
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 36, No. 1, October 2024, pp. 274~281

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v36.i1.pp274-281  274

Journal homepage: http://ijeecs.iaescore.com

A framework for reusable domain specific software component

extraction based on demand

N Md Jubair Basha1, Gopinath Ganapathy1, Moulana Mohammed2
1Department of Computer Science and Engineering, Bharathidasan University, Tiruchirappalli, India

2Department of CSE, Koneru Lakshmaiah Education Foundation, Vijayawada, India

Article Info ABSTRACT

Article history:

Received Mar 21, 2024

Revised May 12, 2024

Accepted Jun 5, 2024

 The majority of organizations use an agile software development

methodology. Standard analysis and design processes are abandoned due to

the enormous demand of generating the product within time and budget.

This may result in a lack of high-quality software while components are not

constructively reused. The components are identified at a later stage in the

majority of component approaches. To address such challenges, a

methodology for extracting demand-based domain-specific software

components from the repository was developed. The process for reusing

current components is described in depth with various domain-specific

components, and the suggested framework is for extracting demand-based

reusable domain-specific software components.

Keywords:

Demand based extraction

Domain specific component

Feature points

Reusability matrix

Versioning This is an open access article under the CC BY-SA license.

Corresponding Author:

N Md Jubair Basha

Department of Computer Science and Engineering, Bharathidasan University

Tiruchirappalli, Tamil Nadu, India

Email: jubairbasha@gmail.com

1. INTRODUCTION

Utilising pre-existing software assets to develop or change software systems is known as software

reuse [1]. The software community has given the idea of software reuse a lot of attention because of its

alleged benefits, which includes improved product quality, lower costs and schedules. The goal is to create

and maintain a library of interchangeable parts that form the basis for new products in a certain functional

area. The employment of reusable parts is gradually replacing the use of proprietary and monolithic

technology [2]. The necessity to reduce life cycle costs, enhance software quality, and maximize resources

needed for system development and testing is the driving force behind this shift. More productivity, quality,

and dependability can be achieved with an efficient software reuse process, which also shortens

implementation times and costs. Starting a software reuse process requires an upfront cost, but after a certain

number of reuses, it becomes cost-effective. To summarize, creating a reuse process and repository results in

the creation of a knowledge base that becomes better with each reuse. This lessens the risk associated with

new initiatives that rely on repository knowledge by reducing the amount of development work that will

eventually be needed for subsequent projects.

The use of domain-specific components has a number of noteworthy advantages. The application of

component reuse reduces costs and schedules by doing away with the need to create the component from the

ground up. It is possible for the component to be modified if it is seen necessary. The word "reduced"

describes a situation or state in which something is lessened or when resources are devoted primarily-more

than 60% to testing operations in software development. The testing effort is reduced through the use of

domain-specific components.

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A framework for reusable domain specific software component … (N Md Jubair Basha)

275

The section that follows is the structure of this work. Section 1 contains the paper's introduction. In

section 2, the pertinent literature is outlined and the inclusion of software reuse is clarified. In contrast, the

domain engineering process is summarised in section 3. Section 4 discusses the various domain-specific

component frameworks. Section 5 looks at the procedure for extracting domain-specific, demand-based

software components. This paper is clearly concluded in section 6.

2. RELATED WORK

Software reuse is the act of creating new software solutions by utilising pre-existing software

components or by leveraging software knowledge. The two main types of reusable assets are software

knowledge and software that can be reused. The likelihood that a software asset will be used again is known

as reusability [3]. Software reuse is the practice of repeatedly employing pre-existing software components,

sometimes known as "designed software for reuse," during the development process [4]. Reusing software

helps companies in a number of ways, such as when it comes to managing the complexity of software

development, producing better products, and increasing production efficiency. The use of design reuse

practices has increased significantly in the modern era, especially when it comes to object-oriented class

libraries, application frameworks, design patterns, and related source code [5]. The key strategy for

accomplishing software product line development is still component containment [6]. To make the process of

retrieving components easier, a significant amount of data needs to be collected, stored, and examined.

