
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 38, No. 3, June 2025, pp. 1793~1803

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v38.i3.pp1793-1803 1793

Journal homepage: http://ijeecs.iaescore.com

Vulnerability detection in smart contact using chaos

optimization-based DL model

Srinivas A. Vaddadi1, Sanjaikanth E. Vadakkethil Somanathan Pillai2, Rohith Vallabhaneni1,

Santosh Reddy Addula1, Bhuvanesh Ananthan3
1Department of Information Technology, University of the Cumberlands, Williamsburg, USA

2School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, USA
3Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology, Tirunelveli, India

Article Info ABSTRACT

Article history:

Received Mar 18, 2024

Revised Nov 19, 2024

Accepted Nov 30, 2024

 This research article introduces a deep learning (DL) for identifying

vulnerabilities in the smart contracts, leveraging an optimized DL method.

The proposed method, termed LogT BiLSTM, combines bidirectional long

short-term memory (BiLSTM) with logistic chaos Tasmanian devil

optimization (LogT) for enhancing detection of vulnerability. The evaluation

of the suggested approach is conducted using publicly available datasets.

Initially, preprocessing steps involve removing duplicate data and imputing

missing data. Subsequently, the vulnerability detection process utilizes

BiLSTM, with the optimization of the loss function achieved through LogT.

Results indicate promising performance in identifying vulnerabilities in SC,

highlighting the efficacy of the LogT_BiLSTM approach.

Keywords:

Blockchain

Deep learning

Loss function optimization

Smart contract

Vulnerability detection This is an open access article under the CC BY-SA license.

Corresponding Author:

Srinivas A. Vaddadi

Department of Information Technology, University of the Cumberlands

6178 College Station Drive, Williamsburg, KY 40769, USA

Email: Vsad93@gmail.com

1. INTRODUCTION

Due to the accelerated growth of cryptocurrencies and the gradual maturation of blockchain (BC)

technology, which together provide decentralised operations, transparent transaction processes, and tamper-

evident properties, the concept of BC and digital currency has drawn a lot of attention in recent years. Thanks

to these new technologies, computer protocols designed to be distributed, validated, or carried out in an

informative way have been developed into smart contracts [1]. These contracts may be used as the basis for a

variety of services and applications. The fast rise of smart contracts is causing them to become more

complicated, and this is creating more important security concerns owing to the frequent incidence of smart

contract vulnerabilities [2], [3].

Smart contracts play a pivotal role in securing information within decentralized systems, particularly

in BC technology. These self-executing contracts are encoded with predefined rules and conditions,

facilitating automatic execution and enforcement without the need for intermediaries [4]. By leveraging

cryptographic techniques, SC provides the integrity and immutability of data, making them opposed for

tampering and unauthorized access. They establish trust among parties by providing transparent and auditable

transactions, as every action is recorded on the BC [5]. Furthermore, smart contracts enable permissioned

access to sensitive information, allowing only authorized parties to interact with the data based on predefined

permissions. Through their automated and transparent nature, smart contracts enhance the security of

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 3, June 2025: 1793-1803

1794

information by reducing the risks associated with human error, fraud, and third-party interference. Thus, they

serve as a robust mechanism for securing data in decentralized ecosystems [6].

Smart contracts face several challenges in guarding against malicious activity, including

vulnerabilities in the code, exploits, and attacks aimed at manipulating contract execution or stealing

sensitive information. Traditional security measures may not always suffice to address these threats

effectively. However, deep learning (DL)-based malicious detection mechanisms offer a promising solution

by leveraging advanced algorithms to identify and mitigate risks [7]. These mechanisms analyze large

datasets of smart contract code and transaction histories to detect patterns indicative of malicious behavior.

By learning from past incidents and continuously updating their models, DL algorithms can adapt to evolving

threats and identify previously unseen attack vectors [8]. Additionally, they can detect anomalies in real-time,

enabling proactive responses to potential security breaches. Furthermore, DL-based detection mechanisms

can complement traditional security measures by providing a more robust defense against sophisticated

attacks [9]. Through their ability to analyze complex data structures and detect subtle patterns, these

mechanisms enhance the resilience of smart contracts against malicious activity, thereby strengthening the

overall security of decentralized systems [10]. Thus, an optimized DL mechanism is introduced in this

research. The major contribution is:

− Design of LogT algorithm: the logistic tasmanian devil algorithm (LogT) is designed by integrating the

logistic chaos with the conventional Tasmanian devil to enhance the performance in terms of convergence

rate.

− Design of LogT_BiLSTM based vulnerability detection: the vulnerability in the smart contract is detected

using the proposed LogT_BiLSTM, wherein the loss function optimization is devised using the LogT

algorithm.

The organization of the research is: Section 2 details the related works with problem statement and

section 3 details the proposed malicious detection mechanism. The experimental results are presented in

section 4 and conclusion in section 5.

