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 This research article introduces a deep learning (DL) for identifying 

vulnerabilities in the smart contracts, leveraging an optimized DL method. 

The proposed method, termed LogT BiLSTM, combines bidirectional long 

short-term memory (BiLSTM) with logistic chaos Tasmanian devil 

optimization (LogT) for enhancing detection of vulnerability. The evaluation 

of the suggested approach is conducted using publicly available datasets. 

Initially, preprocessing steps involve removing duplicate data and imputing 

missing data. Subsequently, the vulnerability detection process utilizes 

BiLSTM, with the optimization of the loss function achieved through LogT. 

Results indicate promising performance in identifying vulnerabilities in SC, 

highlighting the efficacy of the LogT_BiLSTM approach. 
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1. INTRODUCTION 

Due to the accelerated growth of cryptocurrencies and the gradual maturation of blockchain (BC) 

technology, which together provide decentralised operations, transparent transaction processes, and tamper-

evident properties, the concept of BC and digital currency has drawn a lot of attention in recent years. Thanks 

to these new technologies, computer protocols designed to be distributed, validated, or carried out in an 

informative way have been developed into smart contracts [1]. These contracts may be used as the basis for a 

variety of services and applications. The fast rise of smart contracts is causing them to become more 

complicated, and this is creating more important security concerns owing to the frequent incidence of smart 

contract vulnerabilities [2], [3]. 

Smart contracts play a pivotal role in securing information within decentralized systems, particularly 

in BC technology. These self-executing contracts are encoded with predefined rules and conditions, 

facilitating automatic execution and enforcement without the need for intermediaries [4]. By leveraging 

cryptographic techniques, SC provides the integrity and immutability of data, making them opposed for 

tampering and unauthorized access. They establish trust among parties by providing transparent and auditable 

transactions, as every action is recorded on the BC [5]. Furthermore, smart contracts enable permissioned 

access to sensitive information, allowing only authorized parties to interact with the data based on predefined 

permissions. Through their automated and transparent nature, smart contracts enhance the security of 

https://creativecommons.org/licenses/by-sa/4.0/
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information by reducing the risks associated with human error, fraud, and third-party interference. Thus, they 

serve as a robust mechanism for securing data in decentralized ecosystems [6]. 

Smart contracts face several challenges in guarding against malicious activity, including 

vulnerabilities in the code, exploits, and attacks aimed at manipulating contract execution or stealing 

sensitive information. Traditional security measures may not always suffice to address these threats 

effectively. However, deep learning (DL)-based malicious detection mechanisms offer a promising solution 

by leveraging advanced algorithms to identify and mitigate risks [7]. These mechanisms analyze large 

datasets of smart contract code and transaction histories to detect patterns indicative of malicious behavior. 

By learning from past incidents and continuously updating their models, DL algorithms can adapt to evolving 

threats and identify previously unseen attack vectors [8]. Additionally, they can detect anomalies in real-time, 

enabling proactive responses to potential security breaches. Furthermore, DL-based detection mechanisms 

can complement traditional security measures by providing a more robust defense against sophisticated 

attacks [9]. Through their ability to analyze complex data structures and detect subtle patterns, these 

mechanisms enhance the resilience of smart contracts against malicious activity, thereby strengthening the 

overall security of decentralized systems [10]. Thus, an optimized DL mechanism is introduced in this 

research. The major contribution is: 

− Design of LogT algorithm: the logistic tasmanian devil algorithm (LogT) is designed by integrating the 

logistic chaos with the conventional Tasmanian devil to enhance the performance in terms of convergence 

rate. 

− Design of LogT_BiLSTM based vulnerability detection: the vulnerability in the smart contract is detected 

using the proposed LogT_BiLSTM, wherein the loss function optimization is devised using the LogT 

algorithm. 

The organization of the research is: Section 2 details the related works with problem statement and 

section 3 details the proposed malicious detection mechanism. The experimental results are presented in 

section 4 and conclusion in section 5. 

