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 Recently, it has become difficult to recognize and easier to misuse digital 

images due to the large number of editing tools available. Detecting 

forgeries in images is crucial for security and forensic purposes. Therefore, 

this research implements a deep learning (DL) method of convolutional 

autoencoder (CAE) which improves colorization-based image forgery 

detection by leveraging spatial and color information, increasing the 

detection accuracy. At first, the pre-processed input forgery images are used 

with the wiener filtering-contrast restricted improved histogram equalization 

(WE-CLAHE) technique. Hybrid dual-tree complex wavelet trigonometric 

transform (H‑DTCWT) and VGG-16 are used to extract effective features 

from the clustered data. Improved horse herd optimization (IHH) is 

employed to reduce the dimensionality of a feature. At last, the CAE model 

is implemented to significantly recognize the image forgery. The accuracy of 

CASIA V1 and GRIP datasets of 99.95% and 99.97%, respectively is 

achieved. Hence, this implemented method obtains a high forgery detection 

performance than the existing methods. 
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1. INTRODUCTION 

Copy-move forgery (CMF) is a prevalent technique employed in image manipulation, aimed at 

deceiving viewers. Its primary objective is to either draw attention to certain elements or conceal specific 

information within an image [1]. As the repeated sections are taken from the same image, they share many 

attributes such as color patterns, noise levels and dynamic ranges. Because these repeating portions bend-in 

with the rest of the image, it becomes challenging for humans to differentiate between the duplicate parts and 

the original image [2], [3]. Splicing, retouching and copy-move are the most popular methods used in image 

forgeries. A section of an image is pasted and copied to a new position in the CMF [4]. This approach repeats 

some elements that are clear from the image by using noise, color, contrast or other factors. As a 

consequence, it becomes increasingly difficult to detect other types of forgeries such as splicing and 

retouching [5], [6]. It is hence necessary to apply certain processing techniques like rotation, scaling, 

https://creativecommons.org/licenses/by-sa/4.0/
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downsampling, JPEG compression and noise addition to increase trust in copy-move altered images. This 

work focuses on copy-move forgery detection (CMFD) methods as image CMF detection is a challenging 

issue [7], [8]. Since JPEG format is used by a majority of digital cameras and image processing software to 

encode digital images, it is crucial to detect the compressing history of JPEG images. Additionally, the 

compression history of an image reveals potential changes in a particular JPEG image [9], [10]. Copy-paste 

and splicing/image composite are the two forgeries that typically affect digital imagery. To identify copy-

paste forgeries, existing academics provide many techniques that all follow an easy procedure of feature 

extraction and feature vector comparison. However, image splicing provides some inherent alliterations to 

the images that increase variations already present.  

Any forgery detection method’s main objective is to identify these inconsistencies in the images 

[11]. It is easy to produce fake images without leaving a race with help of an image editing software, which is 

available for free in the market. These elements have increased the trust issue regarding the reliability of 

digital images in recent years. Therefore, there is a constantly increasing need for efficient digital image 

forgery detection methods [12], [13]. The process of producing CMTIF includes pasting and copying a 

section of the image and then post-processing the resultant image [14]. The essential properties including 

illumination behavior, noise incurred, and color state mare, are essentially maintained in both the source and 

tampered images [15]. Due to a lack of digital media, malicious image-raising has serious negative effects on 

military, politics, academics and the real world. Thus, the need for an effective method of identifying image 

tampering and fraud is crucial [16], [17]. However, there is a major difference in low-level semantic notions, 

because most CMF detection systems primarily rely on scale-invariant feature transform (SIFT), a low-level 

visual representation of digital images [18]. Modern techniques like convolutional neural network (CNN), 

mobile net and ResNet50v2 are trained on large datasets, and automatically extract the possible features 

according to the development of deep learning (DL) [19]. Deep features are used for person identification, skin 

lesion classification and image quality assessment, or a few instances of CNN-based feature extractions [20].  

