

4.3.  Phase 3: model optimization and conversion 

This phase aims to optimize the saved DL models through reducing the size of models after that 

converted to Tensor Flow Lite format. First, optimized the saved models by using various of quantization 

methods namely DRQ, FIQ, and QAT as described in the next section. Quantization aims to convert the 

weights of models or activation or both from float32 to Int8 format which provides a significant reduce in 

model size. Thus, it led to a decrease the memory footprint in devices. Second, convert DL models to TFLite 

format (.tflite) for enable inference of DL models.  

 

4.4.  Phase 4: running interpreter 

Running the TFLite interpreter to evaluate the TFLite DL models on the host computer. By loading 

the TFLite model to Interpreter and used the testing dataset for evaluation. 
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4.5.  Phase 5: models’ conversion to C array 

Convert TFLite models using TFLite micro tools that converts DL models to C byte array. Using 

XXD that generate C source file for the TFLite models as char array. After that, deploy the model into an 

independent platform that using C++ language as Arduino software and compile with IoT devices as 

microcontroller. 

 

 

 
 

Figure 1. Proposed PRD-TinyML methodology 
 

 

5. IMPLEMENTATION AND TESTING 

5.1.  Implementation environment 

The environment used to perform the experiment is Google Colaboratory [46], [47] or “Colab” for 

short, is a product from Google Research. We implement the experiment using Colab pro version [27] that 

was chosen to execute the experiment in this paper due to the features of the environment provided. Wherein, 

Colab pro version came with 2 terabytes of storage, 25 gigabytes of RAM, and a GPU processor P100. The 

experiment was performed using open-source libraries and artificial intelligence (AI) frameworks. The 

experiment was written in Python3 programming language and used NumPy [48], Matplotlib [49], Panada 

[50], and Scikit-learn [51] libraries. The frameworks used are TensorFlow [52], TFLite [53], and TFLite 

micro [54] frameworks that describe in next section. 

 

5.2.  Experiment and implementation 

The following subsections, explain in detail the implementation of each phase for the proposed 

methodology. Phase 1 (data collection and pre-processing), phase 2 (model training and evaluation). Phase 3 

(optimization and conversion model), phase 4 (running the interpreter). Finally, phase 5 (convert model to C 

array). 

 

5.2.1. Phase 1: data collection and pre-processing 

Collection and pre-processing dataset phase, aims to collect a good training dataset of pedestrian 

and rider detection case. In addition, we perform pre-processing on the pedestrian and rider, day and night, 
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images of the EPC dataset. In order to optimize achievement of higher performance in train and evaluation 

deep learning models. This section, introduce the detail of the collected datasets. Thereafter, it presents the 

steps to datasets Pre-processing. 

 

A. The collected dataset 

EuroCity [45], TUD known as Brussels Pedestrian dataset [55], Caltech [56], CityPersons [57], 

INRIA [58], KITTI [59], and ETH datasets are examples of well-known pedestrian detection datasets that are 

currently available. The following are some specialized datasets for pedestrian identification, which are 

frequently utilized in research. The current dataset for pedestrian detection is called ECP [60], and it 

performs better than both the Caltech dataset and the CityPersons dataset in terms of the difficulty and 

heterogeneity of the data. Note that it is based on information collected from thirty-one cities spread out 

across twelve states in Europe. Day and night photographs are taken in Europe, which performs the role of an 

umpire due to the fact that ECP day is referred to as daytime and ECP night is referred to as midnight.  

The limit box that has been defined is greater than 200 K. All of the investigations and comparisons that were 

carried out in ECP [60] were carried out during the daylight in conjunction with other methods. In addition,  

a diagnostic server is accessible. On the other hand, there are restrictions on test sets and frequency 

submissions. 

In this study, we made use of the ECP dataset, which offers a significant number of annotations that 

are extremely diverse, accurate, and detailed [61]. These annotations include walkers, cyclists, and other 

riders who are seen in urban traffic scenes. The photographs that make up this dataset were taken while the 

vehicle was in motion in a total of thirty-one cities across twelve European nations. The ECP dataset is 

roughly one order of magnitude larger than the datasets that were previously utilized for the purpose of 

person detection in traffic scenes. It contains over 238,200 person instances that have been carefully tagged 

in over 47,300 photos total. Additionally, the dataset includes a substantial quantity of person orientation 

annotations, accounting for more than 211,200 in total. Table 1 shows the number of images and instances in 

day and night for the ECP dataset categories. It consists of two main categories: pedestrian and rider, about 

40,217 images during day 183,004 instances for pedestrians and 18,216 instances for riders. While during 

night, the total number of images is 7,118 have about 35,309 instances for pedestrians and 1,564 rider 

instances. For the rider category, there are 7 different objects: bicycle, motorbike, scooter, tricycle, 

wheelchair, buggy, and co-rider. Table 2 shows the number of images in each of these objects during day and 

night. 
 

 

Table 1. Distributed images and instances in day and night for the ECP dataset categories 
Categories of ECP Day Night 

Images Instances Images Instances 

Pedestrian 40,217 183,004 7,118 35,309 

Rider 18,216 1,564 

 

 

Table 2. Distributed rider objects in day and night for the ECP dataset 
Objects of rider Number of objects 

Day Night Sum 

Bicycle 9,666 614 10,280 

Motorbike 2,196 229 2,425 

Scooter 5,748 683 6,431 

Tricycle 94 5 99 

Wheelchair 125 4 129 

Buggy 322 26 348 

Co-Rider 671 137 808 

 

 

B. The pre-processing of the dataset 

To ensure that deep learning models are trained and evaluated to their full potential, pre-processing 

is commonly employed to get datasets ready for use as training sets. We used pre-processing on two types of 

pedestrian detection images: those with people walking and those with riders. Bicycles, motorcycles, 

scooters, tricycles, wheelchairs, buggies, and co-riders are the seven items that fall within the rider group. 

There are multiple steps in the preprocessing. The first step is to use OpenCV’s object detection algorithms, 

such as the SSD, the Dlip package, and the Haar-based cascade classifiers detection as shown in Figure 2. 

After reading and resizing photos from the ECP dataset, we proceed to resize all of the images using 

detection face algorithms. Afterwards, we merged the two sets of data. Image transformation into a form 

suitable for use as inputs to deep models is the responsibility of the second stage. Step three involves 
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redefining the categories label in datasets to binary by converting multi-class labels to binary labels using the 

LabelBinarizer method. As a fourth step in ensuring image diversity, we randomly divided our dataset into 

70% training and 30% testing. For reproducible results, it’s also recommended to set the random generator’s 

seed to 40. Next, we’ll shuffle the data by giving the actual value for shuffling. There are 32 examples used 

for training in each iteration, which is known as the batch size. The testing dataset, in contrast, scaled images 

using the MinMaxScalar class. 
 