2. RELATED WORKS

The existing methods concerning the malicious node detection in the BC scenario is detailed in this

section. Aiming to address the security issues [11] designed a novel approach that integrates both

technologies for enhanced anomaly detection. The technique hinges on deep autoencoder neural networks

(DANNs) embedded within smart contracts deployed on a BC. DANNs excel at identifying deviations from

normal patterns, making them ideal for anomaly detection. By integrating them into smart contracts, the

system leverages the BC ‘s inherent security and transparency, ensuring data immutability and verifiable

execution. The introduced methodology involves training DANNs on historical sensor data to establish a

baseline of normal system behavior. Real-time sensor data is then fed into the smart contracts, where the

DANNs analyze for anomalies. If detected, pre-defined actions are automatically triggered, such as sending

alerts or initiating remediation procedures. This distributed, autonomous approach eliminates the need for a

central authority, enhancing security and resilience. The failure in optimizing the parameters of the

architecture limits the accuracy of detection.

A DL technique adept at analyzing graph structures like smart contracts was designed by [12].

GNNs extract features from the contract’s code, capturing complex relationships and dependencies.

Phase two incorporates expert rules, encoded as decision trees, to identify specific vulnerability patterns.

This combined approach leverages the generalizability of DL and the precision of expert knowledge, aiming

for better accuracy and wider vulnerability coverage. Here, the risk assessment feature streamlines mitigation

efforts by focusing on critical vulnerabilities. Incorporating and updating expert rules necessitates continuous

involvement from security experts, posing potential scalability concerns.

A novel approach to identify the threat was designed by [13] by synergizing the power of DL and

multimodal fusion (MMDF). The core technique revolves around exploiting diverse informational facets of

smart contracts. It extracts not only the source code itself, but also the compiled bytecode and control flow

graph, representing each modality through distinct DL models. These models, tailored to each data type,

capture comprehensive vulnerability signatures embedded within. The key innovation lies in the multimodal

fusion module, which intelligently combines the outputs from these individual models, leveraging their

complementary strengths to achieve a more robust and accurate vulnerability detection.

A DL-based approach for accurate vulnerability detection was designed by [14] concerning the

Smart contract. The technique hinges on two key elements: the power of bidirectional long short-term

memory (BiLSTM) networks and the metric learning prowess of Triplet Loss. BiLSTM networks excel at

capturing temporal dependencies within code sequences, making them adept at understanding the complex

logic of smart contracts. Triplet Loss, on the other hand, pushes similar contracts closer together in the

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Vulnerability detection in smart contact using chaos optimization based DL model (Srinivas A Vaddadi)

1795

feature space while driving dissimilar ones further apart, enhancing the model’s ability to distinguish

vulnerable contracts from secure ones. The combination of BiLSTM and Triplet Loss surpasses traditional

methods, achieving high accuracy in detecting various vulnerability types. The training process, especially

with Triplet Loss, can be computationally demanding, requiring powerful computing resources.

A system combining machine learning and BC technology was designed by [15] using verifiable

byzantine fault tolerance (VBFT) approach. The technique leverages two key components like Machine

learning for decentralized anomaly detection and BC for secure and tamper-proof data storage. At each

sensor node, a lightweight machine learning model, like an Isolation Forest, analyzes local sensor data and

network interactions. This model identifies deviations from normal behavior, potentially indicating malicious

activity. These anomaly reports are then cryptographically signed and broadcasted to the network.

Distributed detection and tamper-proof data storage make the system more resilient to attacks and

manipulation. Maintaining a scalable and efficient BC infrastructure for large-scale WSNs requires further

research. Besides, balancing anomaly detection with preserving node privacy necessitates careful design of

data sharing mechanisms.

Hackers have also become interested in smart contract security [16], as they have been using smart

contract weaknesses to steal illicit assets. A re-entrant vulnerability in TheDAO’s crowdfunding contract was

exploited by attackers in 2016, causing losses of roughly USD 60 million [17]. A Parity wallet [18] contract

vulnerability in 2017 caused user losses of USD 31 million. The market value of the BEC tokens produced

by the United States Chain firm dropped to nearly nothing in 2018 as a result of hackers taking use of an

integer overflow vulnerability in the Ethereum ERC-20 smart contract [19]. As of 2023, attacks against

Ethereum smart contracts had resulted in cumulative damages above USD 3.1 billion, as per data from the

SlowMist website [20]. The vulnerability issue of smart contracts has drawn the attention of more academics

due to the frequency of BC security incidents and the growing amount of assets involved in smart contracts

[21]. When security issues arise with smart contracts, it might be challenging to retrieve stolen assets because

of its tamper-evident and automatically executing features. Therefore, in order to guarantee the security of

smart contracts and the protection of each participant’s asset interests, it is imperative to identify potential

security flaws prior to deployment. The majority of current smart contract vulnerability detection techniques

[22] are based on conventional program vulnerability detection techniques (such C++ and Java), which

typically use static analysis [23] and dynamic execution techniques [24] to find issues. This approach

includes flaws including limited automation, low efficiency, and inadequate flexibility and frequently

depends on the experience of specialists. The application of DL technology for smart contract vulnerability

detection has gained popularity in recent years due to its rapid development [25].