Walia et al. [21] implemented scale and direction local binary pattern (SD-LBP), utilized for digital 

image manipulation detection. The implemented method was employed to learn deep and complex features 

from pre-processed images for classification into authentic and forged images. IMD 2020, CASIA v1, 

DVMM, and CASIA v2 were four datasets employed to evaluate this method that achieved high detection 

accuracy using ResNet50. Due to less image forgery localization, this method required an extension in 

localized forgery through providing input to the neural network. Srivastava and Yadav [22] implemented 

multiple local binary patterns (LBP) utilized for the detection of both splicing and CMF. An RGB image was 

converted into a Cb and Cr image, while YCbCr image components were extracted in this implemented 

multiple LBP method. CASIA v2.0, Columbia and CASIA v1.0 were three datasets utilized for effectively 

evaluating tampering detection, employed with SVM to provide good results in both small and large datasets. 

Due to their impact on localizing forged parts in spliced images, this method needed to combine DL and ML 

methods, in order to efficiently localize forged parts in spliced images.  

Rao et al. [23] implemented a knowledge-based fuzzy approximation (KBFA) and hybrid grey wolf 

ant lion optimization (H-GWAL) (KBFA with H-GWAL) approach. H-GWAL was implemented to detect 

spliced images, while localized tampered region spliced images were utilized by the KBFA model. The 

KBFA algorithm was used to effectively detect and categorize images, whereas the detection accuracy 

performance was improved by the H-GWAL method. However, the implemented model only localized 

spliced images and did not properly classify the images. Sushir et al. [24] implemented a hybrid deep 

convolutional capsule autoencoder (hybrid DCCAE), which was utilized for significant imager forgery 

recognition. A wiener filtering-contrast limited increased histogram equalization was used to effectively pre-

process the image. The implemented method attained high performance of the system, because of the 

efficient reliability and training model capability, thereby effectively detecting blind image forgeries. 

Nonetheless, the implemented hybrid DCCAE method had lower forgery detection and image recognition 

performance. Diwan et al. [25] implemented the Superpoint approach for detecting CMF in digital images, 

used as a key point detector in self-supervised images. GRIP, CMFD, MICC-F220, MICC-F2000, MIC-

F220, CoMoFoD, CASIA V2.0, and COVERAGE were the eight datasets utilized to detect copy-move image 

forgery. The implemented method produced high results in images with different attacks, and also effectively 

detected CMF in a diverse range of forged images. Due to less effectiveness in forgery detection, this 

Superpoint approach faced computational complexity, along with challenges in real-time processing or large-

scale applications.  

Bibi et al. [26] presented multiple structures stacked autoencoders (SAE) method, which was based 

on CNN utilized for forgery detection. The SAE based CNN method was employed with multiple structures 

which contains two and three stacked autoencoders for decreasing the feature dimensions. Two CASIA 

datasets were utilized to evaluate the presented method, which provided high forgery detection accuracy on 

JPEG image. Nonetheless, the presented method had overfitting issue, due to the complex architecture of 

SAE. Alhaidery et al. [27] implemented region growing-merging segmentation (RGMS) approach, which 
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was utilized to detect CMF in digital images. The implemented RGMS utilized among block-based and 

keypoint-based methods effectively localized the duplicated regions. It additionally improved the detection 

and region of interest assisted in enhancing localization for small and large regions. Yet, this method 

possessed low capability to recognize the difference between the authentic and forged regions. The main 

contributions of this work are given as follows: 

− A DL-based feature extraction approach is used to accurately detect forgery images, alongside reducing 

redundant data and providing valuable features, even in areas with lower contrast and huge-sized 

images along VGGNet and DTT. 

− This study presents a technique for pre-processing images using a WE-CLAHE which enhances contrast 

and noise, and improves system efficiency through feature extraction. 

− Convolutional autoencoder (CAE) is a DL-based classification framework that accurately detects 

forgery, while enhancing classification accuracy due to its enhanced capability. 