 

 

2. RELATED WORKS 

The existing methods concerning the malicious node detection in the BC scenario is detailed in this 

section. Aiming to address the security issues [11] designed a novel approach that integrates both 

technologies for enhanced anomaly detection. The technique hinges on deep autoencoder neural networks 

(DANNs) embedded within smart contracts deployed on a BC. DANNs excel at identifying deviations from 

normal patterns, making them ideal for anomaly detection. By integrating them into smart contracts, the 

system leverages the BC ‘s inherent security and transparency, ensuring data immutability and verifiable 

execution. The introduced methodology involves training DANNs on historical sensor data to establish a 

baseline of normal system behavior. Real-time sensor data is then fed into the smart contracts, where the 

DANNs analyze for anomalies. If detected, pre-defined actions are automatically triggered, such as sending 

alerts or initiating remediation procedures. This distributed, autonomous approach eliminates the need for a 

central authority, enhancing security and resilience. The failure in optimizing the parameters of the 

architecture limits the accuracy of detection. 

A DL technique adept at analyzing graph structures like smart contracts was designed by [12]. 

GNNs extract features from the contract’s code, capturing complex relationships and dependencies.  

Phase two incorporates expert rules, encoded as decision trees, to identify specific vulnerability patterns.  

This combined approach leverages the generalizability of DL and the precision of expert knowledge, aiming 

for better accuracy and wider vulnerability coverage. Here, the risk assessment feature streamlines mitigation 

efforts by focusing on critical vulnerabilities. Incorporating and updating expert rules necessitates continuous 

involvement from security experts, posing potential scalability concerns. 

A novel approach to identify the threat was designed by [13] by synergizing the power of DL and 

multimodal fusion (MMDF). The core technique revolves around exploiting diverse informational facets of 

smart contracts. It extracts not only the source code itself, but also the compiled bytecode and control flow 

graph, representing each modality through distinct DL models. These models, tailored to each data type, 

capture comprehensive vulnerability signatures embedded within. The key innovation lies in the multimodal 

fusion module, which intelligently combines the outputs from these individual models, leveraging their 

complementary strengths to achieve a more robust and accurate vulnerability detection. 

A DL-based approach for accurate vulnerability detection was designed by [14] concerning the 

Smart contract. The technique hinges on two key elements: the power of bidirectional long short-term 

memory (BiLSTM) networks and the metric learning prowess of Triplet Loss. BiLSTM networks excel at 

capturing temporal dependencies within code sequences, making them adept at understanding the complex 

logic of smart contracts. Triplet Loss, on the other hand, pushes similar contracts closer together in the 
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feature space while driving dissimilar ones further apart, enhancing the model’s ability to distinguish 

vulnerable contracts from secure ones. The combination of BiLSTM and Triplet Loss surpasses traditional 

methods, achieving high accuracy in detecting various vulnerability types. The training process, especially 

with Triplet Loss, can be computationally demanding, requiring powerful computing resources. 

A system combining machine learning and BC technology was designed by [15] using verifiable 

byzantine fault tolerance (VBFT) approach. The technique leverages two key components like Machine 

learning for decentralized anomaly detection and BC for secure and tamper-proof data storage. At each 

sensor node, a lightweight machine learning model, like an Isolation Forest, analyzes local sensor data and 

network interactions. This model identifies deviations from normal behavior, potentially indicating malicious 

activity. These anomaly reports are then cryptographically signed and broadcasted to the network. 

Distributed detection and tamper-proof data storage make the system more resilient to attacks and 

manipulation. Maintaining a scalable and efficient BC infrastructure for large-scale WSNs requires further 

research. Besides, balancing anomaly detection with preserving node privacy necessitates careful design of 

data sharing mechanisms. 

Hackers have also become interested in smart contract security [16], as they have been using smart 

contract weaknesses to steal illicit assets. A re-entrant vulnerability in TheDAO’s crowdfunding contract was 

exploited by attackers in 2016, causing losses of roughly USD 60 million [17]. A Parity wallet [18] contract 

vulnerability in 2017 caused user losses of USD 31 million. The market value of the BEC tokens produced 

by the United States Chain firm dropped to nearly nothing in 2018 as a result of hackers taking use of an 

integer overflow vulnerability in the Ethereum ERC-20 smart contract [19]. As of 2023, attacks against 

