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 Coronavirus disease 19 (COVID-19) is an infectious disease whose 

diagnosis is carried out using antigen-antibody tests and reverse transcription 

polymerase chain reaction (RT-PCR). Apart from these two methods, 

several alternative early detection methods using machine learning have 

been developed. However, it still has limitations in accessibility, is invasive, 

and its implementation involves many parties, which could potentially even 

increase the risk of spreading COVID-19. Therefore, this research aims to 

develop an alternative early detection method that is non-invasive by 

utilizing the LightGBM algorithm to detect COVID-19 based on the results 

of feature extraction from cough sounds and accompanying symptoms that 

can be identified independently. This research uses cough sound samples 

and symptom data from the Coswara dataset, and cough sound’s features 

were extracted using the log mel-spectrogram, mel frequency cepstrum 

coefficient (MFCC), chroma, zero crossing rate (ZCR), and root mean 

square (RMS) methods. Next, the cough sound features are combined with 

symptom data to train the LightGBM. The model trained using cough sound 

features and patient symptoms obtained the best performance with 95.61% 

accuracy, 93.33% area under curve (AUC), 88.74% sensitivity, 97.91% 

specificity, 93.17% positive prediction value (PPV), and 96.33% negative 

prediction value (NPV). It can be concluded that the trained model has 

excellent classification capabilities based on the AUC values obtained. 
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1. INTRODUCTION 

Coronavirus disease 19 (COVID-19) is a contagious disease caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) and was first detected in the city of Wuhan, China, at the end of 

2019. The symptoms vary, ranging from respiratory infection-like symptoms such as fever, cough, sore 

throat, stuffy nose, headache, muscle pain, and malaise to severe cases that can lead to pneumonia and death. 

Some symptoms can also occur but rarely, such as diarrhea and anosmia [1]. Clinically diagnosis of  

COVID-19 uses antigen-antibody and reverse transcription polymerase chain reaction (RT-PCR), with  

RT-PCR as the gold standard [1]. Two different methods have lately been put forth in the literature for the 

diagnosis of COVID-19 infection using computer temography (CT) or X-ray image analysis [2]. 

Unfortunately, this alternative method still has problems in terms of accessibility and has the potential to 

increase the risk of spreading COVID-19 because implementation involves many parties. 

https://creativecommons.org/licenses/by-sa/4.0/
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Several studies have also tried to use the sound of coughing to detect COVID-19. COVID-19 has 

symptoms of a dry cough with characteristics of higher frequency and shorter duration compared to coughs 

from other respiratory diseases [3]. The cough sound of COVID-19 also has different latent features and the 

risk of latent feature overlap with the feature of cough sound of other diseases is low. This difference occurs 

because COVID-19 infection affects the respiratory system uniquely than the other [2]. 

Various studies have explored different methods to extract features from cough sounds and patient 

symptoms for COVID-19 detection. In the work Chowdhury et al. [4], extra-trees trained on combined 

datasets achieved an area under curve (AUC) of 0.79, while HGBoost on the Coswara dataset reached an 

AUC of 0.66. Another study combined datasets from multiple sources, achieving an accuracy of 0.921 and an 

AUC of 0.973 with a VGGNet model. Unfortunately, in that study when using only the Coswara dataset, the 

model produced performance, for accuracy parameters of 0.712 and AUC of 0.781 [5]. This performance is 

still relatively low, if referring to the AUC value then the model is only included in the fair category. 

Some studies have also explored a combination of cough sound features with symptom and 

respiratory condition data. The work Rahouma et al. [6] utilized patient voices and symptom data from the 

Coswara dataset. The neural network trained with cough sound alone achieved an average accuracy of 84% 

and an AUC of 82%. Using symptom data alone resulted in an average accuracy of 73% and an AUC of 

78%. Combining both features yielded an average accuracy of 91% and an AUC of 88%. One study on the 

Coughvid dataset using a multi-branch deep learning network (MBDLN) achieved an AUC of 91% [7]. 

Lastly, a hierarchical multi-modal transformer (HMT) trained on symptom data and cough sound features from 

the Coughvid and Coswara datasets, achieved an average accuracy of 81.32% and an AUC of 82.06% [8]. 