The rest of the paper is structured follows: section 2 describes the proposed method. Section 3 explains the 

process of CAE-CNN, while section 4 shows the results and discussion, and conclusion of this work is given 

in section 5. 

 

 

2. PROPOSED METHOD 

In this work, a CAE model is implemented for colorization-based image forgery detection. This 

work includes CASIA V1 and GRIP datasets for collecting data, and WE-CLAHE used in the pre-processing 

phase to effectively eliminate noise from the input image. H‑(DTCWT–DCT) and VGG-16 methods are used 

to extract the optimal features and then, IHH is employed to reduce the features' dimensionality. The 

implemented CAE model is utilized to significantly recognize image forgery. Figure 1 denotes the 

implemented method’s block diagram. 
 
 

 
 

Figure 1. Implemented model’s block diagram 
 

 

2.1.  Datasets 

The work utilizes two datasets including CASIA V1 and GRIP to evaluate the implemented method. 

CASIA V1 [28] and GRIP [29] datasets are employed to collect the information. These two datasets are used 

to detect colorization-based image forgeries. 

 

2.1.1. CASIA V1 dataset 

This CASIA V1 dataset consists of both fake and pristine images, where there are 921 tampered 

images and 800 authentic images. This dataset has 1,721 JPEF compressed images in total, of the size of 

384×256. Thus, the 921 tampered images are divided into 469 spliced and 452 copy-move kind of tampered 

images. Adobe Photoshop software is used to make splice images, which are sections of one image that are 

connected to others. Figure 2 shows the sample images of the CASIA V1 dataset. 
 
 

 
 

Figure 2. Sample images of the CASIA V1 dataset 
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2.1.2. GRIP dataset 

This GRIP dataset was created by Cozzolino, containing 80 input images and 80 plain forgery 

images, which are accessible in 1024×768 in the format of PNG. In the format of PNG, the tampered portions 

are separately deposited. The tampered portion’s location is stored in the format of text in the forgery images. 

This dataset is divided into 3 parts with 50 real images without forgery images, 50 tampered images after 

translation, and scaling 20 sets of an images after rotation. Figure 3 represents the sample images of the GRIP 

dataset. 

 

 

 
 

Figure 3. Sample images of GRIP dataset 

 

 

2.2.  Pre-processing 

Following the collection of data, pre-processing is performed using the wiener filter‑CLAHE. The 

income image size of both datasets contains 768×1024×3 for the GRIP dataset and 256×384×3 for the 

CASIA V1 dataset. An important aim of pre-processing image is to increase the quality of images and 

provide superior evaluations. To improve the accuracy of forgery detection, the unwanted distortions are 

compressed and the features are increased in the image. At first, to eliminate noise pre-processing is 

performed, and the image contrast is increased. This work utilizes wiener filter‑CLAHE [30] to perform pre-

processing. Wiener filter works on statistical models has a low pass filter which ensures that the signals and 

noise are stationary. Neighbourhood means and variance are calculated, and strong smoothing is used when 

the variation is at its minimum, while the minimal smoothing is applied when variation is at its maximum. 

This filter decreases the error between the original signal and estimated signal. If it is assumed that 𝑀′ is the 

estimated image, and 𝑀 is the original image, the error is measured using the (1), where the unexpected term 

is 𝑒, then (2) shows the minimum error function. 

 

𝐸2 = 𝑒{(𝑀 − 𝑀′)2} (1) 

 

𝑀′(𝑓1, 𝑓2) = [
𝐵∗(𝑓1,𝑓2)𝑆′(𝑓1,𝑓2)

|𝑆′(𝑓1,𝑓2)|2𝐵(𝑓1,𝑓2)+𝑆′(𝑓1,𝑓2)
] 𝐶(𝑓1, 𝑓2) (2) 

 

Where, a degraded image transform is 𝐶(𝑓1, 𝑓2), an estimated image in a frequency is 𝑀′(𝑓1, 𝑓2), and a 

degraded function transform is 𝐵(𝑓1, 𝑓2). Then, a non-grading image power spectral value is 𝑆′(𝑓1, 𝑓2), and 

𝐵(𝑓1, 𝑓2) conjugate term is 𝐵∗(𝑓1, 𝑓2). Pre-processed output images are passed as input to the feature 

extraction process.  