Maurizio has created a method for creating a software catalogue automatically that incorporates tools for

information retrieval and preservation [7]. There are two primary categories of software reuse: process and

product reuse. Product reuse refers to the process of reusing a software component by assembling and

integrating components to create a new component. The process of reusing outdated components that are

acquired from a repository is referred to as process reuse. These parts may be used again, either exactly as

they are now or with minor adjustments. Versioning these components can lead to the archiving of the

modified software component. Based on the particular domain needs, these components can subsequently be

categorised and chosen [8].

If multiple products use the component repository, that is good. This implies that several jobs should

be handled simultaneously by the component system. Purchasing parts that are necessary for the development

process is a prerequisite for initiating new initiatives. The project ideas should be reviewed by a committee

consisting of seasoned designers and a department representative from the component department; this will

form a committee for software components. It is necessary to evaluate the necessity of developing the

recommended components. On the day that the decision to proceed with component development is made,

the component construction phase starts. When the component is prepared, it is changed to the version state

depicted in Figure 1 and added to the repository. Analysing the software component group's worth should be

done when the component is in use. Which portion is utilised the most frequently? Which products see

absolutely no use at all? To what extent do the components provide benefits? This work contributes to the

advancement of the component system.

Figure 1. Component management organisation

This study's collection of interface measurements has demonstrated that measuring component

interfaces can provide more accurate and relevant data for component reusability research. Metrics are

significantly more effective at delivering a lot of valuable information through interfaces than non-

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 1, October 2024: 274-281

276

automatable techniques. These metrics provide a deeper insight into the resources associated with component

interfaces. Completing a reusability research on the components that were assessed was the task for the

metrics lecture, which required in-depth understanding of these components. The application of reusability

analysis to components is the main emphasis of this investigation, as metrics practitioners still find it difficult

to understand. There is nothing in the user's text that has to be redone [9]. Al Omara et al. [10] via examining

Stack Overflow, revealed insights about how engineers discuss software reuse. Component identification has

been defined as an NP-Complete job by Cai et al. [11]. Numerous studies have frequently examined a matrix

study, mostly depending on graph-based methods [12], clustering analyses [13]-[15], evolutionary techniques

[16]-[18] for component identification, and [19], [20] for software component evaluation that only takes

coupling and cohesive characteristics into account.

Architecture is shown from programme execution in [21]-[23] by defining a set of components;

however, the interactions between classes are not mentioned. In an effort to compile the key reusability

factors for component-based systems. In order to construct a modern software system, Aggarwal and Kumar

[24] were unable to identify the software that was essentially reusable. Following a careful analysis of the

literature, it was discovered that certain approaches to component design did not use a preplanned form,

while other techniques used a corresponding plan of component types to structure a component. This

represents a study gap in the earlier studies. As stated in [25], [26] when assessing and evaluating the

reusability of the components, the interaction and invocation of the components are not taken into account.

Presenting a strategy to component identification that considers component interaction through component

reusability analysis and assessment is urgently needed to bridge this research gap.

3. OVERVIEW OF DOMAIN ENGINEERING

Domain engineering (DE) is a crucial procedure that generates and efficiently manages reusable

components to guarantee that the architectural design sufficiently satisfies the particular requirements of the

assigned domain [27]. A group of application systems with comparable software needs is referred to as a

"domain" when it comes to the functional areas they cover [28]. The DE technique is depicted in Figure 2.

Domain analysis, domain design, and domain implementation are the three keystones of DE. Domain

analysis is carried out using the DARE-COTS tool [29]. For a collection of systems to have the generic

variable attributes, there needs to be a relevant domain in the pre-phase.

Figure 2. Domain engineering process

4. DOMAIN SPECIFIC COMPONENT FRAMEWORKS

The development of domain specific component frameworks (DCSF) is becoming increasingly

necessary in light of the notable advancements in software system development across multiple disciplines.