Problem statement: The current strategies for detecting vulnerabilities in SC are primarily based on

the common methods used in conventional programmes like Java and C++. In addition to having issues with

limited automation, low efficiency, and inadequate adaptability, this approach frequently depends on the

knowledge of experts. The application of DL technology for smart contract vulnerability detection has been a

research hotspot in recent years due to the technology’s fast growth. The shortcomings of traditional

detection approaches, such as their limited automation, low efficiency, and reliance on specialised expertise,

can be compensated for by DL-based detection technologies. In this research, an optimised DL model is

developed to address the problems.

3. PROPOSED VULNERABILITY DETECTION AND MITIGATION MECHANISM

The proposed vulnerability detection of the smart contract is designed based on optimized DL

method. Initially, the pre-processing is devised based on removing the duplicate data and missing data

imputation. Finally, the vulnerability detection is devised using the proposed logistic chaos Tasmanian devil

optimization based bidirectional long short term memory (LogT_BiLSTM). In this, the vulnerability

detection is devised using the BiLSTM, wherein the loss function optimization is devised using the LogT.

The structure of proposed vulnerability detection and mitigation mechanism for smart contract is portrayed in

Figure 1.

Figure 1. Proposed vulnerability detection and mitigation mechanism for smart contract

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 3, June 2025: 1793-1803

1796

3.1. Data acquisition

The input data for processing the proposed vulnerability detection in the smart contact is acquired

from ethernet smart contracts (ESC) dataset.

3.2. Data pre-processing

The duplication removal and missing value imputation are devised in the data pre-processing step

for enhancing the performance. Here, duplicate data removal ensures that each data point in your dataset is

unique, which can prevent biases and inaccuracies caused by redundant information.

3.3. Vulnerability detection using LogT-BiLSTM

The vulnerability detection is devised using the proposed LogT-BiLSTM, wherein the loss functions

of the BiLSTM is optimized using the LogT algorithm. The structure of proposed LogT_BiLSTM method is

portrayed in Figure 2.

Structure of BiLSTM: the BiLSTM is applicable for time-series data analysis, including

vulnerability detection in smart contracts. Input layer: the input to the BiLSTM model consists of sequences

of data points. In the context of vulnerability detection in smart contracts, these data points could represent

various features extracted from the smart contract code. BiLSTM layer: the essential structure of the

BiLSTM model comprises two LSTM layers: one processes the input sequence in the forward direction,

while the other processes it in the backward direction. This bidirectional approach enables the model to grasp

dependencies from both the past and future, enhancing its ability to understand contextual information within

the data. The equations governing the operations within an LSTM cell are as follows:

− Forget gate: 𝑘𝑙 = 𝛽(𝐴𝑘 ⋅ [𝑔𝑙−1, 𝑚𝑙] + 𝑑𝑘) (1)

− Input gate:𝑝𝑙 = 𝛽(𝐴𝑝 ⋅ [𝑔𝑙−1,𝑚𝑙] + 𝑑𝑝) (2)

− Candidate gate:�̃�𝑙 = 𝑡𝑎𝑛h(𝐴𝐵 ⋅ [𝑔𝑙−1, 𝑚𝑙] + 𝑑𝐵) (3)

− Cell state update:𝐵𝑙 = 𝑘𝑙 ⋅ 𝐵𝑙−1 + 𝑝𝑙 ⋅ �̃�𝑙 (4)

− Output gate:𝑞𝑙 = 𝛽(𝐴𝑞 ⋅ [𝑔𝑙−1, 𝑚𝑙] + 𝑑𝑞) (5)

− Hidden state update:𝑔𝑙 = 𝑞𝑙 ⋅ 𝑡𝑎𝑛h(𝐵𝑙) (6)

where, the input at time step 𝑙 is denoted as 𝑚𝑙, the hidden state of the LSTM cell from the previous time step

is signified as 𝑔𝑙−1, and the forget, input, candidate, and output gate is denoted as 𝑘𝑙, 𝑝𝑙 , �̃�𝑙 , and 𝑞𝑙

respectively. The cell state at time step𝑙is defined as 𝐵𝑙 , and sigmoid activation function is signified as 𝛽.

Hyperbolic tangent activation function is denoted as 𝑡𝑎𝑛ℎ, and weight matrices for the forget gate, input,

candidate, and output is denoted as 𝑑𝑘, 𝑑𝑝, 𝑑𝐵, and 𝑑𝑞 respectively. Besides, the bias concerning the layers is

signified as 𝐴𝑘, 𝐴𝑝, 𝐴𝐵, and 𝐴𝑞.