Ethereum smart contracts had resulted in cumulative damages above USD 3.1 billion, as per data from the 

SlowMist website [20]. The vulnerability issue of smart contracts has drawn the attention of more academics 

due to the frequency of BC security incidents and the growing amount of assets involved in smart contracts 

[21]. When security issues arise with smart contracts, it might be challenging to retrieve stolen assets because 

of its tamper-evident and automatically executing features. Therefore, in order to guarantee the security of 

smart contracts and the protection of each participant’s asset interests, it is imperative to identify potential 

security flaws prior to deployment. The majority of current smart contract vulnerability detection techniques 

[22] are based on conventional program vulnerability detection techniques (such C++ and Java), which 

typically use static analysis [23] and dynamic execution techniques [24] to find issues. This approach 

includes flaws including limited automation, low efficiency, and inadequate flexibility and frequently 

depends on the experience of specialists. The application of DL technology for smart contract vulnerability 

detection has gained popularity in recent years due to its rapid development [25]. 

Problem statement: The current strategies for detecting vulnerabilities in SC are primarily based on 

the common methods used in conventional programmes like Java and C++. In addition to having issues with 

limited automation, low efficiency, and inadequate adaptability, this approach frequently depends on the 

knowledge of experts. The application of DL technology for smart contract vulnerability detection has been a 

research hotspot in recent years due to the technology’s fast growth. The shortcomings of traditional 

detection approaches, such as their limited automation, low efficiency, and reliance on specialised expertise, 

can be compensated for by DL-based detection technologies. In this research, an optimised DL model is 

developed to address the problems. 

 

 

3. PROPOSED VULNERABILITY DETECTION AND MITIGATION MECHANISM 

The proposed vulnerability detection of the smart contract is designed based on optimized DL 

method. Initially, the pre-processing is devised based on removing the duplicate data and missing data 

imputation. Finally, the vulnerability detection is devised using the proposed logistic chaos Tasmanian devil 

optimization based bidirectional long short term memory (LogT_BiLSTM). In this, the vulnerability 

detection is devised using the BiLSTM, wherein the loss function optimization is devised using the LogT. 

The structure of proposed vulnerability detection and mitigation mechanism for smart contract is portrayed in 

Figure 1. 

 

 

 
 

Figure 1. Proposed vulnerability detection and mitigation mechanism for smart contract 
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3.1.  Data acquisition 

The input data for processing the proposed vulnerability detection in the smart contact is acquired 

from ethernet smart contracts (ESC) dataset. 

 

3.2.  Data pre-processing 

The duplication removal and missing value imputation are devised in the data pre-processing step 

for enhancing the performance. Here, duplicate data removal ensures that each data point in your dataset is 

unique, which can prevent biases and inaccuracies caused by redundant information. 

 

3.3.  Vulnerability detection using LogT-BiLSTM 

The vulnerability detection is devised using the proposed LogT-BiLSTM, wherein the loss functions 

of the BiLSTM is optimized using the LogT algorithm. The structure of proposed LogT_BiLSTM method is 

portrayed in Figure 2.  

Structure of BiLSTM: the BiLSTM is applicable for time-series data analysis, including 

vulnerability detection in smart contracts. Input layer: the input to the BiLSTM model consists of sequences 

of data points. In the context of vulnerability detection in smart contracts, these data points could represent 

various features extracted from the smart contract code. BiLSTM layer: the essential structure of the 

BiLSTM model comprises two LSTM layers: one processes the input sequence in the forward direction, 

while the other processes it in the backward direction. This bidirectional approach enables the model to grasp 

dependencies from both the past and future, enhancing its ability to understand contextual information within 

the data. The equations governing the operations within an LSTM cell are as follows: 
 

− Forget gate: 𝑘𝑙 = 𝛽(𝐴𝑘 ⋅ [𝑔𝑙−1, 𝑚𝑙] + 𝑑𝑘) (1) 
 

− Input gate:𝑝𝑙 = 𝛽(𝐴𝑝 ⋅ [𝑔𝑙−1,𝑚𝑙] + 𝑑𝑝) (2) 
 