Previous research that combined cough sound and symptom features was able to provide better 

performance, compared to using only cough sound features. Unfortunately, previous studies used symptoms 

generated from expert examination. This was shown in a study by [6], which used pneumonia and asthma 

symptom data, where these symptoms require expert diagnosis [9]. The same thing was also done in research 

conducted by [7], [8] using respiratory condition data from expert diagnosis [10]. Referring to a number of 

studies that have been conducted, it shows that the COVID-19 examination cannot be done independently. 

This is because it still requires the help of a doctor, namely when identifying symptoms, such as pneumonia, 

asthma, and respiratory conditions. If only relying on the cough sound feature, the model cannot produce 

optimal performance. 

Referring to a number of previous studies, this study proposes a COVID-19 detection model that can 

be carried out independently, using the LightGBM classification algorithm. This model uses cough sound 

features and symptoms. The symptoms used are symptoms that can be recognized independently, so they do 

not require examination by a doctor. The model was developed using the Coswara dataset, with the 

symptoms used being difficulty breathing, runny nose, cough, fever, anosmia, muscle pain, sore throat, 

diarrhea, and fatigue. The performance of the proposed model is measured using the performance parameters of 

accuracy, sensitivity, specificity, AUC, positive prediction value (PPV), and negative prediction value (NPV). 

 

 

2. METHOD 

The work stages in this study start from the preparation of datasets and segmentation of cough 

sounds, data preprocessing, training three machine learning models trained with different feature subsets, and 

end with evaluating the performance of the three models that have been trained. The stages of the research 

process can be seen in Figure 1. 

 

2.1.  Preparing the dataset and cough segmentation 

The dataset used comes from the Coswara dataset. It contains recordings of cough sounds, 

breathing, and pronunciation of some letters or phrases from volunteers, along with metadata containing 

information about clinical symptoms and health history [11]. Even though the volunteer submitted various 

types of sounds, this research only used cough sound because of its consistency across individuals, it’s not 

affected by accent and the sharp sound is easily differentiated from other sounds [4]. 

To overcome the imbalance in the amount of data in the Coswara dataset, only a few relevant data 

labels were used and combined into two main classes, namely "negative" (0) class which includes data with 

the label "healthy" and the "positive" class (1) which includes data labeled as "positive_mild" and 

"positive_moderate". Each volunteer submitted two types of cough sound samples, "heavy_cough" and 

"shallow_cough", but only the heavy cough sounds were used in this study to ensure consistency [4]. The 

selected symptoms include difficulty breathing, cold, cough, fever, anosmia, muscle pain, sore throat, 

diarrhea, and fatigue. The selection of these 9 symptoms was made by excluding asthma, diabetes, ischemic 

heart disease, chronic obstructive pulmonary disease, and pneumonia, due to complex diagnostic methods 

involving various medical assessments [9], [12]–[15]. 
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Cough sound segmentation was performed on all samples to create a new dataset consisting of a 

single cough sound. Segmentation will enhance consistency, ensure complete cough sounds, focus on 

relevant features, and increase training samples by using the hysteresis comparator method proposed by [10]. 

The result is a new dataset consisting of cough sound segment audio files, metadata with sample IDs, file 

locations, symptom data, and labels. 

 

 

 
 

Figure 1. Stages of research 

 

 

2.2.  Preprocessing 

At this stage, an array that will be used for the model input is formed. It will include cough sound 

features obtained through audio feature extraction using five methods: Log mel-spectrogram, mel frequency 

cepstrum coefficient (MFCC), chroma short time fourier transform (STFT), zero crossing rate (ZCR), and 

root mean square (RMS). Log mel-spectrogram represents the energy of the audio signal in the frequency and 

time domain. This is done by transforming the signal into the frequency domain using STFT, then converting 

the frequency into the Mel scale that is more suitable for human hearing by changing the frequency value f 

using (1). 

 

𝑀𝑒𝑙(𝑓)  =  2595  ×   𝑙𝑜𝑔10 (1  +  
𝑓

700
) (1) 

 

Finally, apply logarithm scale of the energy to consider the logarithmic perception of hearing. The 

result is a matrix of energy spectrum in the mel scale for each time frame [16]. MFCC is intended to replicate 

human hearing characteristics. This involves transforming the signal into the frequency domain using STFT, 

converting the frequency into the mel scale using (1), taking the logarithm of the sound intensity, and applying 

the discrete cosine transform to generate cepstral coefficients, yielding a cepstral coefficient matrix [17]. 