Figure 2. Structure of BiLSTM

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Vulnerability detection in smart contact using chaos optimization based DL model (Srinivas A Vaddadi)

1797

Output layer: by leveraging the bidirectional nature of the BiLSTM model, it can effectively obtain

complex patterns and dependencies in the input sequences, making it suitable for vulnerability detection in

smart contracts where understanding both past and future code context is crucial.

Loss function optimization using LogT algorithm: the loss function optimization is devised using the

LogT algorithm, wherein the logistic chaos is integrated in the Tasmanian devil algorithm for obtaining the

global best solution. Here, the Logistic chaotic mapping introduces randomness into the search process,

helping the algorithm escape local optima and explore a wider range of solutions. This can be particularly

useful for complex optimization problems with many local minima. The initialization of the algorithm is

represented as (7).

𝐹 =

[

𝐹1

⋮
𝐹𝑟

⋮
𝐹𝑃]

𝑃×𝐺

=

[

𝑓1,1 ⋯ 𝑓1,𝑣 ⋯ 𝑓1,𝐺

⋮ ⋱ ⋮ ⋰ ⋮
𝑓𝑟,1 ⋯ 𝑓𝑟,𝑣 ⋯ 𝑓𝑟,𝐺

⋮ ⋰ ⋮ ⋱ ⋮
𝑓𝑃,1 ⋯ 𝑓𝑃,𝑣 ⋯ 𝑓𝑃,𝐺]

𝑃×𝐺

 (7)

Fitness estimation: the fitness of a solution candidate is typically inversely proportional to its MSE

value. In other words, lower MSE values indicate better performance, so solutions with lower MSE values

are considered to have higher fitness. The optimization algorithm aims to minimize this MSE value by

iteratively adjusting the parameters of the model or the solution candidates until a satisfactory solution is

found. This process involves generating new candidate solutions, evaluating their fitness using the MSE, and

updating the parameters based on the fitness scores. It is expressed as:

𝐹𝑖𝑡 =
1

𝑑
∑ (𝑎𝑐𝑡𝑥 − 𝑝𝑟𝑒𝑥)

2𝑑
𝑥=1 (8)

where, the number of data points in the dataset is signified as 𝑑, the actual target value for the 𝑥𝑡ℎ data point

is defined as 𝑎𝑐𝑡𝑥, and the predicted value for the 𝑥𝑡h data point is referred as 𝑝𝑟𝑒𝑥. The fitness function is

defined as 𝐹𝑖𝑡.

Exploration phase: the exploration phase mimics the hunting behavior of Tasmanian devils. Besides,

the exploration phase plays a crucial role in diversifying the population and helping the algorithm avoid

getting stuck in local optima. The detection of prey is evaluated initially and is formulated as:

𝐴𝑟 = 𝐹𝑚, 𝑟 = 1,2, 𝑃,𝑚 ∈ {1,2, 𝑃|𝑚 ≠𝑟} (9)

where, the search agent 𝑟 chooses the prey 𝐴𝑟. After identifying the prey, the individuals update their

position and are defined as:

𝑓𝑟,𝑣
𝑛,𝐷1 = {

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑠𝑣,𝑤 − 𝑀 ⋅ 𝑓𝑣,𝑤), 𝐹𝑖𝑡𝐴𝑟
< 𝐹𝑖𝑡𝑟

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑓𝑣,𝑤 − 𝑠𝑣,𝑤), 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (10)

𝐹𝑟 = {
𝐹𝑟

𝑛,𝐷1, 𝐹𝑖𝑡𝑟
𝑛,𝐷1 < 𝐹𝑖𝑡𝑟

𝐹𝑟 , 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (11)

where, 𝑔 indicates the variable with [0,1], 𝐸𝑟
𝑛,𝐷1

 is the new location that the search agent has assessed, and

the definitions of the fitness function and carrion’s fitness are 𝐹𝑖𝑡𝑟
𝑛,𝐷1

 and 𝐹𝑖𝑡𝐴𝑟
 respectively. 𝑀 indicates the

arbitrary variable with the value, it is shown as that which uses the values 2 or 1. Here, if the selection of

prey and movement mechanisms lack randomness, the algorithm might become repetitive and get stuck in the

same patterns, which is solved by including logistic chaos mapping in the exploration phase. The logistic

chaos is outlined as:

𝑓𝑟,𝑣
𝑛,𝐷1 = 𝐻 ⋅ 𝑓𝑟,𝑣

𝐷1(1 − 𝑓𝑟,𝑣
𝐷1) (12)

where, the factor utilized for obtaining the enhanced randomization phase is defined as 𝐻 that falls within the

range of [0,1]. The solution obtained after the inclusion of logistic chaos is defined as:

(𝑓𝑟,𝑣
𝑛,𝐷1)

𝐿𝑜𝑔𝑇
= 0.5(𝑓𝑟,𝑣

𝑛,𝐷1)
𝑇𝑎𝑠𝑚𝑎𝑛𝑖𝑎𝑛⥂𝑑𝑒𝑣𝑖𝑙

+ 0.5(𝑓𝑟,𝑣
𝑛,𝐷1)