− Candidate gate:�̃�𝑙 = 𝑡𝑎𝑛h(𝐴𝐵 ⋅ [𝑔𝑙−1, 𝑚𝑙] + 𝑑𝐵) (3) 
 

− Cell state update:𝐵𝑙 = 𝑘𝑙 ⋅ 𝐵𝑙−1 + 𝑝𝑙 ⋅ �̃�𝑙 (4) 
 

− Output gate:𝑞𝑙 = 𝛽(𝐴𝑞 ⋅ [𝑔𝑙−1, 𝑚𝑙] + 𝑑𝑞) (5) 
 

− Hidden state update:𝑔𝑙 = 𝑞𝑙 ⋅ 𝑡𝑎𝑛h(𝐵𝑙) (6) 
 

where, the input at time step 𝑙 is denoted as 𝑚𝑙, the hidden state of the LSTM cell from the previous time step 

is signified as 𝑔𝑙−1, and the forget, input, candidate, and output gate is denoted as 𝑘𝑙, 𝑝𝑙 , �̃�𝑙 , and 𝑞𝑙 

respectively. The cell state at time step𝑙is defined as 𝐵𝑙 , and sigmoid activation function is signified as 𝛽. 

Hyperbolic tangent activation function is denoted as 𝑡𝑎𝑛ℎ, and weight matrices for the forget gate, input, 

candidate, and output is denoted as 𝑑𝑘, 𝑑𝑝, 𝑑𝐵, and 𝑑𝑞 respectively. Besides, the bias concerning the layers is 

signified as 𝐴𝑘, 𝐴𝑝, 𝐴𝐵, and 𝐴𝑞. 
 

 

 
 

Figure 2. Structure of BiLSTM 
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Output layer: by leveraging the bidirectional nature of the BiLSTM model, it can effectively obtain 

complex patterns and dependencies in the input sequences, making it suitable for vulnerability detection in 

smart contracts where understanding both past and future code context is crucial. 

Loss function optimization using LogT algorithm: the loss function optimization is devised using the 

LogT algorithm, wherein the logistic chaos is integrated in the Tasmanian devil algorithm for obtaining the 

global best solution. Here, the Logistic chaotic mapping introduces randomness into the search process, 

helping the algorithm escape local optima and explore a wider range of solutions. This can be particularly 

useful for complex optimization problems with many local minima. The initialization of the algorithm is 

represented as (7). 

 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑟

⋮
𝐹𝑃]

 
 
 
 

𝑃×𝐺

=

[
 
 
 
 
𝑓1,1 ⋯ 𝑓1,𝑣 ⋯ 𝑓1,𝐺

⋮ ⋱ ⋮ ⋰ ⋮
𝑓𝑟,1 ⋯ 𝑓𝑟,𝑣 ⋯ 𝑓𝑟,𝐺

⋮ ⋰ ⋮ ⋱ ⋮
𝑓𝑃,1 ⋯ 𝑓𝑃,𝑣 ⋯ 𝑓𝑃,𝐺]

 
 
 
 

𝑃×𝐺

 (7) 

 

Fitness estimation: the fitness of a solution candidate is typically inversely proportional to its MSE 

value. In other words, lower MSE values indicate better performance, so solutions with lower MSE values 

are considered to have higher fitness. The optimization algorithm aims to minimize this MSE value by 

iteratively adjusting the parameters of the model or the solution candidates until a satisfactory solution is 

found. This process involves generating new candidate solutions, evaluating their fitness using the MSE, and 

updating the parameters based on the fitness scores. It is expressed as: 

 

𝐹𝑖𝑡 =
1

𝑑
∑ (𝑎𝑐𝑡𝑥 − 𝑝𝑟𝑒𝑥)

2𝑑
𝑥=1  (8) 

 

where, the number of data points in the dataset is signified as 𝑑, the actual target value for the 𝑥𝑡ℎ data point 

is defined as 𝑎𝑐𝑡𝑥, and the predicted value for the 𝑥𝑡h data point is referred as 𝑝𝑟𝑒𝑥. The fitness function is 

defined as 𝐹𝑖𝑡. 