Agile principles are included into the development procedures of several software development strategies.

Pattern recognition has shown the development of domain specific component frameworks. In order to

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A framework for reusable domain specific software component … (N Md Jubair Basha)

277

provide a thorough framework, Loiret et al. [30] conducted a pattern analysis and presented the idea of

domain components in their study. By looking at the domain specific services, this framework provides a

uniform method for defining the semantics of domain components.

5. A DEMAND-BASED EXTRACTION METHODOLOGY FOR REUSABLE DOMAIN-

SPECIFIC SOFTWARE COMPONENTS

Because of the benefits of reuse-driven techniques, software systems are not created from scratch.

The reuse-driven approach helps to reduce testing costs to some level while also allowing for product

delivery on schedule and under budget. The organisation consequently becomes increasingly productive. The

method for reusing the parts is as follows:

- Step 1: determine the functional specifications (increments).

- Step 2: search the component repository

- Step 3: the trade-off benefits may be evaluated at the conclusion of the reuse-driven cycle, which not only

saves money and time but also yields a high-quality output.

Reusing components that have comparable functionality can help produce high-quality products

faster and on a less budget. A component is saved in the component repository along with the updated

version number, effort, and time required. A component with partial functionality can be used to modify the

source component. The component repository grows as a result of contributions of updated or new

components. The component extraction technique is applied if no component is able to provide the desired

functionality.

Figure 3 presents how to identify functional requirements and mine components from the repository.

Developing a new component or modifying the existing components requires certain effort. The following

metrics are used to maintain and evaluate the optimization of effort in reusing a component. Assuming that

there are n modules and m concerns (functional requirements), the reusability information can be obtained

using the following matrix (Re-usability matrix) RMF.

CiMj = 1 (if the concern Ci is implemented in Module Mj)

 = 0 (otherwise)

Similarly, non-functional requirements (RMN) needs could also have a reusability matrix.

Figure 3. Activity diagram for extraction of reusable domain specific components

As new components are created or old ones are altered, the concerns will be uploaded to the

repository. When a new system needs to be put into place, it can be broken down into modules, and a

reusability matrix can be created once the issues that can be reused are determined. This also applies to the

altered parts. Table 1 lists the reusability matrix, which incorporates the invocation of different components.

Numerous issues have been detected with nearly 15 components connected to the nine modules. The

Identify functional requirements

Mine component repository

Need for Modification?

Related component exist?

Yes
Realize use case

No

Modify component

Reuse component

yes
No

Versioning

updation of repository

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 1, October 2024: 274-281

278

corresponding method or modules will be invoked whenever there is an issue with linked domain-specific

components, as seen in Figure 4.

Table 1. Reusability matrix (RMN)
 M1 M2 M3 M4 M5 M6 M7 M8 M9

C1 1 1 0 0 0 1 1 1 1

C2 0 0 1 1 1 0 0 0 0
C3 1 1 0 0 0 1 1 1 1

C4 1 1 1 1 0 0 0 1 1

C5 0 0 1 0 1 0 1 1 1
C6 1 1 1 1 1 1 1 0 0

C7 1 1 1 1 0 0 0 0 1

C8 1 1 1 1 1 1 0 0 0
C9 0 0 0 1 1 0 1 1 1

C10 1 1 1 1 1 1 1 0 0

C11 0 0 0 1 1 0 1 1 1
C12 1 1 1 0 0 0 1 1 1

C13 1 1 1 1 1 1 1 1 1

C14 0 0 0 0 0 0 0 1 1
C15 1 1 1 1 1 1 0 0 0

Figure 4. Components interaction and invocation extraction

According to the requirements, the developers can easily recognize the common behavior of the

components using the feature points (FP). In Figure 5, FP1 and FP2 are the feature points identified in the C1