𝑙𝑜𝑔 𝑖𝑠𝑡𝑖𝑐𝑐h𝑎𝑜𝑠
 (13)

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 3, June 2025: 1793-1803

1798

(𝑓𝑟,𝑣
𝑛,𝐷1)

𝐿𝑜𝑔𝑇
= 0.5 ({

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑠𝑣,𝑤 − 𝑀 ⋅ 𝑓𝑣,𝑤), 𝐹𝑖𝑡𝐴𝑟
< 𝐹𝑖𝑡𝑟

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑓𝑣,𝑤 − 𝑠𝑣,𝑤), 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
) + 0.5 (𝐻 ⋅ 𝑓𝑟,𝑣

𝐷1(1 − 𝑓𝑟,𝑣
𝐷1)) (14)

(𝑓𝑟,𝑣
𝑛,𝐷1)

𝐿𝑜𝑔𝑇
= {

0.5 (𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑠𝑣,𝑤 − 𝑀 ⋅ 𝑓𝑟,𝑣)) + 0.5 (𝐻 ⋅ 𝑓𝑟,𝑣
𝐷1(1 − 𝑓𝑟,𝑣

𝐷1)) , 𝐹𝑖𝑡𝐴𝑟
< 𝐹𝑖𝑡𝑟

0.5 (𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑓𝑟,𝑣 − 𝑠𝑣,𝑤)) + 0.5 (𝐻 ⋅ 𝑓𝑟,𝑣
𝐷1(1 − 𝑓𝑟,𝑣

𝐷1)) , 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (15)

using the proposed solution updation (15), the global best solution is obtained.

Local search: the algorithm prioritizes exploration in regions of the solution space that have shown

potential for good solutions based on the information gathered in the exploration phase. In this phase, the

search agent chases it by updating its position based on the chosen prey’s location. This update involves a

combination of movement towards the prey and random exploration within the local neighborhood. The prey

is chosen through:

𝑄𝑟 = 𝐹𝑚, 𝑟 = 1,2, 𝑃,𝑚 ∈ {1,2, 𝑃|𝑚 ≠𝑟} (16)

where, 𝑄𝑟 signifies the prey chosen by 𝑟𝑡ℎ search agent. Then, the solution updated by the search agent is

represented as.

(𝑓𝑟,𝑣
𝑛,𝐷1) = {

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑑𝑣,𝑤 − 𝑀 ⋅ 𝑓𝑟,𝑣), 𝐹𝑖𝑡𝑄𝑟
< 𝐹𝑖𝑡𝑟

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑓𝑟,𝑣 − 𝑞𝑟,𝑣), 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (17)

𝐹𝑟 = {
𝐹𝑟

𝑛,𝐷2, 𝐹𝑖𝑡𝑟
𝑛,𝐷2 < 𝐹𝑖𝑡𝑟

𝐹𝑟 , 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (18)

Where, the fitness of the prey is defined as 𝐹𝑖𝑡𝑄𝑟
, the fitness of solution is defined as 𝐹𝑖𝑡𝑟

𝑛,𝐷2
, 𝑣𝑡ℎ

variable’s solution is defined as 𝑓𝑟,𝑣
𝑛,𝐷1

, and the solution estimated by the search agent 𝑟is defined as 𝐹𝑟
𝑛,𝐷2

.

The exploitation beyond the search area is limited by adjusting the radius and is formulated as (19).

𝐾 = 0.01 (1 −
𝑙

𝐿
)

 (19)

After adjusting the search radius, the position updation of the search agent is defined as (20).

𝑓𝑟,𝑣
𝑛 = 𝑓𝑟,𝑣 + (2𝐾 − 1) ⋅ 𝑄 ⋅ 𝑓𝑟,𝑣 (20)

The updated solution is evaluated for its feasibility and is represented as (21).

𝐹𝑟 = {
𝐹𝑟

𝑛 , 𝐹𝑖𝑡𝑟
𝑛 < 𝐹𝑖𝑡𝑟

𝐹𝑟 , 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (21)

The upper bound of algorithm is defined as 𝐿, but the current iteration is signified as 𝑙.
Stoppage: the algorithm terminates after a specified number of iterations have been completed. This

criterion ensures that the algorithm doesn’t run for an excessively long time. Else, LogT may stop when the

improvement in the best solution found falls below a certain threshold over a predefined number of iterations.

This indicates that the algorithm has converged to a satisfactory solution. Thus, using the solution obtained

through the LogT, the loss function optimization is devised for identifying the vulnerability in smart contract.

4. RESULT AND DISCUSSION

Besides, the existing smart contract based malicious detection methods were compared with

suggested approach to illustrate the superiority of the proposed method. The conventional methods like

BiLSTM [14], Deep AutoEncoder [11], MMDF [13], and VBFT [15] are utilized for comparison.