 

2.3.  Feature extraction 

Following the image pre-processing, VGG-16 and H‑(DTCWT–DCT) are utilized in this process of 

feature extraction. This process of feature extraction is performed to decrease dimensionality where a large 

pixel’s number is effectively expressed, so that the important parts of the image are collected. Currently, 

discrete wavelet transform is increased with DTCWT for significant properties. The CNN’s most recent 

vision, VVG-16 has a high learning capacity and is simple to assemble. From VGG 16, the most important 

features are extracted with deep neural networks processing the 16 layers. The abstraction of important 

features from VGG-16 and DTWCT is included in this feature extraction process. Low contrast areas are 

enhanced while the quality of the image is improved using the pre-processing technique. The important 

features are then effectively extracted from low contrast regions using the effective feature extraction 

techniques VGG-16 and H‑(DTCWT–DCT), and the performance is enhanced by decreasing the feature 

dimensionality. 

 

2.3.1. H‑(DTCWT–DCT) 

Directional selectivity in 2 or more dimensions and shift variance issues are addressed using 

DTCWT [31]. With the assistance of analytic wavelets, DTCWT achieves directional selectivity. Six 

directional subbands are generated by this model exposed in the directions including +12, +45, +75 real and 
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imaginary parts. Let filters be denoted as ℎ𝑗(𝑚), and 𝑔𝑗(𝑚). The first 𝐹𝑛𝑒𝑤
(𝑙) (𝑒𝑘𝑤) and second 𝑆𝑛𝑒𝑤

(𝑙) (𝑒𝑘𝑤) are 

𝑗𝑡ℎ phase filter bank response expressed in (3). To decompose the image 𝑔(𝑎, 𝑏) using DTCWT for the 

translation’s series, complex scaling dilations and functions of 6 CWT are provided in (4). 

 

𝐹𝑛𝑒𝑤
(𝑙) (𝑒𝑘𝑤) = 𝐹{𝐹𝑛𝑒𝑤

′(𝑙) (𝑒𝑘𝑤)}  (3) 

 

𝑔(𝑎, 𝑏) = ∑ 𝑎𝑗𝑜𝑚∈𝑍2 , 𝑚𝜃𝑗𝑜 , 𝑚(𝑎,𝑏) + ∑ ∑ ∑ 𝑎𝑗
𝜃 , 𝑚

𝜃𝑗
𝜑

, 𝑚(𝑎,𝑏)
𝑚∈𝑍2𝑘≥𝑘𝑜𝑚∈𝑍2  (4) 

 

Where, the scaling term is denoted as 𝑚𝜃𝑗𝑜 , 𝑚(𝑎,𝑏), and 6 wavelet terms are represented as 𝑚
𝜃𝑗

𝜑

, 𝑚(𝑎,𝑏), while 

the wavelets and scaling coefficients are shown as 𝑎𝑗
𝜃  and 𝑎𝑗𝑜. At last, 𝑔(𝑎, 𝑏) image is separated into 𝑠 sub-

bands of non-overlapping. Next, the highest and center frequency sub-bands are divided into blocks of 4 × 4. 

Next, the DCT transform function is appealed to each sub-band block, and the DCT transform is given in (5). 

At last, H‑(DTCWT–DCT) coefficients are extracted from pre-processed images using H‑(DTCWT–DCT). 