'configured reusable component in the façade which is in new versions. FP3 is the feature point identified in

the C2 'configured reusable component in the façade which is in new versions. FP1, FP2 and FP3 are

identified using the versioning of various components. The feature points were identified as a versioning of

the features with their behavioral aspects of the components. It was found that FP1, FP2 and FP3 show at

least 2 behavioral characteristics of the selected components. This is achieved through the lack of method

cohesion (LCOM). Thus, feature points help identify the variations of configured reusable components in the

features. Finally, Figure 6 explores how multi-levels of domain-specific software components required for

various products.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A framework for reusable domain specific software component … (N Md Jubair Basha)

279

Figure 5. Domain specific reusable software components extraction

Figure 6. Multi-levels of domain specific software components required for various products

6. CONCLUSION

Organizations benefit greatly from component-based systems built with demand based reusable

domain specific software components. The most difficult aspect of reuse is selecting the appropriate reusable

from a vast array of options and adapting reusability to current requirements. Different techniques and design

flaws in reusable domain-specific components have been examined in earlier work. Until date, it appears that

there has been no widely acknowledged standard for the design of demand based reusable domain-specific

software components. The proposed methodology is used to develop configurable reusable components.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 1, October 2024: 274-281

280

As mentioned in the preceding sections, the suggested strategy is realized and executed utilizing several

domain-specific components and implemented using various domain-specific applications. The degree of

reusability of domain-specific components is evaluated and compared to several ways, with the suggested

framework being found to be superior to the others and extracted the demand-based domain-specific

components. The suggested framework is well-suited, may be used in the software business, and can improve

outcomes when extracting demand based reusable domain-specific software components. The reuse design

guidelines for component quality characteristics can be applied in the future as part of the ongoing effort.

REFERENCES
[1] S. Mahmood, R. Lai and Y. S. Kim, “Survey of component-based software development,” IET Software, vol. 1, no. 2, 2007,

doi: 10.1049/iet-sen:20060045.

[2] H. K. Kim and Y. K. Chung, “Transforming a legacy system into components,” Springer-Verlag Berlin Heidelberg, 2006,
doi: 10.5815/ijitcs.2015.09.07.

[3] W. B. Frakes and K. Kang, “Software reuse research: status and future," in IEEE Transactions on Software Engineering, vol. 31,

no. 7, pp. 529-536, July 2005, doi: 10.1109/TSE.2005.85.
[4] X. Wang and L. Wang, “Software reuse and distributed object technology,” 2011 Fourth International Joint Conference on

Computational Sciences and Optimization, Kunming and Lijiang City, China, 2011, pp. 804-807, doi: 10.1109/CSO.2011.243.

[5] J. Sametinger, “Software engineering with reusable components,” Springer-Verlag, ISBN 3-540-62695-6, 1997,
doi: 10.1007/978-3-662-03345-6

[6] J. He, R. Chen and W. Gu, “A new method for component reuse,” 2009 2nd IEEE International Conference on Computer Science
and Information Technology, Beijing, 2009, pp. 304-307, doi: 10.1109/ICCSIT.2009.5234941.

[7] M. Pighin, “A new methodology for component reuse and maintenance,” Proceedings Fifth European Conference on Software

Maintenance and Reengineering, Lisbon, Portugal, 2001, pp. 196-199, doi: 10.1109/CSMR.2001.914987.
[8] Y. Liu and A. Yang, “Research and application of software-reuse,” Eighth ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007), Qingdao, China, 2007, pp.

588-593, doi: 10.1109/SNPD.2007.436.
[9] M. A. S. Boxall and S. Araban, “Interface metrics for reusability analysis of components,” 2004 Australian Software Engineering

Conference. Proceedings., Melbourne, VIC, Australia, 2004, pp. 40-51, doi: 10.1109/ASWEC.2004.1290456.

[10] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, and A. Ouni, “How is software reuse discussed in stack overflow?,” in
The Proceedings of the 2023 Conference on Systems Engineering Research. CSER 2023, 2024, pp. 357–372, doi: 10.1007/978-3-

031-49179-5_24.