4.1. Comparative analysis

Figure 3 presents a comprehensive comparative analysis of the proposed model’s performance

against other methods, including Deep AutoEncoder, MMDT, BLSTM, and VBFT, across four key

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Vulnerability detection in smart contact using chaos optimization based DL model (Srinivas A Vaddadi)

1799

evaluation metrics: accuracy, precision, recall, and F-score, for varying K-fold values. In terms of accuracy

Figure 3(a), the proposed model consistently outperforms the competing techniques, demonstrating superior

predictive accuracy across all K-fold values. Precision analysis (Figure 3(b)) further highlights the proposed

method’s ability to minimize false positives effectively, as it consistently achieves the highest precision scores.

Similarly, in recall Figure 3(c), the proposed approach outperforms its counterparts by identifying relevant

instances with minimal false negatives, indicating its reliability in recall-sensitive scenarios. Finally, the F-score

analysis Figure 3(d), which balances precision and recall, shows that the proposed model achieves the highest

scores across all K-fold values, underscoring its robust and balanced performance. Overall, these results confirm

the superior efficacy of the proposed model compared to the baseline methods in all evaluated metrics.

(a)

(b)

(c) (d)

Figure 3. Comparative analysis: (a) accuracy, (b) precision, (c) recall, and (d) F-score

The analysis is devised by varying the K-fold value of the methods and the outcome is presented.

Here, the better outcome is evaluated with higher value of K-fold and the proposed LogT_BiLSTM. Here,

with a higher K-fold value, the dataset is divided into more subsets, allowing for a more comprehensive

evaluation of the model’s performance across different data samples. This reduces the variance in

performance estimation, providing a stable and reliable assessment of the model’s effectiveness. Besides, by

training and testing the model on multiple different subsets of the data, increasing the K-fold value enables

the model to generalize better to unseen data.

4.2. Accuracy-loss

Accuracy refers to the proportion of correctly classified instances (both intrusions and normal

activities) by the model among all instances. Loss, on the other hand, represents the error or discrepancy

between the predicted and actual values. Here, the closeness of testing and training accuracy and loss depicts

the enhanced generalization capability of the model, which provides better outcome while evaluating the

unknown data in Figure 4. Figure 4 illustrates the accuracy-loss analysis for both training and testing phases

over multiple epochs, focusing on (a) accuracy and (b) loss. In Figure 4(a), the training and testing accuracy

show a consistent upward trend as the epochs progress, with the model achieving high accuracy values near

convergence. This indicates effective learning and generalization, as the test accuracy closely aligns with the

training accuracy without significant overfitting. In Figure 4(b), both the training and testing loss exhibit a

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 3, June 2025: 1793-1803

1800

steady decline with increasing epochs, demonstrating that the model effectively minimizes error during the

learning process. The near-convergence of training and testing loss values reflects the model’s robust

performance and ability to generalize well to unseen data. These observations collectively validate the

model’s capability to learn efficiently and perform reliably on both training and testing datasets.

(a) (b)

Figure 4. Accuracy-loss analysis (a) accuracy and (b) loss

4.3. AUC analysis

The AUC analysis is portrayed in Figure 5. Here, the analysis based on various measures illustrates

the suggested approach’s superiority. The reason behind the superiority is the weight optimization of the

BiLSTM with the novel LogT algorithm. The inclusion of logistic mapping based chaotic mapping within the

Tasmanian Devil algorithm assist to enhance the detection accuracy.

Figure 5. AUC analysis

5. CONCLUSION

In this study, DL model is introduced for detecting vulnerabilities in SC is which is crucial for

ensuring their security and reliability in BC applications. By combining BiLSTM with logistic chaos

Tasmanian devil optimization (LogT), we have developed an effective method, termed LogT_BiLSTM, for

enhancing vulnerability detection. Through evaluation on publicly available datasets, it is demonstrated the

efficacy of the proposed approach in accurately identifying vulnerabilities. The preprocessing steps of

removing duplicate data and imputing missing data contribute to the robustness of our method. Overall, our

findings suggest that LogT_BiLSTM holds promise for improving the security of smart contracts in BC

ecosystems. Future research directions may involve further optimization techniques and real-world

deployment of the proposed approach. Future research on vulnerability detection in smart contracts using a

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Vulnerability detection in smart contact using chaos optimization based DL model (Srinivas A Vaddadi)

1801

chaos optimization-based DL model can focus on enhancing feature engineering to better capture

vulnerabilities and developing hybrid models that combine chaos optimization with other techniques for

improved detection accuracy. There is potential to create scalable, real-time detection systems and explore

transfer learning for cross-platform vulnerability detection. Additional areas include incorporating

explainable AI to make the detection process more transparent, integrating dynamic and static analysis, and

establishing benchmarks for standardized evaluation. Further research could also focus on automating the

patching of vulnerabilities, reducing manual intervention in smart contract security.

ACKNOWLEDGEMENTS

The Author with a deep sense of gratitude would thank the supervisor for his guidance and constant

support rendered during this research.