Chroma feature divides the audio signal into chroma and pitch, mapping the frequency from the 

STFT into the chroma scale, and producing a vector of 12 chroma values representing 12 basic tones [18]. 

RMS is a simple feature that provides information about the strength or intensity of sound over a period of 

time [19]. RMS can be obtained using (2). 

 

𝑅𝑀𝑆 =  √
1

𝑛
∑ |𝑥(𝑛)|2

𝑛  (2) 

 

ZCR gives a rough estimate of the dominant frequency in the audio signal by counting how many 

times the sound amplitude crosses zero within a specific time [18]. The extraction results for each feature are 

processed by calculating the mean value for all frames for each feature coefficient or feature type. Next, the 

selected patient symptom data for each sample is converted into binary representation and added to the dataset. 
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2.3.  Training 

The next stage is to train the machine learning model using the stratified k-fold cross-validation 

(SKCV) method. SKCV will divide the dataset into k subsets called folds which size and data distribution are 

the same. Fold division is based on ID to avoid duplicate cough samples in training and testing subsets with 

the same ID. In every training process, one-fold will be selected as validation data and the rest will be used as 

data to train the model. Then the model performance is calculated from validation data [20]. 

Three models are trained with different feature subsets: cough sound (model 1), symptom data 

(model 2), and combination of both features (model 3). In each fold iteration, the training data will be 

oversampled first using support vector machine-synthetic minority oversampling technique (SVM-SMOTE) 

to handle class imbalance which combines SVM and SMOTE to create synthetic samples [21]. The 

oversampled data is then used to train LightGBM. LightGBM is a gradient boosting decision tree (GBDT) 

algorithm that implements gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB). 

GOSS optimizes training efficiency by focusing on training models on data with large gradients and 

sampling data with small gradients. EFB will reduce feature complexity by combining mutually exclusive 

features [22]. Initially, LightGBM applies EFB to train data. Model is initialized with initial predictions 

minimizing loss. During GBDT implementation, LightGBM uses GOSS to resample the dataset. Information 

gain is calculated for features in the resampled dataset to build a new decision tree. A new decision tree is 

built on resampled data, updating the model every iteration. The ensemble of decision trees will form the 

final model [23]. 

 

2.4.  Evaluation 

Trained model performance is evaluated by averaging accuracy metrics like AUC, sensitivity, 

specificity, PPV, and NPV across all folds. The confusion matrix results from each fold are combined to 

assess overall performance. The confusion matrix summarizes the model performance by comparing the 

predicted labels with the actual labels from the dataset. It consists of four parts: true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN). This method will be used to calculate accuracy, 

sensitivity, specificity, PPV, and NPV in (3) to (7) [24]. The representation of the confusion matrix can be 

seen in Table 1. Accuracy measures how well the model can correctly predict results from all data. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
 (3) 

 

AUC shows the model’s ability to differentiate between two different classes correctly. AUC 

measures the area under the receiver operating characteristic (ROC) curve, where a value of 0 indicates poor 

performance, a value of 1 indicates perfect performance and a value of 0.5 indicates random performance. 

Sensitivity, also known as recall, functions to measure how well the model can correctly identify positive cases. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

Specificity will measure how well the model can identify negative cases. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 

 

PPV also known as precision measures how well the model predicts the correct positive cases from all 

positive prediction results. 

 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

NPVmeasures how well the model is in predicting the correct negative case from all negative predicted results. 

 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (7) 

 

 

Table 1. Confusion matrix 
True class Predicted class 

Negative Positive 

Negative TN FP 

Positive FN TP 
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After performance evaluation, feature importance analysis is conducted using split and gain to 

assess the contribution of each feature to predictions. Gain indicates accuracy improvement, while split 

indicates feature usage in decision tree nodes [25]. This analysis is applied to model 3, so we can understand 

the relative contribution of the two types of features to the model’s prediction performance. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Preparing the dataset and cough segmentation 

Table 2 contains the distribution of samples for each class after forming the label “healthy” as the 

negative class and the combination of samples labeled “positive_mild” and “positive_moderate” as data for 

the positive class. Then segmentation is performed on each sample using the hysteresis comparator method. 