[11] Z.-G. Cai, X.-H. Yang, X.-Y. Wang and A. J. Kavs, “A fuzzy formal concept analysis-based approach for business component
identification,” Journal of Zhejiang University Science C, vol. 12 no. 9, pp, 707-720, 2011, doi: .10.1631/jzus.C1000337.

[12] M. A. Khana and S. Mahmood, “A graph based requirements clustering approach for component selection,” Advances in

Engineering Software, vol. 54, pp. 1-16, 2012, doi: 10.1016/j.advengsoft.2012.08.002.
[13] S. M. H. Hasheminejad and S. Jalili, “CCIC: clustering analysis classes to identify software components,” Information and

Software Technology, vol. 57, pp. 329-351, 2015, doi: 10.1016/j.infsof.2014.05.013.

[14] J. F. Cui and H. S. Chae, “Applying agglomerative hierarchical clustering algorithms to component identification for legacy
systems,” Information and Software Technology, vol. 53, no. 6, 2011, doi: 10.1016/j.infsof.2011.01.006.

[15] G. Shahmohammadi, S. Jalili, and S. M. H. Hasheminejad, “Identification of system software components using clustering

approach,” The Journal of Object Technology, vol. 9, no. 6, pp. 77-98. doi: 10.5381/jot.2010.9.6.a4.
[16] S. M. H. Hasheminejad and S. Jalili, “SCI-GA: software component identification using genetic algorithm,” The Journal of

Object Technology, vol. 12, no. 2, 2013, doi: 10.5381/jot.2013.12.2.a3.

[17] S. M. H. Hasheminejad and S. Jalili, “An evolutionary approach to identify logical components,” Journal of Systems and
Software, vol. 96, pp. 24-50, 2014, doi: 10.1016/j.jss.2014.05.033.

[18] N. Padhy, R. P. Singh, and S. C. Satapathy, “Software reusability metrics estimation: algorithms, models and optimization

techniques,” Computers & Electrical Engineering, vol. 69, pp. 653-668, 2018, doi: 10.1016/j.compeleceng.2017.11.022.
[19] G. Priyalakshmi and R. Latha, “Evaluation of software reusability based on coupling and cohesion,” International Journal of

Software Engineering and Knowledge Engineering, vol. 28, no. 10, pp. 1455-1485, 2018, doi: 10.1142/S0218194018500420.

[20] K. Kaur and G. Kaur, “Component reusability of a software system based on cohesion and coupling,” Indian Journal of Science
and Technology, vol. 9, no. 27, pp. 1-6, 2016, doi: 10.17485/ijst/2016/v9i27/94727.

[21] C.Liu, B. F. van Dongen, N. Assy and W. M.P. van der Aalst, “A general framework to identify software components from

execution data,” ENASE, 2019, doi: 10.5220/0007655902340241.
[22] N. M. J. Basha and S. A. Moiz, “A methodology to reconfigure victim components using modularity,” 2012 CSI Sixth

International Conference on Software Engineering (CONSEG), Indore, India, 2012, pp. 1-6, doi:

10.1109/CONSEG.2012.6349523.
[23] N. Md. J. Basha and S. Choudhury, “Assessment of reusability levels on domain-specific components using heuristic function,"

Innovations in Computer Science and Engineering: Proceedings of the Third ICICSE, 2015, pp. 153-161, doi: 10.1007/978-981-

10-0419-3_19.
[24] J. Aggarwal and M. Kumar, “Software metrics for reusability of component based software system: a review,” The International

Arab Journal of Information Technology, vol 18, no. 3, 2021, doi: 10.34028/iajit/18/3/.

[25] N. Md. J. Basha, G. Ganapathy, and M. Moulana, “A preliminary exploration on component based software engineering,” IJCSNS
International Journal of Computer Science and Network Security, vol. 22, no. 9, 2022, doi: 10.22937/IJCSNS.2022.22.9.22.