FUNDING INFORMATION

No funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Srinivas A. Vaddadi ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sanjaikanth E. Vadakkethil

Somanathan Pillai

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rohith Vallabhaneni ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Santosh Reddy Addula ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bhuvanesh Ananthan ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author,

[S.A.V], upon reasonable request.

REFERENCES
[1] I. A. A. El-Moghith and S. M. Darwish, “Towards designing a trusted routing scheme in wireless sensor networks: a new deep

blockchain approach,” IEEE Access, vol. 9, pp. 103822-103834, 2021, doi: 10.1109/ACCESS.2021.3098933.

[2] L. K. Ramasamy, F. K. KP, A. L. Imoize, J. O. Ogbebor, S. Kadry, and S. Rho, “Blockchain-based wireless sensor
networks for malicious node detection: A survey,” IEEE Access, vol. 9, pp. 128765-128785, 2021,

doi: 10.1109/ACCESS.2021.3111923.

[3] R. K. Sharma and R. S. Pippal, “Malicious attack and intrusion prevention in IoT network using blockchain based security
analysis,” In 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), IEEE,

pp. 380-385, 2020, doi: 10.1109/CICN49253.2020.9242610.

[4] A. Diro, N. Chilamkurti, V. D. Nguyen, and W. Heyne, “A comprehensive study of anomaly detection schemes in IoT networks
using machine learning algorithms,” Sensors, vol. 21, no. 24, pp. 8320, 2021, doi: 10.3390/s21248320.

[5] R. Kumar, P. Kumar, R. Tripathi, G. P. S. Garg, and M. M. Hassan, “A distributed intrusion detection system to detect DDoS

attacks in blockchain-enabled IoT network,” Journal of Parallel and Distributed Computing, vol. 164, pp. 55-68, 2022,
doi: 10.1016/j.jpdc.2022.01.030.

[6] P. Jisna, T. Jarin, and P. N. Praveen, “Advanced intrusion detection using deep learning-LSTM network on cloud environment,”

In 2021 Fourth International Conference on Microelectronics, Signals and Systems (ICMSS), IEEE, pp. 1-6, 2021,
doi: 10.1109/ICMSS53060.2021.9673607.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 3, June 2025: 1793-1803

1802

[7] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: fuzzing smart contracts for vulnerability detection,” In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering, pp. 259-269, 2018,
doi: 10.1145/3238147.3238177.

[8] P. Qian, Z. Liu, Q. He, B. Huang, D. Tian, and X. Wang, “Smart contract vulnerability detection technique: a survey,”

arXiv preprint arXiv:2209.05872, 2022, doi: 10.48550/arXiv.2209.05872.
[9] M. Yu, J. Zhuge, M. Cao, Z. Shi, and L. Jiang, “A survey of security vulnerability analysis, discovery, detection, and mitigation

on IoT devices,” Future Internet, vol. 12, no. 2, pp. 27, 2020, doi: 10.3390/fi12020027.

[10] R. Agarwal, T. Thapliyal, and S. K. Shukla, “Vulnerability and transaction behavior based detection of malicious smart
contracts,” In Cyberspace Safety and Security: 13th International Symposium, CSS 2021, Virtual Event, November 9–11, 2021,

Proceedings 13, Springer International Publishing, pp. 79-96, 2022, doi: 10.1007/978-3-030-94029-4_6.

[11] K. Demertzis, L. Iliadis, N. Tziritas, and P. Kikiras, “Anomaly detection via block chained deep learning smart contracts in
industry 4.0,” Neural Computing and Applications, vol. 32, pp. 17361-17378, 2020, doi: 10.1007/s00521-020-05189-8.

[12] Z. Liu, M. Jiang, S. Zhang, J. Zhang, and Y. Liu, “A smart contract vulnerability detection mechanism based on deep learning and

expert rules,” IEEE Access, 2023, doi: 10.1109/ACCESS.2023.3298048.
[13] W. Deng, H. Wei, T. Huang, C. Cao, Y. Peng, and X. Hu, “Smart contract vulnerability detection based on deep learning and

multimodal decision fusion,” Sensors, vol. 23, no. 16, pp. 7246, 2023, doi: 10.3390/s23167246.

[14] M. Wang, Z. Xie, X. Wen, J. Li, and K. Zhou, “Ethereum smart contract vulnerability detection model based on triplet loss and
BiLSTM,” Electronics, vol. 12, no. 10, pp. 2327, 2023, doi: 10.3390/electronics12102327.

[15] M. Nouman, U. Qasim, H. Nasir, A. Almasoud, M. Imran, and N. Javaid, “Malicious node detection using machine learning and

distributed data storage using blockchain in WSNs,” IEEE Access, vol. 11, pp. 6106-6121, 2023,
doi: 10.1109/ACCESS.2023.3236983.