Parameters, such as min_cough and cough_padding, were left with a default value of 0.2 as proposed in 

previous research [10]. Sometimes, not all samples were detected to have cough segments, either because 

there were none or the segmentation algorithm failed. A comparison of successful and failed cough 

segmentation results can be seen in Figure 2. 

The possible cause is that the RMS value is too high in some samples which causes a weak cough 

sound not to be detected. Another influencing factor is the choice of parameter values, such as 

min_cough_len, where cough sounds that are too short may not be detected. After all recording samples were 

segmented, we obtained a dataset containing 4,411 segments originating from 1,579 samples with details as 

in Table 3. 

 

 

Table 2. Sample distribution after label merging 
Label Gender Number of samples Total sample 

0 (negative) Male 1,068 1,432  
Female 364 

1 (positive) Male 362 591 

 Female 229 

 

 

 
 

Figure 2. Example of cough sound segmentation results 

 

 

Table 3. Distribution of cough sound segmentation results 
Label Gender Number of segments Total segments 

0 (negative) Male 2,658 3,336  
Female 678 

1 (positive) Male 710 1,075 

 Female 365 

 

 

3.2.  Preprocessing 

A library called librosa is used to extract features from cough segments. Parameters like n_fft, 

hop_length, and window are set to 2,048, 512, and ‘hann’ respectively for balanced frequency-time  

resolution [26]. For each feature extraction method, n_mfcc in MFCC is set to 39 based on [4], and 
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parameters in log mel-spectrogram and chroma STFT are left with default values. While RMS and ZCR do 

not have specific parameters. 

After the feature extraction process is complete, we calculate the average of each feature value 

across all frames. Thus, the results of the MFCC method have 39 features, log mel-spectrogram has 128 

features, chroma STFT has 12 features, ZCR has 1 feature, RMS has 1 feature, and the total features of each 

cough sound are 181. Finally, feature extraction results from the cough sound are combined with the 

symptom data which has been converted into binary form, so that each segment has features with dimensions 

of 190. The final result is an array with dimensions of 192×4411 after adding the ID and label of the original 

sample for each segment. 

 

3.3.  Training 

Three LightGBM models were trained on different feature subsets and evaluated for their 

performance using the stratified k-fold cross-validation method by dividing all sample IDs into five folds. 

Thus, each fold contains cough segments sourced from around 315 samples. In each fold iteration, the 

training data is oversampled using SVM-SMOTE from a library called imbalanced-learn [27]. We set 

k_neighbors parameter value in SVM-SMOTE to 1 because experiments with k-neighbor’s values 1–5 show 

that 1 yield better performance, so synthetic samples are generated based on one nearest neighbor.  

Then, LightGBM models were trained using oversampled training data with hyperparameter settings from 

research results by [28] as in Table 4. The training process uses five folds so it will provide performance 

metrics for each model five times. The average model performance value is calculated, and the confusion 

matrix is summated. 

 

 

Table 4. Distribution of cough sound segmentation results 
Hyperparameter Definition Value 

learning_rate How much the model weights change each time the model is updated 0.03 
colsample_bytree Number of feature subsets at each iteration 0.28 

subsample Number of data subsets in each iteration 0.68 

reg_alpha L1 regularization 1 
reg_lambda L2 regularization 2 

num_leaves Maximum number of leaves in one tree 500 

num_boost_round Maximum number of boosting iterations 10,000 
early_stopping_round The maximum number of iterations to stop training if there is no 

increase in the performance metric value 

100 

 

 

3.4.  Evaluation 

After the training process is finished, all the performance metric values as well as the confusion 

matrix combined from five training iterations are obtained from three models trained with different feature 

subsets: cough sound model (model 1), symptom model (model 2), and combination model (model 3). The 

summed confusion matrix from all folds for all models can be seen in Figure 3 and all the performance 

metric values for all models can be seen in Table 5. Based on the confusion matrix of all models, we can see 

that model 1 which is trained based on cough sound feature extraction has a high true negative rate but also 

has high FN prediction. Model 2 which is trained with symptom data showed lower FN and higher TP rates. 

Model 3, which is combined cough sound features and symptom data showed the best performance, with the 

lowest FN rate and highest TP rate. 