[26] N. Md J. Basha, G. Ganapathy and M. Moulana, “CREA-components reusability evaluation and assessment: an algorithmic

perspective,” International Conference on Advanced Informatics for Computing Research, 2022, pp. 132-142, doi: 10.1007/978-
3-031-09469-9_12.

[27] N. Md. J. Basha, S. A. Moiz, and A. A. M. Qyser, “Performance analysis of hr portal domain components extraction,”

International Journal of Computer Science & Information Technologies (IJCSIT), vol. 2, no. 5, pp. 2326-2331, 2011, doi:
10.48550/arXiv.1203.1328.

http://dx.doi.org/10.1049/iet-sen:20060045
https://doi.org/10.5815/ijitcs.2015.09.07

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A framework for reusable domain specific software component … (N Md Jubair Basha)

281

[28] Y. Meng, X. Wu and Y. Ding, “Research and design on product quality tracking system based on domain engineering,” 2010
Third International Symposium on Information Processing, Qingdao, China, 2010, pp. 572-575, doi: 10.1109/ISIP.2010.24.

[29] W. Frakes, R. Prieto-Diaz and C. Fox, “DARE-COTS. A domain analysis support tool,” Proceedings 17th International

Conference of the Chilean Computer Science Society, Valparaiso, Chile, 1997, pp. 73-77, doi: 10.1109/SCCC.1997.636929.
[30] F. Loiret, A. Plšek, P. Merle, L. Seinturier and M. Malohlava, “Constructing domain-specific component frameworks through

architecture refinement,” 2009 35th Euromicro Conference on Software Engineering and Advanced Applications, Patras, Greece,

2009, pp. 375-382, doi: 10.1109/SEAA.2009.24.

BIOGRAPHIES OF AUTHORS

N Md Jubair Basha received his B.Tech. (IT) and M. Tech (IT) from JNTUH,

Hyderabad. Currently he is the part-time research scholar at Bharathidasan University. He is

presently working as Associate Professor in Computer Science & Engineering Department

Kallam Haranadhareddy Institute of Technology, Guntur, AP, India. He has 18 years of

teaching experience. He had authored many research papers in various national/international

conferences and international journals. His research interests include software reusability,

component-based software development, empirical software engineering. He had also

published 2 patents. He received many Faculty Excellence Awards. He is a senior member of

ACM and Life member of Computer Society of India. He can be contacted at email:

jubairbasha@gmail.com.

Prof. Gopinath Ganapathy Ph.D. has 35 years of total experience in academia,

industry, research, and consultancy services. He is currently the Registrar of Bharathidasan

University, India. He has around 8 years international experience in the U.S and U.K. He

served as a consultant for a few fortune500 companies that include IBM, Lucent-Bell Labs,

and Merrill LynchToyota. He specialized in designing and architecting multi-tier and EAI

technologies. He is a Professional Member in IEEE, ACM, and IAENG. He is a Life Member

in Indian Science Congress, Indian Society for Technical Education, and Computer Society of

India. He was earlier Chair, School of Computer Science and Engineering, the Director,

Technology Park, Bharathidasan University. He can be contacted at email:

gganapathy@gmail.com.

Dr Moulana Mohammed received his Ph.D. in Computer Science from

Bharathiar University in 2018 and M. Tech in CSE from JNTUK in 2009. He is a Professor in

Department of Computer Science and Engineering, K L University. He has 16 years of

teaching years of teaching experience. His research areas include data mining, data science,

bioinformatics, IoT, and big data analytics. He can be contacted at email:

moulanaphd@gmail.com.

https://orcid.org/0000-0001-5706-4492
https://scholar.google.com/citations?user=VxIYaDEAAAAJ&hl=en&authuser=1
https://www.scopus.com/authid/detail.uri?authorId=55516960100
https://scholar.google.com/citations?user=CQjmT0oAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=25646016100
https://orcid.org/0000-0001-5039-8836
https://www.scopus.com/authid/detail.uri?authorId=57208837516