Exploration phase: the exploration phase mimics the hunting behavior of Tasmanian devils. Besides, 

the exploration phase plays a crucial role in diversifying the population and helping the algorithm avoid 

getting stuck in local optima. The detection of prey is evaluated initially and is formulated as: 

 

𝐴𝑟 = 𝐹𝑚, 𝑟 = 1,2, . . . . 𝑃,𝑚 ∈ {1,2, . . . . 𝑃|𝑚 ≠𝑟} (9) 

 

where, the search agent 𝑟 chooses the prey 𝐴𝑟. After identifying the prey, the individuals update their 

position and are defined as: 

 

𝑓𝑟,𝑣
𝑛,𝐷1 = {

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑠𝑣,𝑤 − 𝑀 ⋅ 𝑓𝑣,𝑤), 𝐹𝑖𝑡𝐴𝑟
< 𝐹𝑖𝑡𝑟

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑓𝑣,𝑤 − 𝑠𝑣,𝑤), 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

 

𝐹𝑟 = {
𝐹𝑟

𝑛,𝐷1, 𝐹𝑖𝑡𝑟
𝑛,𝐷1 < 𝐹𝑖𝑡𝑟

𝐹𝑟 , 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

 

where, 𝑔 indicates the variable with [0,1], 𝐸𝑟
𝑛,𝐷1

 is the new location that the search agent has assessed, and 

the definitions of the fitness function and carrion’s fitness are 𝐹𝑖𝑡𝑟
𝑛,𝐷1

 and 𝐹𝑖𝑡𝐴𝑟
 respectively. 𝑀 indicates the 

arbitrary variable with the value, it is shown as that which uses the values 2 or 1. Here, if the selection of 

prey and movement mechanisms lack randomness, the algorithm might become repetitive and get stuck in the 

same patterns, which is solved by including logistic chaos mapping in the exploration phase. The logistic 

chaos is outlined as:  

 

𝑓𝑟,𝑣
𝑛,𝐷1 = 𝐻 ⋅ 𝑓𝑟,𝑣

𝐷1(1 − 𝑓𝑟,𝑣
𝐷1) (12) 

 

where, the factor utilized for obtaining the enhanced randomization phase is defined as 𝐻 that falls within the 

range of [0,1]. The solution obtained after the inclusion of logistic chaos is defined as: 

 

(𝑓𝑟,𝑣
𝑛,𝐷1)

𝐿𝑜𝑔𝑇
= 0.5(𝑓𝑟,𝑣

𝑛,𝐷1)
𝑇𝑎𝑠𝑚𝑎𝑛𝑖𝑎𝑛⥂𝑑𝑒𝑣𝑖𝑙

+ 0.5(𝑓𝑟,𝑣
𝑛,𝐷1)

𝑙𝑜𝑔 𝑖𝑠𝑡𝑖𝑐𝑐h𝑎𝑜𝑠
 (13) 
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(𝑓𝑟,𝑣
𝑛,𝐷1)

𝐿𝑜𝑔𝑇
= 0.5 ({

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑠𝑣,𝑤 − 𝑀 ⋅ 𝑓𝑣,𝑤), 𝐹𝑖𝑡𝐴𝑟
< 𝐹𝑖𝑡𝑟

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑓𝑣,𝑤 − 𝑠𝑣,𝑤), 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
) + 0.5 (𝐻 ⋅ 𝑓𝑟,𝑣

𝐷1(1 − 𝑓𝑟,𝑣
𝐷1)) (14) 

 

(𝑓𝑟,𝑣
𝑛,𝐷1)

𝐿𝑜𝑔𝑇
= {

0.5 (𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑠𝑣,𝑤 − 𝑀 ⋅ 𝑓𝑟,𝑣)) + 0.5 (𝐻 ⋅ 𝑓𝑟,𝑣
𝐷1(1 − 𝑓𝑟,𝑣

𝐷1)) , 𝐹𝑖𝑡𝐴𝑟
< 𝐹𝑖𝑡𝑟

0.5 (𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑓𝑟,𝑣 − 𝑠𝑣,𝑤)) + 0.5 (𝐻 ⋅ 𝑓𝑟,𝑣
𝐷1(1 − 𝑓𝑟,𝑣

𝐷1)) , 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (15) 

 

using the proposed solution updation (15), the global best solution is obtained.  