 

 
 

Figure 2. Sample for the images in the pre-processing methods 
 

 

5.2.2. Phase 2: model training and evaluation 

In this research, we developed five lightweight DL models detect the pedestrian in AV, aiming to 

obtain the best performance. These models have the advantage of small size due to the limitations of IoT 

devices. After we conducted a lot of experiment on many of DL models architectures and comparing their 

size with performance. We developed three deep models which are SqueezeNet, AlexNet, and CNN models, 

and adaptive two pre-trained deep models namely MobileNet-v2, and MobileNet-v3 that were pre-trained on 

ImageNet dataset. The following subsections describe the architecture of deep models used in the 

experiment. 
 

A. The SqueezeNet DL model 

In this research, we modified on the original architecture of SqueezeNet deep model. Aiming to 

produce a lightweight deep learning model with maintaining competitive accuracy. Hence the SqueezeNet 

model after modify architecture is lighter than the original architecture [26], [62]. We developed the model 

with few of parameters and high performance, able to detect the pedestrians. The main idea of SqueezeNet 

model architecture is the fire module which comprises a squeeze convolution layer with only a (1×1) filter, 

feeding to an expanded layer that has a mix of (1×1) and (3×3) convolution filters as shown in Figure 3. The 

SqueezeNet model architecture first comprises a stand-alone convolution layer with input shape 

(192×192×3), followed by a BatchNormalization layer and the rectified linear unit (ReLU) activation 

function. The ReLU activation function is involved in each layer. MaxPooling layers with strides equal to 

two values come after each of the five fire modules. At the end of the model, there is a 

GlobalAveragePooling2D layer and a dense layer with a SoftMax activation function to detect the pedestrian. 

as illustrated in Figure 3. Table 3 shows the SqueezeNet model architecture and the number of parameters. 

The total of parameters is 121,500, that divided into 120,930 trainable parameters and 570 non-trainable 

parameters. Trainable parameters mean the parameters which are updated during the training process to 

obtain optimal values. However, non-trainable parameters are not updated and optimized during the training 

process: as a result, they do not contribute to the classification process. 
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Figure 3. The architecture of the SqueezeNet DL model 
 

 

Table 3. The architecture summary of the SqueezeNet DL model 
Layer name Image size Filters Layer name Image size Filters 

InputLayer 192×192 - Activation 48×48 64 

Conv2D 192×192 32 2Conv2D 48×48 64 

BatchNormalization 192×192 32 Concatenate 48×48 128 

Activation 192×192 32 MaxPooling2D 24×24 128 

Conv2D 192×192 24 Conv2D 24×24 48 

BatchNormalization 192×192 24 BatchNormalization 24×24 48 

Activation 192×192 24 Activation 24×24 48 

2Conv2D 192×192 24 2Conv2D 24×24 48 

Concatenate 192×192 48 Concatenate 24×24 96 

MaxPooling2D 96×96 48 MaxPooling2D 12×12 96 

Conv2D 96×96 48 Conv2D 12×12 24 

BatchNormalization 96×96 48 BatchNormalization 12×12 24 

Activation 96×96 48 Activation 12×12 24 

2Conv2D 96×96 48 2Conv2D 12×12 24 

Concatenate 96×96 96 Concatenate 12×12 48 

MaxPooling2D 48×48 96 GlobalAveragePooling2D - 48 

Conv2D 48×48 64 Dense - 2 

BatchNormalization 48×48 64 - - - 

Total parameters: 

Trainable parameters: 

Non-trainable parameters: 

121,500 

120,930 

570 

 

 

B. The AlexNet DL model 

The AlexNet deep model is selected in this research as it is a lightweight efficient model with few 

parameters. Beside that it achieved high accuracy even with its small size, as in previous TinyML studies [6]. 

In this research we modify the original AlexNet model architecture in [5] to be smaller in size with  

few parameters. Thus, the architecture of AlexNet after modified consists of six layers with an input shape  

of 192×192×3. Firstly, the first three layers are convolution layers, each layer followed by a 

BatchNormalization layer, a ReLU activation layer, and MaxPooling layers. The MaxPooling layers has 

padding that has a valid value, strides equal to two values, and pool size equal to two. Secondly, there are 

flatten layer and a dense layer, with dropout having a 0.4 value. Finally, the output layer called Dense layer 

including a SoftMax activation function to enable detect pedestrian. Figure 4 and Table 4 present the 

architecture of the AlexNet deep model after modified. The parameters total 486,960 which are divided into 

486,132 trainable parameters and 828 non- trainable parameters. 
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Figure 4. The architecture of the AlexNet DL model 

 

 

Table 4. The architecture summary of the AlexNet DL model 
Layer name Image size No. of filters 

InputLayer 46×46 - 

Conv2D 46×46 32 

BatchNormalization 46×46 32 

Activation 46×46 32 

MaxPooling2D 23×23 32 

Conv2D 13×13 64 

BatchNormalization 13×13 64 

Activation 13×13 64 

MaxPooling2D 6×6 64 

Conv2D 4×4 128 

BatchNormalization 4×4 128 

Activation 4×4 128 

MaxPooling2D 2×2 128 

Flatten - 512 

Dropout - 512 

Dense - 2 

Total parameters: 486,960  

Trainable parameters: 486,132  

Non-trainable parameters: 828  

 

 

C. The CNN deep learning model 

The CNN deep model is selected in this research, due to it designed to visual data. In addition,  

it shows effective results in pattern identification and the problem of feature extractions [57]. In the current 

research, the CNN deep model is proposed for detecting pedestrian, while maintaining performance of 

accuracy with small size of model. The architecture of CNN model consists of the input layer that receives 

input images with (145×145×3). The three layers are 2DConvolutional layers that extracted features which 

differentiate different images from one another, along with ReLU, the activation function. Between the 2D 

convolutional layers there are two MaxPooling layers which added between them, with the pool size set to 2, 

and padding having a valid value. Followed by flatten layer which transforming the shape of data to a one-

dimensional (1D) data vector. The final layer is an output layer, namely, a dense layer which contains the 

SoftMax activation function for detecting Pedestrians. The proposed of CNN model architecture can be seen 

in Figure 5. The parameters in the CNN model total 39,554, with all parameters being trainable parameters, 

with zero non- trainable parameters. Table 5 presents the CNN model architecture and the number of 

parameters. 
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Figure 5. The architecture of the CNN DL model 

 

 

Table 5. The architecture summary of the CNN DL model 
Layer name Image size No. of filters 

InputLayer 143×143 - 

Conv2D 143×143 10 

Conv2D 141×141 10 

MaxPooling2D 70×70 10 

Conv2D 68×68 10 

Conv2D 66×66 10 

MaxPooling2D 32×32 32 

Flatten - 4608 

Dense - 2 

Total parameters: 39,554 

Trainable parameters: 39,554 

Non-trainable parameters: 0 

 

 

D. The MobileNet-V2 DL model 

The MobileNet-V2 deep model [63] is selected in this research due to its advantages. It is fast, 

lightweight, and achieved high accuracy. Besides that, it is appropriate for training with limited datasets, 

wherein the MobileNet-V2 deep model is pre-trained on datasets, such as ImageNet. The current research 

used the MobileNet-V2 model that pre-trained on ImageNet dataset, and re-trains it on the training dataset to 

fine-tune its parameters. Thus, it leads to faster training, and meets the requirements of a large dataset.  