 

 

 
 

Figure 3. Summary of the confusion matrix for all models 
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From average performance of the three models in Table 6, can be drawn to the same conclusion as 

the analysis based on the confusion matrix that models trained with patient symptom data tend to perform 

better than models trained using cough sound features. Patient symptoms are categorical and directly indicate 

COVID-19 presence, while cough sound features have a wider range, making it harder for the model to find 

consistent patterns. However, combining both features improves the model’s predictive ability, with 

improvements in several performance metrics. The model’s accuracy, AUC, sensitivity, and specificity 

increased to 95.61%, 93.33%, 88.74%, and 97.91%, respectively. This increased sensitivity and specificity 

have positive implications for detecting COVID-19 cases and reducing prediction errors. The model also 

showed a higher prediction probability (PPV) value of 93.17% and NPV of 96.33%, indicating better 

prediction accuracy. 

 

 

Table 5. Performance metric values for all models 
 Fold Accuracy AUC Sensitivity Specificity PPV NPV 

Model 1 1 0.898 0.833 0.711 0.954 0.822 0.917 
2 0.913 0.836 0.683 0.988 0.949 0.905 

3 0.888 0.831 0.724 0.937 0.779 0.918 

4 0.881 0.813 0.668 0.958 0.853 0.888 
5 0.910 0.824 0.657 0.991 0.958 0.901 

Mean 0.898 0.827 0.689 0.966 0.872 0.906 

Model 2 1 0.945 0.917 0.860 0.973 0.911 0.955 
2 0.945 0.904 0.814 0.994 0.980 0.936 

3 0.936 0.907 0.858 0.957 0.840 0.962 

4 0.942 0.883 0.776 0.990 0.956 0.939 
5 0.911 0.887 0.832 0.942 0.843 0.937 

Mean 0.936 0.899 0.828 0.971 0.906 0.946 

Model 3 1 0.916 0.875 0.794 0.956 0.852 0.935 
2 0.976 0.951 0.907 0.996 0.983 0.975 

3 0.965 0.955 0.936 0.974 0.913 0.981 

4 0.971 0.959 0.936 0.982 0.940 0.981 
5 0.952 0.927 0.865 0.989 0.970 0.945 

Mean 0.956 0.933 0.887 0.979 0.937 0.963 

 

 

Table 6. Comparison with related research 
Research Dataset Voice data Symptom data Model AUC (%) 

[4] Coswara Cough sound - HGBoost 66 

[5] Coswara Cough sound - Mini VGGNet 78,1 

[6] Coswara Patient's voice - Neural network 82 
Coswara - Pneumonia, asthma, difficulty breathing, diarrhea, 

fatigue, muscle aches, fever, cold, and sore throat 

78 

Coswara Patient's voice Pneumonia, asthma, difficulty breathing, diarrhea, 
fatigue, muscle aches, fever, cold, and sore throat 

88 

[7] Coughvid Cough sound Respiratory conditions and fever symptoms MBDLN 91 

[8] Coswara 
and 

Coughvid 

Cough sound Respiratory conditions, symptoms of fever, and 
muscle pain 

HMT 82 

Proposed Coswara Cough sound - LightGBM 82,7 

- Difficulty breathing, cold, cough, fever, anosmia, 

muscle aches, sore throat, diarrhea, and fatigue 

89,9 

Cough sound Difficulty breathing, cold, cough, fever, anosmia, 

muscle aches, sore throat, diarrhea, and fatigue 

93 

 

 

The feature importance graph analysis of the 5th iteration of model 3 training, as shown in Figure 4 

can provide complementary insights. The features ‘cough’, ‘fatigue’, ‘cold’, and ‘fever’ have the highest 

gain, indicating their effectiveness in increasing model accuracy. Audio features such as ‘zcr’ and ‘mfcc_7’ 

also have higher gain values, indicating their importance in training a model to detect COVID-19 in terms of 

cough sound characteristics. On the other hand, feature importance ranking based on split shows that features 

like ‘zcr’, ‘mfcc_12’, ‘mfcc_18’, and ‘cold’ have the greatest influence in making decisions in the  

COVID-19 detection model. The split value indicates how often the feature is used in data splitting during 

the training process. 

A comparison between feature importance based on gain and split shows similarities in features like 

'cold', which are important for dividing data and increasing model accuracy. However, there are differences 

in features, such as ‘zcr’, which has the largest role based on split but has a lower gain than other features.  
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As for the related research that has been listed and explained previously, two studies only use cough sounds, 

the work of [4] and [5]. Three studies combine cough sounds with symptom data, research by [6]–[8]. 