 

𝑔(𝑐, 𝑑) = √
2

𝑀
√

2

𝑁
𝛼𝑐𝛼𝑑 ∑ ∑ 𝐼(𝑎, 𝑏)𝑐𝑜𝑠

(2𝑎+1)𝑐∏

2𝑀

𝑁−1
𝑑=0

𝑀−1
𝑐=0 𝑐𝑜𝑠

(2𝑎+1)𝑑∏

2𝑁
  (5) 

 

2.3.2. VGG-16 

The VGG-16’s deep architecture enhances feature extraction for colorization-based image forgeries 

detection, while it is pre-trained on large datasets, hence increasing the model performance with minimal 

training data. The VGG-16 [32] has 16 layers, and it is an excellent vision network. Three 3 fully connected 

(FC) layers, 13 convolutional layers, and 16 learnable weights layers consist of 41 layers of 3 × 224 × 224 

pixel VGG input. It has two types of filters: 2 × 2 with max pooling layer’s stride 2 and 3 × 3 with 

convolutional layers’ stride 1. The 64 and 128 filters are in the first and second convolutional layers. 256, 

512, and 515 filters are in other convolutional layers. 1st and 2nd FC have 4,096 neurons, and at the end, 3 FC 

layers are produced. Last FC utilized for features is reduced to a thousand dimensions. This contains 138 

million parameters approximately, and is a large network. Figure 4 illustrates the VGG-16 architecture. 

H‑(DTCWT–DCT) has a high directional selectivity feature that decomposes image texture from 

different directions and acquires descriptions of multiple feature information. Additionally, max-pooling and 

convolution are appealed for the first 4 blocks in VGG-16. This is because the output of the achieved features 

has a size of 16×16×512 and input image size is 3×224×224. The extracted image features are passed as input 

to the feature selection phase.  

 
 

 
 

Figure 4. Architecture of VGG-16 

 
 

2.4.  Feature selection 

Following the feature extraction, the feature dimensionality is decreased using the IHH. This IHH 

method increases the detection of colorization-based image forgery by effectively exploring solution space, 

resulting in faster convergence and high accuracy. One important procedure that ensures optimal feature 

collection to improve detection accuracy, speed up detection, lower error, and decrease feature 

dimensionality in feature selection. Metaheuristic algorithms extract important features from the feature sets. 

This optimization depends on the horse's characteristics, and it has phases that include Imitation (I), Grazing 

(G), Sociability (S), Defence (D) and Roam (R). Based on the following (6), the movement is provided to 
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horse at each iteration. Where a horse velocity vector is represented as �⃗⃗⃗� 
𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

, the present iteration is 

denoted as 𝑖𝑡𝑒𝑟, horse’s age is showed as 𝑎𝑔𝑒, and 𝑛𝑡ℎ horse position is denoted as 𝑌𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

. 

 

𝑌𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= �⃗⃗⃗� 
𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

+ 𝑌𝑛
(𝑖𝑡𝑒𝑟−1),𝑎𝑔𝑒

 (6) 

 

Grazing (G): the grazing field is developed by IHH optimization around each horse with ℎ 

coefficient, and grazing model is expressed as (7) and (8). Where, the horse motion variable is denoted as 

𝐺 𝑟𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

, and this expression is utilized for decreasing linearity with iterations of 𝜎𝑔. Further, the upper and 

lower limit space in grazing is represented as 𝑈𝐿 and 𝐿𝐿. 

 

𝐺 𝑟𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= ℎ𝑖𝑡𝑒𝑟(𝐿𝐿 + 𝑈𝐿𝑝) + 𝑌𝑛
(𝑖𝑡𝑒𝑟−1)

 (7) 

 

ℎ𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= ℎ𝑛
(𝑖𝑡𝑒𝑟−1),𝑎𝑔𝑒

× 𝜎𝑔  (8) 

 

Hierarchy (H): horses observe hierarchy law in the middle age of 𝛽𝑖 and 𝛾𝑖, as proven by research. It 

is provided in (9) and (10). The horse’s better location is denoted as 𝑌∗
(𝑖𝑡𝑒𝑟−1)

, and the effort of horse’s better 

location is represented as �⃗⃗� 𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

. 