The architecture of model is comprised of a pre-trained MobileNet-V2 model with input shape (224×224×3) 

and alpha value of 0.75. Followed by reshaping layers which are the MaxPooling 2D, flatten, and Dense 

layers with SoftMax activation function to detect the Pedestrians status. Figure 6 shows the architecture of 

MobileNet model. Table 6 contains the contain information regarding the architecture of the model and 

number of parameters. The number parameters are 1,256,178 which are divided into 1,250,398 for trainable 

parameters and 5,780 for non-trainable parameters. 

 

 

Table 6. The architecture summary of the MobileNet-V2 DL model 
Layer name Image size No. of filters 

MobileNet-V2 7×7 2,480 

GlobalAveragePooling2D - 2,480 
Dense - 2 

Total parameters: 1,256,178 

Trainable parameters: 1,250,398 

Non-trainable parameters: 5,780 
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Figure 6. The architecture of the MobileNet-V2 DL model 

 

 

E. The MobileNet-V3 DL model 

The MobileNet-V3 deep model [64], updated version of MobileNet-V2 deep model. Google 

produced the MobileNet-V3 model, which is part of the neural network family architecture, for efficient 

image classification on devices and related tasks. MobileNet-V3 is selected in the current research aims is to 

develop mobile CV architecture to improve latency and accuracy on mobile devices. Google produced two 

versions of MobileNet-V3, namely, MobileNet-V3 large and MobileNet-V3 small. The current research 

selects the pre-trained MobileNet-V3 small model from the Keras library. The adjusted model comprised of 

pre-trained weights on the ImageNet dataset, top layer set to false and alpha value equal to 1.0. The input 

shape of the model is 224×224×3, while the trainable parameters of the model are set to false value. 

Followed by the reshape layer which consists of the flatten layer and dense layer with the SoftMax activation 

function to detect the pedestrians. The total of parameters is 1,039,180 which is divided into 999,855 and 

39,325, for trainable parameters and non-trainable parameters respectively. Both of Figure 7 and Table 7 

presents the more information regarding the architecture of the de-tails of MobileNet-V3 model. 

 

 

 
 

Figure 7. The architecture of the MobileNet-V3 DL model 
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Table 7. The architecture summary of the MobileNet-V3 DL model 
Layer name Image size No. of filters 

MobileNet-V3 7×7 462 

Flatten - 14,112 
Dense - 2 

Total parameters: 1,039,180 

Trainable parameters: 999,855 

Non-trainable parameters: 39,325 

 

 

5.2.3. Phase 3: optimization and conversion models 

Using quantization techniques, we initially reduce the model size throughout the optimization and 

conversion model’s phase. Two quantization approaches, post-training quantization and QAT, are used in our 

experiment, as described in section 2. To begin improving ML and DL models for deployment and execution, 

we install the TensorFlow model optimization toolkit in QAT [65]. After that, we apply quantize_model to 

SqueezeNet, AlexNet, CNN, and MobileNet-V2 models so that they are all cognizant of quantization. 

However, we performed custom quantization on the MobileNet-V3 model by quantifying just the dense 

layer. As the Hypermeter configuration setting, this is the setting that the compiled model uses. We used a 

training dataset to train the models, and a testing dataset to measure their performance. All of the models 

have 30 iterations, and we are setting the value of shuffling data to true.  

We use DRQ and FIQ as part of our post-training quantization process. After training is complete, 

set the optimization in DRQ to quantize the model weights using 8 bits. Afterwards, you may convert the 

models to TFLite format (a serial format based on FlatBuffers library) using the TFlite converter tools. Take 

note: change the dataset type to float32 before changing the models. On the other side, the FIQ turned all of 

the DL parameters, such as activation and weights, into int8-bit integers using the representative dataset. 

 

5.2.4. Phase 4: running interpreter 

In order to complete the quantized model evaluation, TFLite interpreter was utilized. Following the 

loading of the quantized model, the testing dataset was utilized for the purpose of evaluating the models 

based on their accuracy. Initially, the quantized model should be assigned to the interpreter. After that, the 

shape and kind of interpreter should be adjusted. In our experiment, we will resize the shape of the input and 

output dependent on the shape of the test dataset for both the input and the output. “numpy.float32” is the 

class of the interpreter that is used for DRQ, and “numpy.int8” is the class that is used for FIQ. The 

interpreter type is determined by the quantized model type that is input. The next step is to make the testing 

dataset the input to the interpreter, and then to send it on to the invoke interpreter so that processing may be 

carried out. 

Particularly noteworthy is the fact that in QAT, prior to setting the tensor, apply the quantization 

value of the input interpreter to the scale and zero-point variables. Following this, assign the test images by 

dividing them by the sum of their respective values. The results of the interpreter are sent to the Argmax 

function, which then evaluates the function based on metrics such as accuracy. 

 

5.2.5. Model conversion to C array 

TFLite for microcontroller generates C byte arrays for TFLite models using standard tools and 

stores them in read-only program memory [66]. Models will be ‘model.cc’. Installing the XXD package 

creates a hex dump of the file and converts it to binary [67]. The unix command XXD generates a C source 

file with TFLite models as char arrays. TFLite models are turned into hex dumps with all parameters and 

architectures specified as function calls that pass activations between layers. The output is “unsigned char 

g_model” in a big file with few entry points. You can incorporate the created file in your program. Can then 

directly include and compile the file in IDE or toolchain [10]. Remember to modify array declarations to 

const for optimal memory efficiency on embedded devices [66]. 