 

 

 
 

Figure 4. Feature importance analysis based on gain and split 

 

 

Research [4] and [5] used cough sounds in the Coswara dataset to extract features using various 

methods. Chowdury et al. [4] used 5 different feature extraction methods to train HGBoost model and 

achieved an AUC value of 66%. Kho et al. [5] used MFCC feature to train Mini VGGNet and an AUC value 

of 78.1%. Both models were defeated by model 1, which had an AUC value of 82.7%. Fakhry et al. [7] used 

the augmented Coughvid dataset to train a MBDLN using MFCC features and spectrograms from cough 

sounds with additional symptom data, including respiratory conditions and fever symptoms. The model 

consisted of two deep neural network branches for MFCC features, another for symptom features, and a 

convolutional neural network (CNN) with residual network (ResNet)-50 architecture for spectrograms. The 

model can achieve an AUC value of 91%. Tang et al. [8] developed a HMT consisting of three branches: two 

multilayer perceptrons (MLPs) for processing symptom data and the average value of each MFCC feature 

coefficient of cough sounds, and a nested hierarchical transformer branch for extracting spectrogram features. 

The HMT model achieved an AUC value of 82%. Those two models can be outperformed by model 3 and it 

offers independent symptom identification, unlike previous research [7] and [8] that relied on expert doctors 

diagnosing respiratory condition abnormalities from cough recordings. 

Meanwhile, Rahouma et al. [6] conducted a study using Coswara dataset to extract features from 

patient's voice, such as cough, breath, counting sounds, and English vowel pronunciation. They used 11 

methods and 9 symptoms data, including asthma and pneumonia which require expert medical diagnosis. The 

proposed method only uses cough sounds, extracting features using only 5 methods and adding 9 symptoms 

data without including asthma and pneumonia or other symptoms that require expert medical diagnosis. 

However, the combined model in [6] had an AUC value of 88% that can be outperformed by the performance 

of model 3. The model trained using various types of sounds had an AUC value almost the same as model 1, 

with an AUC value of 82%. The model trained with symptom data obtained an AUC value of 78% and can 

be outperformed by model 2 with an AUC value of 89.9%. The proposed model has good classification 

capabilities, with a high AUC value indicating better performance in differentiating between positive and 

negative classes. Additionally, the proposed method has added value by using symptom data that can be 

identified independently. 

 

 

4. CONCLUSION 

From the research that has been conducted, it can be concluded that machine learning models trained 

only with patient symptom data perform better than models trained only with cough sound features. 

However, combining cough sound features and patient symptoms can improve model performance compared 

to just using one type of feature. The model trained using cough sound features and patient symptoms 

achieved an accuracy of 95.61%, AUC of 93.33%, sensitivity of 88.74%, specificity of 97.91%, PPV of 

93.17%, and NPV of 96.33%. Feature importance analysis confirmed the importance of cough, fatigue, cold, 

and fever in improving the model’s accuracy. In addition, ZCR and MFCC are audio features that are often 

used to separate data during training. Overall, the proposed combined model was able to exceed the 
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performance of related studies based on the AUC metric value of 93%, and it demonstrated excellent 

classification capabilities. 

 

 

ACKNOWLEDGEMENTS 

This work is partially supported by Universitas Sebelas Maret for providing research funding 

through the Hibah Riset Group scheme as stipulated in contract No. 194.2/UN27.22/PT.01.03/2024. The 

authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have 

improved the presentation. 

 

 

REFERENCES 
[1] I. Salahshoori et al., “Overview of COVID-19 disease: virology, epidemiology, prevention diagnosis, treatment, and vaccines,” 

Biologics, vol. 1, no. 1, pp. 2–40, 2021, doi: 10.3390/biologics1010002. 
[2] A. Imran et al., “AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app,” Informatics in 

Medicine Unlocked, vol. 20, 2020, doi: 10.1016/j.imu.2020.100378. 

[3] Y. Bhanusree, B. S. Deeksha, V. Sohan, D. Ajay, and M. E. S. Ram, “A deep learning approach to predict to predict COVID-19 
through cough analysis using CNN-BiDirectional LSTM,” 2022, doi: 10.1109/ICONAT53423.2022.9726067. 