 

�⃗⃗� 𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= 𝑛𝑚
(𝑖𝑡𝑒𝑟−1),𝑎𝑔𝑒

[𝑌∗
(𝑖𝑡𝑒𝑟−1)

− 𝑌𝑛
(𝑖𝑡𝑒𝑟−1)

] (9) 

 

𝑛𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= ℎ𝑛
(𝑖𝑡𝑒𝑟−1),𝑎𝑔𝑒

× 𝜎𝑛 (10) 

 

Sociability (S): it is defined as the number of observed horses aged between years 5 to 15 that 

express interest in a herd, as expressed in (11) and (12). Where, the horse orientation is denoted as 𝑃𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

 

and social vector motion is shown as �⃗� 𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

. With the 𝜎𝑝 factor, 𝑃𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

 is reduced in each cycle. 

 

�⃗� 𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= 𝑃𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

[(
1

𝑀
∑ 𝑌𝑘

(𝑖𝑡𝑒𝑟−1)𝑀
𝑘=1 ) − 𝑌𝑛

(𝑖𝑡𝑒𝑟−1)
]  (11) 

 

𝑃𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= 𝑃𝑚
(𝑖𝑡𝑒𝑟−1),𝑎𝑔𝑒

× 𝜎𝑝  (12) 

 

Imitation (I): the horse characteristic is considered as 𝑗 term in the algorithm. Other horses and the 

behavior of small horses do not convert their lives which is expressed as (13) and (14). Where, the decreased 

factor per cycle is denoted as 𝜎𝑖, motion vector is denoted as �⃗� , and the position is shown as 𝐼 𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

. The 

best position of the total horse is shown as 𝑄𝑛. 

 

𝐼 𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= 𝐼𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

[(
1

𝑄𝑛
∑ �⃗� 𝑘

(𝑖𝑡𝑒𝑟−1)𝑄𝑛
𝑘=1 ) − 𝑌𝑛

(𝑖𝑡𝑒𝑟−1)
] (13) 

 

𝐼𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= 𝐼𝑛
(𝑖𝑡𝑒𝑟−1),𝑎𝑔𝑒

× 𝜎𝑖 (14) 

 

Defence (D): using the negative coefficients system of defense in IHH is determined in (15) and 

(16), utilized to move a horse beyond an unsuited place. Where, the horse with the worst position is 

represented as 𝑄𝑛. The escape vector is denoted by �⃗⃗� 𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

. 

 

�⃗⃗� 𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= −𝑑𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

[(
1

𝑄𝑛
∑ �⃗� 𝑘

(𝑖𝑡𝑒𝑟−1)𝑄𝑛
𝑘=1 ) − 𝑌𝑛

(𝑖𝑡𝑒𝑟−1)
]  (15) 

 

𝑑𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= 𝑑𝑛
(𝑖𝑡𝑒𝑟−1),𝑎𝑔𝑒

× 𝜎𝑑 (16) 

 

Roam (R): the horse is roaming and grazing to find food from one place to another. The roaming 

behavior is commonly viewed in young horses, and represented by (17) and (18). Where, the reduced term is 

shown as 𝜎𝑟, and the local search velocity vector is represented by �⃗� 𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

. In IHH, (19) shows the horse 

velocity among ages 0 to 5 years. 