 

 

6. RESULTS AND DISCUSSION 

This section illustrates the results of our experiment in detail using a variety of metrics for each of 

DL model in training and evaluation phase. Followed by the results of the size of each DL model after 

compression in optimizations phase using post training quantization (DRQ, FIQ) and quantization aware-

training, as in subsection 6.1. In addition to the evaluation of the DL models use a variety of metrics. This 

section is structured as follows: subsection 6.2 training and evaluation models results, subsection 6.3 

optimization and conversion model. Finally, subsection 6.4 is the interpreter phase result. 
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6.1.  Results of DL model’s training and evaluation 

6.1.1. SqueezeNet model’s result 

Table 8 shows the performance metrics used to evaluate and train the SqueezeNet model, which are 

based on loss and accuracy values. All three pre-processing methods-SSD, Dlip, and Haar-have their results 

described, the SSD approach outperformed the others in the SqueezeNet model in terms of performance.  

In both the training and evaluation phases, the SSD technique achieved an accuracy of 0.9825. In contrast, 

both the training and evaluation sets have a loss value of 0.0175. Accuracy and loss values were calculated 

between the training and assessment phases with respect to the number of epochs, as shown in Figure 8. 

 

 

Table 8. Results of evaluating the five DL models on the ECP dataset for the main two categories, pedestrian 

and rider in terms of: precision, recall, F1-score, accuracy, and loss 
Model Category Precision Recall F1-score Accuracy Loss 

SqueezeNet Pedestrian 99% 100% 100% 0.9825 0.0175 

Rider 100% 99% 99% 
AlexNet Pedestrian 98% 98% 100% 0.9880 0.0120 

Rider 98% 100% 98% 
CNN Pedestrian 96% 97% 96% 0.9750 0.0250 

Rider 96% 97% 97% 
MobileNet-V2 Pedestrian 98% 1.00 99% 0.9930 0.0070 

Rider 100% 99% 100% 

MobileNet-V3 Pedestrian 100% 99% 100% 0.9985 0.0015 

Rider 100% 100% 100% 

 

 

On the basis of this outcome, we provide a detailed description of the performance results using 

precision, recall, and F1-score. Moreover, in regard to the confusion matrix. The outcomes of the SqueezeNet 

model evaluation, including precision, recall, and F1-score, are displayed in Table 8. Both the pedestrian and 

the rider have confusion matrices with values of 0.985 and 0.98, respectively. 

 

 

 
 

Figure 8. The accuracy and confusion matrix on the ECP dataset for the evaluation of the  

SqueezeNet DL model 

 

 

6.1.2. AlexNet model’s results 

Both the pedestrian and rider statuses were successfully addressed by the findings of the improved 

AlexNet deep model in the pedestrian instance. All of the pre-processing methods’ training and evaluation 

results for the AlexNet model were displayed in Table 8. In the evaluation phase, the AlexNet model that 

used the SSD approach performed better than the others. In terms of accuracy, it reached 0.988 during the 

evaluation phase. Nevertheless, 0.0120 is the loss value throughout training. The accuracy and loss of the 

AlexNet deep model throughout evaluation and training were displayed in Figure 9. Accordingly, we 

included additional outcome metrics including recall, accuracy, F1-score, and confusion matrix for it in  

Table 8. 
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Figure 9. The accuracy and confusion matrix on the ECP dataset for the  

evaluation of the AlexNet DL model 

 

 

6.1.3. CNN model’s results 

With minimal architectural complexity, the lightweight CNN model was able to detect pedestrian 

status with great performance. The outcomes of the CNN model with each pre-processing approach are 

displayed in Table 8. In the evaluation phase, the CNN model that used the SSD approach had the best 

accuracy performance with 0.975 and a loss of 0.0250. Figure 10 shows the loss value, training accuracy, and 

evaluation accuracy of the CNN deep model. Extend the greatest performance outcome from the CNN model 

by utilizing the SSD approach. Table 8 shows the outcomes of other measures that were added to it, including 

recall, precision, and F1-score. Figure 10 also served as the introduction of the confusion matrix. Both the 

pedestrian and rider of status confusion matrices for the ECP dataset demonstrated excellent performance, 

with scores of 0.97 and 0.98, respectively. 

 

 

 
 

Figure 10. The accuracy and confusion matrix on the ECP dataset for the  

evaluation of the CNN DL model 
 

 

6.1.4. MobileNet-V2 model’s results 

The pre-trained MobileNet-V2 deep model performed admirably in the task of pedestrian and rider 

detection. Training and evaluation results for the MobileNet-V2 model using SSD, Dlip, and Haar pre-

processing methods are displayed in Table 8. In terms of evaluation phase performance, the MobileNet-V2 

model employing the SSD approach surpasses the prior three methods. In terms of accuracy, it reached 0.993 

throughout the evaluation phase. The evaluation, however, yields a loss value of 0.0070. As the number of 

epochs increased, Figure 11 showed the loss value, training accuracy, and assessment accuracy of the 

MobileNet-V2 deep model. We displayed the additional metrics for the SSD approach as F1-score, recall, 

and precision based on these results in Table 8. Nevertheless, as demonstrated in Figure 11, the confusion 

matrices of the MobilNet-V2 model based on the pedestrian category are 0.998, while those with the rider 

category are 0.988. 
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Figure 11. The accuracy and confusion matrix on the ECP dataset for the evaluation of the  

MobileNet-V2 DL model 

 

 

6.1.5. MobileNet-V3 model’s results 

Training and evaluation results for all pedestrian detection methods are very good with the pre-

trained tiny MobileNet-V3 deep model. While being evaluated, the SSD approach achieved a high level of 

accuracy. The Dlip approach and the SSD method came next. Figure 12 shows that it achieved a training 

accuracy of 0.9956 and an evaluation accuracy of 0.9885. Table 8 shows that the loss values for the training 

phase are 0.0015 and for the evaluation phase they are 0.0015. Use the outcome from the prior table as a 

foundation. We also detailed other outcomes for the SSD approach, including recall, precision, F1-score, and 

confusion matrix. Table 8 displayed the outcomes for F1-score, precision, and recall. Figure 12 also 

displayed the confusion matrix result. 