[4] N. K. Chowdhury, M. A. Kabir, M. M. Rahman, and S. M. S. Islam, “Machine learning for detecting COVID-19 from cough 

sounds: an ensemble-based MCDM method,” Computers in Biology and Medicine, vol. 145, 2022, doi: 
10.1016/j.compbiomed.2022.105405. 

[5] S. J. Kho et al., “Malaysian cough sound analysis and COVID-19 classification with deep learning,” Intelligence-Based Medicine, 
vol. 9, 2024, doi: 10.1016/j.ibmed.2023.100129. 

[6] K. Rahouma, S. Ramzy, and M. Aly, “Artificial intelligence against virus changes: a long term detector of COVID-19 using the 

clinical symptoms and respiratory sounds,” Journal of Advanced Engineering Trends, vol. 42, no. 2, pp. 289–299, 2023, doi: 
10.21608/jaet.2022.132552.1149. 

[7] A. Fakhry, X. Jiang, J. Xiao, G. Chaudhari, A. Han, and A. Khanzada, “Virufy: a multi-branch deep learning network for 

automated detection of COVID-19,” 2021. 
[8] S. Tang, X. Hu, L. Atlas, A. Khanzada, and M. Pilanci, “Hierarchical multi-modal transformer for automatic detection of  

COVID-19,” in ACM International Conference Proceeding Series, 2022, pp. 197–202, doi: 10.1145/3556384.3556414. 

[9] Y. Marushko, A. Abaturov, H. Beketova, V. Berezenko, T. Pochynok, and A. Churylina, “New views on the diagnosis and 
treatment of asthma in children,” Child’s Health, vol. 17, no. 2, pp. 107–113, 2022, doi: 10.22141/2224-0551.17.2.2022.1503. 

[10] L. Orlandic, T. Teijeiro, and D. Atienza, “The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough 

analysis algorithms,” Scientific Data, vol. 8, no. 1, 2021, doi: 10.1038/s41597-021-00937-4. 
[11] N. Sharma et al., “Coswara-A database of breathing, cough, and voice sounds for COVID-19 diagnosis,” in Proceedings of the 

Annual Conference of the International Speech Communication Association, INTERSPEECH, 2020, pp. 4811–4815, doi: 

10.21437/Interspeech.2020-2768. 
[12] T. N. M. Aris, A. A. B. U. Bakar, N. Mahiddin, and M. Zolkepli, “A fuzzy inference model for diagnosis of diabetes and level of 

care,” Journal of Theoretical and Applied Information Technology, vol. 101, no. 15, pp. 5962–5975, 2023. 

[13] B. M. Kogan, L. E. Kuz’mishin, and A. A. Lavrov, “Importance of ultrasonic diagnosis to medical expert evaluation of the work 
capacity of ischemic heart disease patients,” vol. 24, no. 8, pp. 38–41, 1984. 

[14] J. L. Mulshine, “One screening for ischemic heart disease, lung cancer, and chronic obstructive pulmonary disease: a systems 

biology bridge for tobacco and radiation exposure,” American Journal of Public Health, vol. 108, no. 10, pp. 1294–1295, 2018, 
doi: 10.2105/AJPH.2018.304655. 

[15] A. Fulzele, P. Patil, A. Thakre, A. Mahale, S. Shelke, and C. Engineering, “A mobile application for early diagnosis of 

pneumonia,” 2022. 
[16] A. A. Abdelhamid et al., “Robust speech emotion recognition using CNN+LSTM based on stochastic fractal search optimization 

algorithm,” IEEE Access, vol. 10, pp. 49265–49284, 2022, doi: 10.1109/ACCESS.2022.3172954. 

[17] N. Sengupta, M. Sahidullah, and G. Saha, “Lung sound classification using cepstral-based statistical features,” Computers in 
Biology and Medicine, vol. 75, pp. 118–129, 2016, doi: 10.1016/j.compbiomed.2016.05.013. 

[18] Z. Mushtaq and S. F. Su, “Efficient classification of environmental sounds through multiple features aggregation and data 

enhancement techniques for spectrogram images,” Symmetry, vol. 12, no. 11, pp. 1–34, 2020, doi: 10.3390/sym12111822. 
[19] T. A. Adesuyi, B. M. Kim, and J. Kim, “Snoring sound classification using 1D-CNN model based on multi-feature extraction,” 

International Journal of Fuzzy Logic and Intelligent Systems, vol. 22, no. 1, pp. 1–10, 2022, doi: 10.5391/IJFIS.2022.22.1.1. 