 

�⃗� 𝑛
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= 𝑟𝑛
(𝑖𝑡𝑒𝑟,𝑎𝑔𝑒)

𝑝𝑌(𝑖𝑡𝑒𝑟−1) (17) 
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𝑟𝑚
𝑖𝑡𝑒𝑟,𝑎𝑔𝑒

= 𝑟𝑚
(𝑖𝑡𝑒𝑟−1),𝑎𝑔𝑒

× 𝜎𝑟 (18) 

 

𝑉𝑚
𝑖𝑡𝑒𝑟 = 𝛽𝑖 × (𝑔𝑚

(𝑖𝑡𝑒𝑟−1),𝛿𝑤𝑔
(𝑢 + 𝑝𝑙)[𝑋𝑚

(𝑖𝑡𝑒𝑟−1)
]) + (𝑤 − 1) ×

𝛾𝑖 [𝑖𝑚
(𝑖𝑡𝑒𝑟−1),𝛿𝑤𝑖] [(

1

𝑝𝑁
∑ 𝑋𝑗

(𝑖𝑡𝑒𝑟−1)𝑝𝑁

𝑗=1 ) − 𝑋(𝑖𝑡𝑒𝑟−1)] + [𝑟𝑚
(𝑖𝑡𝑒𝑟−1),𝛿𝑤𝑤𝑝𝑋𝑚

(𝑖𝑡𝑒𝑟−1)
] (19) 

 

For selecting the meaningful features, the regulation parameters 𝛽𝑖 and 𝛾𝑖 are used. Therefore, IHH 

is employed to select the optimal characteristics. Figure 5 illustrates the flowchart for IHH. The flow chart 

represents the feature selection method’s detailed description. Following the parameter update, it satisfies 

evaluation criteria for the implemented performance; the procedure is repeated until achieving the optimal 

solution. The optimal features enhance the detection speed and performance of overall bling forgery 

detection. The output of selected features is passed as input to the classification process. 

 

 

 
 

Figure 5. IHH optimization flowchart 

 

 

3. CONVOLUTIONAL AUTOENCODER-CONVOLUTIONAL NEURAL NETWORK 

After the feature selection, the implemented CAE-CNN (CAE-CNN) is utilized for the 

categorization process. By using convolutional layers to capture complex color patterns in images, CAE-

CNN improves the accuracy of forgery detection and allows for strong differentiation between forgery and 

authentic images. At first, the training dataset is trained using CAE. The decoder component is discarded 

after the CAE completes its training procedure, whereas compressing first high-dimensional image dataset 

into a compressed dataset of image is carried out by using an encoder. At last, the CAE’s encoder output 

(compressed dataset image) is utilized for training and feeding categorization of CNN including VGG, and 

ResNet. 

In this consequence, 𝐶 represents the model of CNN classification and 𝑙 = {𝑙1, 𝑙2, … 𝑙𝑁}, where 𝑙𝑖 ∈
{0,1}∀𝑖∈ ℕ, as N refers total class output target in classification issue. 𝑥 of initial training dataset is 

converted through 𝐸 encoder into an encoded compressed 2D representation 𝑦. 𝑙 = {𝑙1, 𝑙2, … 𝑙𝑁} is the raw 

output of CNN classification model, as given in (20). The reconstruction error in (21) is used to measure the 

CNN classification model’s performance. 

 

𝑙 = 𝐶(𝑦) (20) 

 

𝑒𝐶𝑁𝑁 = 𝐿𝐶𝑁𝑁(𝑙(𝑘), 𝑙(𝑘)) (21) 
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The difference in measurements like wide and cross-entropy loss functions are represented by the 

function 𝐿𝐶𝑁𝑁. Next, (22) shows the general form of the cost function. At last, optimal weight parameters are 

attained for the categorization model of CNN by reducing the 𝐽𝐶𝑁𝑁 cost function concerning task 

classification. 

 

𝐽𝐶𝑁𝑁 =
1

𝑀
∑ 𝐿𝐶𝐴𝐸 (𝐷 (𝐸(𝑙(𝑘))) , 𝑙(𝑘))𝑀

𝑘=1   (22) 

 

3.1.  Implemented CAE’s architectural design 

The implemented topology architecture of CAE is represented in Figure 6. At last, the CAE’s 

parameter settings configuration setup is denoted in Table 1. The symmetric architecture of the implemented 

CAE with 2D convolutional and deconvolutional layers of 4 batches comes after an activation function of 

rectified linear unit (ReLU). The deconvolutional (or transposed convolution) is performs the convolution 

layer’s reverse operation. It particularly converts information from a low-dimensional space to a high-

dimensional one.  