 

 

 
 

Figure 12. The accuracy and confusion matrix on the ECP dataset for the evaluation of the  

MobileNet-V3 DL model 

 

 

The results of evaluating the five DL models on the ECP dataset for all the objects’ instances in the 

rider category in terms of accuracy and loss is illustrated on Table 9. As shown the MobileNet-V3 

outperforms the other four models for classifying the rider instances in the seven objects: bicycle, motorbike, 

scooter, tricycle, wheelchair, buggy, and co-rider. As concluded from the table, MobileNet-V3 DL model 

outperform the other model with accuracy 0.9829 and loss equal to 0.017 while the CNN DL model gives the 

lowest results with accuracy 0.9154 and loss 0.084. For this reason, we present the confusion matrix for 

evaluation of the lowest and highest models. Figure 13 shows the confusion matrix for evaluation of the CNN 

DL model on the ECP dataset for all the seven objects’ instances in the rider category, while Figure 14 shows 

the confusion matrix for evaluation of the MobileNet-V3 DL model. 
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Table 9. Results of evaluating the five DL models on the ECP dataset for all the objects’  

instances in the rider category in terms of accuracy and loss 
Rider objects SqueezeNet AlexNet CNN MobileNet-V2 MobileNet-V3 

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

Bicycle 0.8964 0.084 0.9308 0.081 0.8611 0.088 0.9854 0.023 0.9861 0.014 

Motorbike 0.9334 0.051 0.9452 0.051 0.9024 0.069 0.9469 0.013 0.9469 0.016 

Scooter 0.9815 0.064 0.9775 0.064 0.9915 0.084 0.9965 0.017 0.9965 0.012 

Tricycle 0.9632 0.054 0.9632 0.054 0.8934 0.085 0.9632 0.051 0.9632 0.025 

Wheelchair 0.9337 0.021 0.9397 0.077 0.9045 0.097 0.9955 0.019 0.9960 0.018 

Buggy 0.9469 0.081 0.8631 0.084 0.9308 0.089 0.9469 0.017 0.9960 0.017 

Co-Rider 0.9492 0.012 0.9492 0.032 0.9334 0.078 0.9962 0.022 0.9970 0.018 

Average 0.9434 0.052 0.9383 0.063 0.9154 0.084 0.9758 0.023 0.9829 0.017 

 

 

  
 

Figure 13. The confusion matrix for evaluation of the 

CNN DL model on the ECP dataset for all the objects’ 

instances in the rider category 

 

Figure 14. The confusion matrix for evaluation of 

the MobileNet-V3 DL model on the ECP dataset  

for all the objects’ instances in the rider category 

 

 

6.2.  Optimization and conversion models result 

The optimizing and conversion models’ phase aims to compress and converting of 32 floating-point 

DL models size that is already trained to be Int8 integers using quantization methods. After that, convert  

the models to TFLite format. The subsections present the of size the original models which means the  

trained model. As well as the size of models after performing quantization and conversion to the TFLite 

model. 

 

6.2.1. SqueezeNet model’s size results 

SqueezeNet deep model, it shows superior size results where the measured size of the SqueezeNet 

model is 3.092 MB. In the optimization and conversion model phase, the DRQ obtained best measure size  

of SqueezeNet with 0.161 MB. Means the DRQ has decreased in size by approximately 94.7% compared to 

the original model. Followed by FIQ with 0.163MB and the QAT with 0.161 MB of size as shown in  

Table 9. 

 

6.2.2. AlexNet model’s size results 

Conversely, when we made some structural changes to the AlexNet deep model, it demonstrated a 

significant decrease in size during the optimization and conversion phases when compared to the original 

model. All quantization methods converge on the same reduction outcomes. Table 10 shows that the original 

deep model’s size was decreased by 92.5% (from 9.272 MB to 0.69 MB) using the DRQ approach.  

Then came QAT, which had a size reduction of 0.694 MB and FIQ, which had a size reduction of 92.3% of 

the original model. The result is a 92.5% reduction in memory footprint achieved using the AlexNet  

deep model. 
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Table 10. The size of the five DL models after optimization and conversion 
DL models Original model (MB) QAT (MB) FIQ (MB) DRQ (MB) Decreased (%) from the original 

SqueezeNet model 3.092 0.165 0.163 0.161 94.7% 

AlexNet model 9.272 0.694 0.693 0.69 92.5% 

CNN model 1.664 0.072 0.079 0.07 95.7% 

MobileNet-V2 7.493 2.635 1.958 1.95 73.9% 

MobileNet-V3 6.995 4.074 1.824 1.813 74.1% 

 

 

6.2.3. CNN model’s size results 

During the optimization phase, the CNN deep model demonstrated good results in reducing the size 

of DL models. The size of the CNN model produced better results than other DL models, and the CNN 

model ended up with the least size. Table 9 shows that the DRQ approach obtained 0.07 MB, while the CNN 

model had few megabytes. The original model’s size was cut in half, from 1.664 MB to just 0.07 MB,  

a reduction of 95.7%. Similarly, for DRQ results with 0.072 MB and 0.079 MB, respectively, QAT and FIQ 

converge. The size of the TFLite CNN deep model was just a few kilobytes, and it had a very high accuracy 

rate. This means it could work well even on low-powered IoT devices. 

 

6.2.4. MobileNet-V2 model’s size results 

The outcomes of the optimization and conversion phase for the pre-trained MobileNet-V2 deep 

model were displayed in Table 9. The DRQ approach resulted in a 73.9% reduction in the size of the 

MobileNet-V2 model, going from 7.493 MB to 1.95 MB. In the end, the FIQ approach reached a size of 

1.958 MB, whereas the QAT method reached 2.635 MB. 

 

6.2.5. MobileNet-V3 model’s size results 

Table 9 shows that the pre-trained MobileNet-V3 deep model is 6.995 MB less than the original 

model. Both the DRQ and FIQ approaches allowed the MobileNet-V3 to gain significant size after 

quantization and conversion; the former achieved 1.824 MB and the latter achieved 1.813 MB. This resulted 

in a reduction in the original model size of about 74.1 percent. In contrast, the MobileNet-V3 deep model in 

QAT weighed in at 4.074 MB. 

 

6.3.  The results of the interpreter phase 

In converting and optimization phase we optimize and convert model to TFLite format. After that, 

we used the interpreter to evaluate the performance accuracy of TFLite models after using the quantization. 

Notice, in QAT first training and evaluation the DL models then converted to TFLite format and used the 

interpreter to evaluate the DL models. 

 

6.3.1. SqueezeNet deep model results 

SqueezNet model performance accuracy after conversion to TFLite format for all quantization 

methods was shown in Table 11. First, we quantize all model layers in quantization aware-training training 

and assessment. The daytime Dlip approach had the highest accuracy, 99.56% and 98.27% in training and 

evaluation. The training phase loss is 0.0245 and the evaluation phase is 0.0935. SSD with day images had 

higher accuracy in DRQ, FIQ, and quantization aware-training for TFLite model phase evaluation utilizing 

interpreter (98.27%, 99.29%, and 99.24%). Which reduced accuracy by less than 1% compared to the old 

model’s 99.56%. Dlip methods with day images follow. Inference time was lowest for Haar technique night. 