[16] S. Lin, L. Zhang, J. Li, L. Ji, and Y. Sun, “A survey of application research based on blockchain smart contract,”

Wireless Networks, vol. 28, pp. 635–690, 2022, doi: 10.1007/s11276-021-02874-x.
[17] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart contracts,” Cryptology ePrint Archive, Paper

2016/1007, 2016. [Online]. Available: https://eprint.iacr.org/2016/1007
[18] The Parity Wallet Hack Explained, 2023. [Online]. Available: https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-

405a8c12e8f7

[19] K. Peng, M. Li, H. Huang, C. Wang, S. Wan, and K. K. R. Choo, “Security challenges and opportunities for smart contracts in
internet of things: a survey,” IEEE Internet of Things Journal, vol. 8, pp. 12004–12020, 2021, doi: 10.1109/JIOT.2021.3074544.

[20] Slowmist, 2023. [Online]. Available: https://hacked.slowmist.io/

[21] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M. Vechev, “Securify: Practical security analysis of smart
contracts,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON,

Canada, pp. 67–82, Oct. 2018, doi: 10.1145/3243734.3243780.

[22] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H. N. Lee, “Systematic review of security vulnerabilities in ethereum
blockchain smart contract,” IEEE Access, vol. 10, pp. 6605–6621, 2022, doi: 10.1109/ACCESS.2021.3140091.

[23] A. Ghaleb and K. Pattabiraman, “How effective are smart contract analysis tools? Evaluating smart contract static analysis tools

using bug injection,” in Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Los
Angeles, CA, USA, Jul. 2020, pp. 415–427, doi: 10.1145/3395363.3397385.

[24] H. Wang, Y. Liu, Y. Li, S. W. Lin, C. Artho, L. Ma, and Y. Liu, “Oracle-supported dynamic exploit generation for smart

contracts,” IEEE Transactions on Dependable and Secure Computing, vol. 19, pp. 1795–1809, 2020,
doi: 10.1109/TDSC.2020.3037332.

[25] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards automated reentrancy detection for smart contracts based on

sequential models,” IEEE Access, vol. 8, pp. 19685–19695, 2020, doi: 10.1109/ACCESS.2020.2969429.

BIOGRAPHIES OF AUTHORS

Srinivas A. Vaddadi is a dynamic and forward-thinking professional in the field

of Cloud and DevSecOps. With a solid educational foundation in computer science, Srinivas

embarked on a journey of continuous learning and professional growth. Their relentless

pursuit of knowledge and commitment to staying at the forefront of industry advancements

has earned them recognition as a thought leader in the Cloud and DevSecOps space. He can be

contacted at email: Vsad93@gmail.com.

Sanjaikanth E. Vadakkethil Somanathan Pillai (Senior Member, IEEE) holds

an MS in Software Engineering from The University of Texas at Austin, Texas, USA, and a

BE from the University of Calicut, Kerala, India. Currently pursuing a PhD in Computer

Science at the University of North Dakota, Grand Forks, North Dakota, USA, his research

spans diverse areas such as mobile networks, network security, privacy, location-based

services, and misinformation detection. He is a proud member of Sigma Xi, The Scientific

Research Honor Society, underlining his commitment to advancing scientific knowledge and

research excellence. He can be contacted at email: s.evadakkethil@und.edu.

https://orcid.org/0009-0004-7221-5593
https://orcid.org/0000-0003-3264-9923

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Vulnerability detection in smart contact using chaos optimization based DL model (Srinivas A Vaddadi)

1803

Rohith Vallabhaneni is a dedicated worker with a strong work ethic in leading

teams to solve organizational issues. He is capable of learning all aspects of information

within a company and using the technical knowledge and business background to effectively

analyze security measures to determine their effectiveness in order to strengthen the overall

security posture. He has great work ethic and outstanding team leadership skills and seek to

accomplish organizational goals, while growing in knowledge and experience. He can be

contacted at email: rohit.vallabhaneni.2222@gmail.com.

Santosh Reddy Addula a Senior Member of IEEE, is a research scholar at the

University of the Cumberlands. His educational qualifications include a Ph.D. and a Master of

Science in Information Technology. With extensive experience in the IT industry, he has

demonstrated expertise across multiple domains. Santosh is an innovator who has made

significant contributions to academic research through his articles as an author and co-author.

Additionally, he serves as a reviewer for esteemed journals, demonstrating his commitment to

advancing knowledge and upholding high standards in scholarly publications within his field.

He can be contacted at email: santoshaddulait@gmail.com.

Bhuvanesh Ananthan received the B.E. degree in Electrical and Electronics

Engineering from Anna University in 2012, M.Tech. in Power System Engineering from

Kalasalingam University in 2014 and Ph.D. degree from Faculty of Electrical Engineering of

Anna University in 2019. He has published more than papers in reputed 100 international

journals, 75 papers in international conferences and 20 books. He is a life time member of

International Society for Research and Development, International Association of Engineers.

He can be contacted at email: bhuvanesh.ananthan@gmail.com.

https://orcid.org/0009-0003-3719-2704
https://orcid.org/0009-0000-3286-8224
https://orcid.org/0000-0002-2842-9680