Local search: the algorithm prioritizes exploration in regions of the solution space that have shown 

potential for good solutions based on the information gathered in the exploration phase. In this phase, the 

search agent chases it by updating its position based on the chosen prey’s location. This update involves a 

combination of movement towards the prey and random exploration within the local neighborhood. The prey 

is chosen through: 

 

𝑄𝑟 = 𝐹𝑚, 𝑟 = 1,2, . . . . 𝑃,𝑚 ∈ {1,2, . . . . 𝑃|𝑚 ≠𝑟} (16) 

 

where, 𝑄𝑟  signifies the prey chosen by 𝑟𝑡ℎ search agent. Then, the solution updated by the search agent is 

represented as. 

 

(𝑓𝑟,𝑣
𝑛,𝐷1) = {

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑑𝑣,𝑤 − 𝑀 ⋅ 𝑓𝑟,𝑣), 𝐹𝑖𝑡𝑄𝑟
< 𝐹𝑖𝑡𝑟

𝑓𝑟,𝑣 + 𝑔 ⋅ (𝑓𝑟,𝑣 − 𝑞𝑟,𝑣), 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (17) 

 

𝐹𝑟 = {
𝐹𝑟

𝑛,𝐷2, 𝐹𝑖𝑡𝑟
𝑛,𝐷2 < 𝐹𝑖𝑡𝑟

𝐹𝑟 , 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (18) 

 

Where, the fitness of the prey is defined as 𝐹𝑖𝑡𝑄𝑟
, the fitness of solution is defined as 𝐹𝑖𝑡𝑟

𝑛,𝐷2
, 𝑣𝑡ℎ 

variable’s solution is defined as 𝑓𝑟,𝑣
𝑛,𝐷1

, and the solution estimated by the search agent 𝑟is defined as 𝐹𝑟
𝑛,𝐷2

. 

The exploitation beyond the search area is limited by adjusting the radius and is formulated as (19). 

 

𝐾 = 0.01 (1 −
𝑙

𝐿
) 

 (19) 

 

After adjusting the search radius, the position updation of the search agent is defined as (20). 

 

𝑓𝑟,𝑣
𝑛 = 𝑓𝑟,𝑣 + (2𝐾 − 1) ⋅ 𝑄 ⋅ 𝑓𝑟,𝑣 (20) 

 

The updated solution is evaluated for its feasibility and is represented as (21). 

 

𝐹𝑟 = {
𝐹𝑟

𝑛 , 𝐹𝑖𝑡𝑟
𝑛 < 𝐹𝑖𝑡𝑟

𝐹𝑟 , 𝑂𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
 (21) 

 

The upper bound of algorithm is defined as 𝐿, but the current iteration is signified as 𝑙.  
Stoppage: the algorithm terminates after a specified number of iterations have been completed. This 

criterion ensures that the algorithm doesn’t run for an excessively long time. Else, LogT may stop when the 

improvement in the best solution found falls below a certain threshold over a predefined number of iterations. 

This indicates that the algorithm has converged to a satisfactory solution. Thus, using the solution obtained 

through the LogT, the loss function optimization is devised for identifying the vulnerability in smart contract. 

 

 

4. RESULT AND DISCUSSION 

Besides, the existing smart contract based malicious detection methods were compared with 

suggested approach to illustrate the superiority of the proposed method. The conventional methods like 

BiLSTM [14], Deep AutoEncoder [11], MMDF [13], and VBFT [15] are utilized for comparison. 

 

4.1.  Comparative analysis 

Figure 3 presents a comprehensive comparative analysis of the proposed model’s performance 

against other methods, including Deep AutoEncoder, MMDT, BLSTM, and VBFT, across four key 
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evaluation metrics: accuracy, precision, recall, and F-score, for varying K-fold values. In terms of accuracy 

Figure 3(a), the proposed model consistently outperforms the competing techniques, demonstrating superior 

predictive accuracy across all K-fold values. Precision analysis (Figure 3(b)) further highlights the proposed 

method’s ability to minimize false positives effectively, as it consistently achieves the highest precision scores. 