 

 

Table 11. Quantization results of SqueezeNet model 
Model Quantization method Day Night 

SSD Dlip Haar SSD Dlip Haar 

SqueezeNet model 

QAT 

Training: Accuracy: 99.22% 99.56% 98.57% 98.77% 98.88% 98.36% 

 Loss: 0.0321 0.0245 0.0648 0.0455 0.0392 0.0612 

Evaluation: Accuracy: 98.27% 97.78% 94.98% 94.52% 97.52% 92.06% 

 Loss: 0.0751 0.0935 0.1814 0.1996 0.1125 0.3431 

Interpreter: Accuracy: 98.27% 97.77% 94.98% 94.52% 97.52% 92.06% 

 Time: 8.9875 8.8828 3.9732 5.4673 6.8101 3.4623 

FIQ Interpreter: Accuracy: 99.29% 98.65% 95.10% 98.26% 98.14% 94.50% 

 Time: 9.2829 10.9602 4.2913 6.6926 8.0926 4.0766 

DRQ Interpreter: Accuracy: 99.24% 98.86% 95.34% 98.26% 98.07% 94.65% 

 Time: 11.4784 9.2534 4.0842 5.4771 6.9075 3.5623 
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6.3.2. AlexNet deep model results 

The accuracy of the AlexNet deep model’s performance for all quantization methods after 

conversion to TFLite format is provided in Table 12. For daytime images, the TFLite AlexNet model’s 

results utilizing the SSD approach are superior to those of conventional quantization methods. The 

quantization aware-training approach also managed a loss of 0.6256 and an accuracy of 97.30%. With an 

accuracy of 97.26% and 96.98%, respectively, the QAT and DRQ got the best results in the interpretation 

phase. In comparison to the old model’s accuracy of 97.3% during the evaluation phase, these findings show 

that there was no degradation in accuracy. In addition, the interpreter’s accuracy was 61.70% during the FIQ 

phase, which was the lowest. 

 

 

Table 12. Quantization results of AlexNet deep model 
Model Quantization method Day Night 

SSD Dlip Haar SSD Dlip Haar 

AlexNet model 

QAT Training: Accuracy: 98.92% 98.14% 98.77% 99.22% 91.36% 98.67% 

Loss: 0.2139 0.3546 0.1943 0.1017 0.2572 0.2336 

Evaluation: Accuracy: 97.30% 96.58% 94.15% 96.18% 92.02% 94.02% 

Loss: 0.6256 0.9501 1.986 0.9207 1.8679 2.9832 

Interpreter: Accuracy: 97.29% 96.57% 94.14% 95.30% 92.02% 94.01% 

Time: 9.8782 5.8422 3.2779 4.9489 4.7229 4.6784 

FIQ Interpreter: Accuracy: 61.70% 75.76% 62.24% 69.93% 78.46% 56.50% 

Time: 46.0652 38.1622 24.1734 29.1898 22.5477 24.5777 

DRQ Interpreter: Accuracy: 96.98% 93.27% 92.35% 94.09% 92.12% 90.67% 

Time: 25.6976 23.3022 7.1562 8.9807 8.9907 7.8013 

 

 

6.3.3. CNN deep model results 

Following the conversion of the CNN deep model to the TFLite format, Table 13 demonstrated the 

performance accuracy of the CNN deep model for all quantization methods tested. During the evaluation 

phase of the quantization aware-training process, the results obtained by utilizing the Dlip technique with day 

photos achieved the best performance outcomes. During the training phase, it achieved an accuracy of 

96.68%, and during the evaluation phase, it achieved an accuracy of 96.13%. When it comes to training and 

evaluation, the loss values are 0.1622 and 0.2357, respectively. On the other hand, the accuracy results of the 

CNN model that uses the quantization method are comparable during the interpreter phase. The outcomes of 

the quantization aware-training sessions were 96.89%, 96.45% for the FIQ, and 96.67% for the DRQ. 
 

 

Table 13. Quantization results of CNN deep model 
Model Quantization method Day Night 

SSD Dlip Haar SSD Dlip Haar 

CNN model 

QAT Training Accuracy 96.16% 96.68% 95.19% 96.38% 95.42% 95.48% 

Loss 0.1795 0.1622 0.2357 0.2333 0.3456 0.3425 

Evaluation Accuracy 96.90% 96.13% 94.27% 94.00% 93.42% 91.45% 

Loss 0.1288 0.2313 0.2867 0.5527 0.5316 0.5313 

Interpreter Accuracy 96.89% 96.18% 94.38% 94.08% 93.41% 91.45% 

Time 14.8474 9.6489 4.3466 4.9809 4.9978 4.0254 

FIQ Interpreter Accuracy 96.45% 96.52% 93.30% 94.69% 94.51% 91.29% 

Time 14.4274 10.8634 4.8818 6.1945 5.6767 5.1152 

DRQ Interpreter Accuracy 96.67% 96.58% 93.54% 94.86% 94.51% 91.45% 

Time 7.4934 6.4582 2.6295 2.8551 2.7644 3.3932 

 

 

6.3.4. MobileNet-V2 deep model results 

The model optimization and conversion phase was a success for the pre-trained MobileNet-V2 

model. Table 14 displays the excellent results obtained by the TFLite MobileNet-V2 deep model. By 

utilizing the Dlip approach with day photos, the TFLite MobileNet-V2 model achieves superior results 

compared to other quantization methods. Its accuracy in the training phase was 99.66% and in the evaluation 

phase it was 98.12% in QAT. On the other hand, during the evaluation phase, the loss value is 0.0732 and 

during training it is 0.0236. Even in the interpreter phase, DRQ got the best result with an accuracy rate of 

99.51%. FIQ also got there, with an accuracy rate of 99.46%. Specifically, 62.0635 and 59.3225 seconds are 

the inference times. When compared to the original model’s accuracy of 99.66%, their results were 

impressive. In contrast, the QAT approach was able to get 98.84% accuracy in 92.53 seconds of inference 

time. 
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Table 14. Quantization results of MobileNet-V2 deep model 
Model Quantization method Day Night 

SSD Dlip Haar SSD Dlip Haar 

MobileNet-V2 

QAT Training Accuracy 99.64% 99.66% 99.41% 99.11% 99.56% 98.67% 

Loss 0.0227 0.0236 0.0298 0.0345 0.0224 0.0472 

Evaluation Accuracy 98.89% 98.12% 98.28% 96.87% 98.13% 96.43% 

Loss 0.0386 0.0732 0.0567 0.1221 0.0815 0.1299 

Interpreter Accuracy 98.84% 98.17% 98.14% 96.86% 98.12% 96.77% 

Time 92.5306 62.0635 65.7546 53.1376 51.8511 41.7846 

FIQ Interpreter Accuracy 99.46% 99.03% 98.83% 97.56% 97.65% 97.69% 

Time 96.8919 59.3225 64.5348 54.3569 51.0124 44.1712 

DRQ Interpreter Accuracy 99.51% 98.91% 98.90% 97.65% 97.56% 97.69% 

Time 110.5129 75.8372 74.8445 51.2149 49.2187 45.3419 

 