[20] S. Prusty, S. Patnaik, and S. K. Dash, “SKCV: stratified k-fold cross-validation on ML classifiers for predicting cervical cancer,” 
Frontiers in Nanotechnology, vol. 4, 2022, doi: 10.3389/fnano.2022.972421. 

[21] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Borderline over-sampling for imbalanced data classification,” International 

Journal of Knowledge Engineering and Soft Data Paradigms , vol. 3, no. 1, pp. 4–21, 2011, doi: 
10.1504/ijkesdp.2011.039875. 

[22] G. Ke et al., “LightGBM: a highly efficient gradient boosting decision tree,” Advances in Neural Information Processing Systems, 

pp. 3147–3155, 2017. 
[23] N. Dunbray, R. Rane, S. Nimje, J. Katade, and S. Mavale, “A Novel novel prediction model for diabetes detection using 

gridsearch and a voting classifier between LightGBM and KNN,” 2021, doi: 10.1109/GCAT52182.2021.9587551. 

[24] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Information Processing 
and Management, vol. 45, no. 4, pp. 427–437, 2009, doi: 10.1016/j.ipm.2009.03.002. 

[25] Z. Zhang, T. Zhang, and J. Li, “Unbiased gradient boosting decision tree with unbiased feature importance,” in IJCAI 

International Joint Conference on Artificial Intelligence, 2023, pp. 4629–4637, doi: 10.24963/ijcai.2023/515. 
[26] B. McFee et al., “Librosa: Audio and music signal analysis in in Python,” in Proceedings of the 14th Python in Science 

Conference, 2015, pp. 18–24, doi: 10.25080/majora-7b98e3ed-003. 

[27] G. Lema, Fernando Nogueira, and Christos K. Aridas, “Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced 

datasets in machine learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp. 1–5, 2017. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Detection of COVID-19 based on cough sound and accompanying sympton using … (Wiharto) 

949 

[28] T. Hoang, L. Pham, D. Ngo, and H. D. Nguyen, “A cough-based deep learning framework for detecting COVID-19,” in 
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2022, pp. 

3422–3425, doi: 10.1109/EMBC48229.2022.9871179. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Wiharto     received obtained a bachelor’s degree in electrical engineering (B.E.) 

from Universitas Telkom, Indonesia, in 1999. He obtained a master’s degree in computer 

science from Universitas Gadjah Mada, Indonesia, in 2004 and a Doctoral degree from the 

same University, in 2017. Currently he works as a lecturer in the Informatics Department, 

Faculty of Information Technology and Data Science, Universitas Sebelas Maret, Surakarta, 

Indonesia. His experience and areas of interest focus on artificial intelligence, computational 

intelligence, biomedical computation, and clinical decision support system. He can be 

contacted at email: wiharto@staff.uns.ac.id. 

  

 

Annas Abdurrahman     received the bachelor’s degree in informatics from the 

Faculty of Information Technology and Data Science, Universitas Sebelas Maret, Surakarta, 

Indonesia, 2023. His research interests include soft computing, machine learning, and 

intelligent systems. He can be contacted at email: annasabdurrahman354@student.uns.ac.id. 

  

 

Umi Salamah     received her bachelor’s degree from the Department of 

Mathematics, Universitas Sebelas Maret, Indonesia, in 1994. She received her master’s and 

Doctoral degrees from the Department of Informatics Engineering, Institut Teknologi Sepuluh 

Nopember, Indonesia, in 2002 and 2018, respectively. Her research interests include fuzzy 

logic and systems, image processing, applied mathematics, and computational sciences. She 

can be contacted at email: umisalamah@staff.uns.ac.id. 

 

https://orcid.org/0000-0001-7014-7620
https://www.scopus.com/authid/detail.uri?authorId=57115568700
https://www.webofscience.com/wos/author/record/D-7590-2017
https://orcid.org/0009-0000-1965-482X
https://orcid.org/0000-0002-5077-1191
https://www.scopus.com/authid/detail.uri?authorId=56592969000