Similarly, in recall Figure 3(c), the proposed approach outperforms its counterparts by identifying relevant 

instances with minimal false negatives, indicating its reliability in recall-sensitive scenarios. Finally, the F-score 

analysis Figure 3(d), which balances precision and recall, shows that the proposed model achieves the highest 

scores across all K-fold values, underscoring its robust and balanced performance. Overall, these results confirm 

the superior efficacy of the proposed model compared to the baseline methods in all evaluated metrics.  

 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 3. Comparative analysis: (a) accuracy, (b) precision, (c) recall, and (d) F-score 

 

 

The analysis is devised by varying the K-fold value of the methods and the outcome is presented. 

Here, the better outcome is evaluated with higher value of K-fold and the proposed LogT_BiLSTM. Here, 

with a higher K-fold value, the dataset is divided into more subsets, allowing for a more comprehensive 

evaluation of the model’s performance across different data samples. This reduces the variance in 

performance estimation, providing a stable and reliable assessment of the model’s effectiveness. Besides, by 

training and testing the model on multiple different subsets of the data, increasing the K-fold value enables 

the model to generalize better to unseen data. 

 

4.2.  Accuracy-loss 

Accuracy refers to the proportion of correctly classified instances (both intrusions and normal 

activities) by the model among all instances. Loss, on the other hand, represents the error or discrepancy 

between the predicted and actual values. Here, the closeness of testing and training accuracy and loss depicts 

the enhanced generalization capability of the model, which provides better outcome while evaluating the 

unknown data in Figure 4. Figure 4 illustrates the accuracy-loss analysis for both training and testing phases 

over multiple epochs, focusing on (a) accuracy and (b) loss. In Figure 4(a), the training and testing accuracy 

show a consistent upward trend as the epochs progress, with the model achieving high accuracy values near 

convergence. This indicates effective learning and generalization, as the test accuracy closely aligns with the 

training accuracy without significant overfitting. In Figure 4(b), both the training and testing loss exhibit a 
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steady decline with increasing epochs, demonstrating that the model effectively minimizes error during the 

learning process. The near-convergence of training and testing loss values reflects the model’s robust 

performance and ability to generalize well to unseen data. These observations collectively validate the 

model’s capability to learn efficiently and perform reliably on both training and testing datasets. 

 

 

  
(a) (b) 

 

Figure 4. Accuracy-loss analysis (a) accuracy and (b) loss 

 

 

4.3.  AUC analysis 

The AUC analysis is portrayed in Figure 5. Here, the analysis based on various measures illustrates 

the suggested approach’s superiority. The reason behind the superiority is the weight optimization of the 

BiLSTM with the novel LogT algorithm. The inclusion of logistic mapping based chaotic mapping within the 

Tasmanian Devil algorithm assist to enhance the detection accuracy. 

 

 

 
 

Figure 5. AUC analysis 

 

 

5. CONCLUSION 

In this study, DL model is introduced for detecting vulnerabilities in SC is which is crucial for 

ensuring their security and reliability in BC applications. By combining BiLSTM with logistic chaos 

Tasmanian devil optimization (LogT), we have developed an effective method, termed LogT_BiLSTM, for 

enhancing vulnerability detection. Through evaluation on publicly available datasets, it is demonstrated the 

efficacy of the proposed approach in accurately identifying vulnerabilities. The preprocessing steps of 

removing duplicate data and imputing missing data contribute to the robustness of our method. Overall, our 

findings suggest that LogT_BiLSTM holds promise for improving the security of smart contracts in BC 

ecosystems. Future research directions may involve further optimization techniques and real-world 

deployment of the proposed approach. Future research on vulnerability detection in smart contracts using a 
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chaos optimization-based DL model can focus on enhancing feature engineering to better capture 

vulnerabilities and developing hybrid models that combine chaos optimization with other techniques for 

improved detection accuracy. There is potential to create scalable, real-time detection systems and explore 

transfer learning for cross-platform vulnerability detection. Additional areas include incorporating 

explainable AI to make the detection process more transparent, integrating dynamic and static analysis, and 

establishing benchmarks for standardized evaluation. Further research could also focus on automating the 

patching of vulnerabilities, reducing manual intervention in smart contract security. 
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