 

6.3.5. MobileNet-V3 deep model results 

The pre-trained MobileNet-V3 deep model obtained well performance in optimization phase using 

quantization methods and after converted to the TFLite model to detect the pedestrian objects. Due to the 

quantized whole model does not support in MobileNet-V3 model, wherein the architecture of MobileNet-V3 

contains TFOpLambda layer. Thus, we quantized only the last layer which are Dense layer. Since the SSD 

method with day images obtained best performance result in with (99.94%) and (99.60%) of accuracy in 

training and evaluation phases respectively. However, the loss values are (0.0032) and (0.0154). In 

Interpreter phase, the results of performance pre-trained MobileNet-V3 model using SSD method with day 

images gained best performance results. DRQ achieved the highest accuracy with (99.64%), followed by 

QAT with (99.60%). On the contrary, the FIQ achieved low accuracy with (96.01%) as shown in Table 15. 

 

 
Table 15. Quantization results of MobileNet-V3 deep model 

Model Quantization method Day Night 

SSD Dlip Haar SSD Dlip Haar 

MobileNet-V3 

QAT Training Accuracy 99.94% 99.68% 99.03% 99.63% 99.40% 99.28% 

Loss 0.0032 0.0061 0.0306 0.0098 0.0161 0.0194 

Evaluation Accuracy 99.60% 98.80% 91.76% 97.48% 97.51% 97.10% 

Loss 0.0154 0.0842 0.5509 0.1696 0.1362 0.2951 

Interpreter Accuracy 99.60% 98.85% 91.63% 97.47% 97.40% 97.09% 

Time 87.7556 66.8714 36.6223 55.4781 41.5858 31.0865 

FIQ Interpreter Accuracy 96.01% 99.20% 97.96% 99.39% 98.00% 97.09% 

Time 89.8324 69.9036 0.00453 55.0924 43.4813 31.8549 

DRQ Interpreter Accuracy 99.64% 99.14% 97.96% 99.39% 98.10% 97.86% 

Time 62.5053 50.562 29.0627 40.9614 32.451 24.7911 

 

 

7. DISCUSSION AND COMPARISON 

When it comes to pedestrian detection using IoT devices, the complexity and high processing costs 

of DL models provide the biggest obstacle. As a result, investing in training takes a lot of time and drains the 

resources of IoT devices. To improve upon the memory and complexity efficiency of previous DL models for 

pedestrian and rider detection, we presented five compact DL models in this study. The SqueezeNet, 

AlexNet, and CNN models are three of our lightweight DL implementations. Also, we’re making use of two 

DL models-MobileNet-V3 and Mo-bileNet-V2-that were previously trained on the ECP dataset. These 

models can distinguish between pedestrians and riders in a variety of lighting and environmental situations. 

Riders include seven distinct types of vehicles: bicycles, motorbikes, scooters, tricycles, wheelchairs, buggy, 

and co-riders. In addition, pre-processing algorithms like SSD, Dlip, and Haar were utilized, which could 

identify pedestrians in various scenarios. The training and evaluation phases also assessed the proposed 

models for recall, accuracy, precision, and loss, among other metrics. We evaluated the performance of the 

converted to TFLite models using accuracy in the interpreter phase. Aside from the models’ sizes. 

 

7.1.  The training and evaluation phase 

We began by testing the DL models’ accuracy during the assessment phase of the training and 

evaluation process. All of the DL models’ performance accuracy is displayed in Figure 15. In the MobileNet-

V2, SqueezeNet, and MobileNet-V3 models, the best results and highest performance accuracy of deep 

models were obtained by employing the SSD approach with day images. The corresponding percentages 

were 99.27%, 98.86%, and 98.69%. Furthermore, the SSD technique demonstrated superior accuracy with 

98.67% using nighttime images in the pre-trained MobileNet-V3 model. Based on the results, it appears that 
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the SSD approach yielded the most accurate results. Whereas, the SSD approach can pinpoint pedestrians and 

riders in photos with remarkable accuracy. While the SSD technique produced an accuracy of 86.77% with 

night photos, the Haar method yielded the lowest performance accuracy for the AlexNet model (88.33%) 

when applied to day images. Figure 16 also shows the average amount of time it takes for the three 

interpreters to work with each of the five DL models that were applied to the three SSD, Dlip, and Haar 

approaches for ECP images taken during the day and night, respectively, using the values from Tables 11 to 15. 

 

 

  
(a) (b) 

 

Figure 15. Average accuracy between the three interpreters for the five DL models applied on the three SSD, 

Dlip, and Haar methods (a) ECP images during day and (b) ECP images during night 

 

 

  
(a) (b) 

 

Figure 16. Average time between the three interpreters for the five DL models applied on the three SSD, 

Dlip, and Haar methods (a) ECP images during day and (b) ECP images during night 

 

 

7.2.  The optimization and conversion model phase 

We found that when we compared the accuracy with the model size, the results demonstrated good 

performance, and we also noticed a low variance. The quantized approaches significantly reduce the model 

size with a slight loss of accuracy, as demonstrated in Figure 17. Using fixed-point on 8-bit integers during 

implementation, in particular, reduces inference time and average power usage. Shorter inference times are 

intriguing because they allow one to either reduce the working frequency of the microcontroller, which is a 

critical characteristic in IoT devices for power consumption. Furthermore, there is a notable decrease in 

memory footprint while executing with 8-bit integers.  

The CNN model had the smallest model size with 0.07 MB when utilizing DRQ, according to our 

data. However, when the DRQ approach was used, the accuracy result did not degrade. The SqueezeNet 

model came next, achieving a 94.7% reduction in model size with an approximate after-quantization size of 

0.161 MB. Also, the AlexNet model size dropped significantly from 9.272 MB to about 0.69 MB when using 

the quantization method. However, with 1.95 MB and 1.831 MB, respectively, the pre-trained models 

MobileNet-V2 and Mo-bileNet-V3 had the biggest model sizes compared to our development model. With a 
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performance accuracy of 99.60%, the MobileNet-V2 model outperformed the MobileNet-V3 model, which 

achieved 98.89%. After converting to the TFLite model, however, the MobileNet-V2 model maintained a 

high level of accuracy while achieving excellent performance. After being quantized and converted, 

MobileNet-V3 produced a significant decrease in accuracy and a high variation. 

 

 

 
 

Figure 17. The size of the five DL models for the original models and  

after optimization and conversion phase 

 

 

7.3.  The interpreter phase 

We conducted experiments to determine how effectively the DL models fared after we applied the 

quantization techniques. Compared to the accuracy of the initial model without optimization, our experiment 

got high results in the interpreter phase. In quantization aware-training method, we presented the accuracy of 

evaluation phase for all DL models. SqueezNet quantifies all model layers in Quantization aware-training 

and assessment. The daytime Dlip method was most accurate in training and evaluation, 99.56% and 98.27%. 

Training phase loss is 0.0245, assessment phase 0.0935. SSD-during day, TFLite model phase evaluation 

using interpreter had higher DRQ, FIQ, and quantization aware-training accuracy (98.27%, 99.29%, and 

99.24%). This reduced accuracy by less than 1% from the old model’s 99.56%. Day-image Dlip approaches 

follow. For Haar technique night, inference time was lowest.  

SSD quantization achieves better results than conventional quantization in the TFLite AlexNet 

model. Quantization-aware training had 0.6256 loss and 97.30% accuracy. QAT and DRQ had the highest 

interpretation accuracy at 97.26% and 96.98%. These statistics show no decline in accuracy compared to the 

old model’s 97.3% during evaluation. FIQ was the lowest phase for interpreter accuracy at 61.70%.  

The CNN model’s Quantization aware-training assessment phase yielded the greatest results using 

the Dlip approach with day photographs. During training, it had 96.68% accuracy and during evaluation, 

96.13%. Training and evaluation loss values are 0.1622 and 0.2357. However, the CNN model with 

quantization has comparable Interpreter accuracy. Quantization aware-training sessions yielded 96.89%, 

96.45% for the FIQ, and 96.67% for the DRQ. 

The pre-trained Mo-bileNet-V2 model optimized and converted successfully. The Dlip approach 

with day photographs give the TFLite Mo-bileNet-V2 model better quantization results than previous 

methods. The training phase has 99.66% accuracy and the evaluation phase 98.12% in QAT. However, 

evaluation loss is 0.0732 and training loss is 0.0236. Even in interpreter, DRQ had the best accuracy at 

99.51%. With 99.46% accuracy, FIQ also qualified. Inference times are 62.0635 and 59.3225 seconds. 

Compared to the original model’s 99.66% accuracy, their results were excellent. In contrast, QAT achieved 

98.84% accuracy in 92.53 seconds.  

The pre-trained MobileNet-V3 deep model performed well in quantization for optimization and then 

converted to the TFLite model to recognize pedestrian objects. TFOpLambda layer in MobileNet-V3 

architecture prevents quantized entire model support. We quantized only the dense final layer. The SSD 

approach using day photos performed best in training and evaluation with 99.94% and 99.60% accuracy. 

However, loss values are 0.0032 and 0.0154. Performance pre-trained MobileNet-V3 model utilizing SSD 

technique with day images performed best in interpreter phase. DRQ was most accurate (99.64%), followed 

by QAT (99.60%). FIQ accuracy was low (96.01%). 
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7.4.  Comparison between our models and the previous studies 

Using data from section 3’s previous studies, Table 16 compares the accuracy of several pedestrian 

identification methods using deep learning models. We discovered that their experimental accuracy ranged 

from 80.1% to 98.8% by comparing their performance in the assessment phase with earlier studies on 

pedestrian identification datasets. Our experimental results in this study surpass those of the most recent, 

comprehensive research in the field. Using an average of the SSD, Dlip, and Haar approaches, our 

SqueezeNet model achieved a result of 98.93% for day images and 98.09% for night images. Both the 

previous research and all the other models used in this study were outperformed by the MobileNet-V3 and 

MobileNet-V2 models, which achieved the highest results (99.66% for day images and 99.56% for night 

photos, respectively). 

 

 

Table 16. Comparing results from previous studies throughout the evaluation process for accuracy 
Reference DL Models Performance (accuracy) 

[31] Vgg-16 98.8% 

[32] AlexNet 

GoogLeNet 

80.1% 

80.3% 

[34] R-CNN 85.5% 

[44] DCGAN 80.7% 

Our proposed SqueezeNet-day images 

SqueezeNet-night images 

AlexNet-day images 

AlexNet-night images 

CNN-day images 

CNN-night images 

MobileNet-V2-day images 

MobileNet-V2-night images 

MobileNet-V3-day images 

MobileNet-V3-night images 

98.93% 

98.09% 

93.25% 

92.65% 

96.73% 

94.80% 

99.27% 

98.24% 

99.66% 

99.56% 

 

 

8. CONCLUSION 
As we discussed in our recent publication titled “TinyML: enabling of inference deep learning 

models on ultra-low-power IoT edge device,” we use TinyML in this research to solve the problems of 

integrating DL models on IoT devices in smart cities. In order to facilitate integration on low-power, 

resource-constrained IoT devices, five lightweight DL models were assessed. In order to identify the rider 

and pedestrian, three DL models-SqueezeNet, AlexNet, and CNN-were created by adapting two pre-train 

models, MobileNet-V2 and MobileNet-V3. 

After comparing their performance in the assessment phase with past studies on pedestrian 

identification datasets, we found that their experimental accuracy ranged from 80.1% to 98.8%. This was 

obtained by comparing their performance with the datasets. The results of our experiments in this study are 

superior to those of the most recent and thorough research that has been conducted in this area. The 

SqueezeNet model that we developed attained a result of 98.93% for daytime photographs and 98.09% for 

nighttime photographs by utilizing an average of the SSD, Dlip, and Haar analysis methods. The results of 

the MobileNet-V3 and MobileNet-V2 models, which achieved the highest results (99.66% for day images 

and 99.56% for night shots, respectively), were superior to those of the prior research as well as all of the 

other models that were utilized in this study.  

As far as we know, no previous studies on pedestrian detection have utilized TinyML. Our work 

demonstrates that the CNN architecture has a smaller model size of 0.07 MB compared to other TinyML-

related studies. Additionally, our revised SqueezeNet design achieved a reduced size of 0.161MB compared 

to the original SqueezeNet model. The adjusted AlexNet model reached a size of 0.69 MB, while the pre-

trained MobileNet-V2 and MobileNet-V3 models achieved sizes of 1.95 MB and 1.831 MB respectively. The 

results show that there is no loss of accuracy after applying an optimization strategy of around less than 1%. 

The experiment results indicate that it has significant potential to operate efficiently on resource-limited IoT 

devices such as microcontrollers.  
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