Most particularly, raw income dimensions 𝐻 × 𝑊 × 3 are passed to 1st layer (2D conv1-ReLU1), 

which is also an income of CAE’s Encoder. The dimensions 𝐻 2⁄ × 𝑊 2⁄  develop 32 downsampled spatial 

feature maps, employing 32 filters of 4 × 4 kernel size. Afterward, the outcome is passed into 2nd layer (2D 

Conv2-ReLU2) which is the output of Encoder with dimensions 𝐻 2⁄ × 𝑊 2⁄ × 3 representation of 

compressed image, employing a dimension with 3 filters of 2 × 2 kernel size. Using a smaller kernel size in 

2nd layer makes it clear because feature maps from 1st layer’s output have smaller dimensional sizes than the 

input image. Likewise, third and fourth-layer CAE’s decoder components perform (2D Deconv4-ReLU4, 2D 

Deconv3-ReLU3) in an encoder’s reverse operation symmetric way. 

 

 

 
 

Figure 6. CAE topology’s architectural presentation 

 

 

Table 1. CAE topology’s parameter settings 
 Layers Input Size Kernel Size Stride Output Size 

 
Encoder 

2D Conv (E. Input) 𝐻 × 𝑊 × 3 4 × 4 × 32 2 × 2 × 1 𝐻 2⁄ × 𝑊 2⁄ × 32 

ReLU 𝐻 2⁄ × 𝑊 2⁄ × 32 - - 𝐻 2⁄ × 𝑊 2⁄ × 32 

2D Conv 𝐻 2⁄ × 𝑊 2⁄ × 32 2 × 2 × 3 2 × 2 × 1 𝐻 4⁄ × 𝑊 4⁄ × 3 

Sigmoid (E. Output) 𝐻 4⁄ × 𝑊 4⁄ × 3 - - 𝐻 4⁄ × 𝑊 4⁄ × 3 

 

Decoder 

2D Deconv3 (D. Input) 𝐻 4⁄ × 𝑊 4⁄ × 3 2 × 2 × 32 2 × 2 × 1 𝐻 2⁄ × 𝑊 2⁄ × 32 

ReLU 𝐻 2⁄ × 𝑊 2⁄ × 32 - - 𝐻 2⁄ × 𝑊 2⁄ × 32 

2D Deconv4 𝐻 2⁄ × 𝑊 2⁄ × 32 4 × 4 × 3 2 × 2 × 1 𝐻 × 𝑊 × 3 

Sigmoid (D. Output) 𝐻 × 𝑊 × 3 - - 𝐻 × 𝑊 × 3 

 

 

Therefore, effective detection accuracy is achieved by using the approach provided, employing two 

different datasets. In comparison to the existing methods, the dimensionality failure and detection time are 

low. Hence, the implemented work is analyzed for the highly accurate use in blind image forgeries efficient 

detection. The following section provides a clear analysis of the performance of the implemented system. 
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4. RESULTS AND DISCUSSION 

The implemented method is trained on two datasets, CASIA V1 and GRIP. Intel core i7 processor, 

Windows 10 (64-bit) operating system and 16 GB RAM are the system requirements for implementing the 

suggested method. This method’s effectiveness is calculated in terms of specificity, recall, F1-score, 

precision, sensitivity and accuracy, explained below. 

 

4.1.  Evaluation parameters 

The parameters like specificity, recall, F1-score, precision, sensitivity and accuracy are utilized to 

compute model performance. The parameters are expressed mathematically in the following (23), (24), (25), 

(26), (27) and (28). Where, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁 and 𝑇𝑃 are denoted as false positive, false negative, true negative 

and true positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (23) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (24) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
  (25) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
 (26) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (27) 

 

Specificity =
𝑇𝑁

(𝐹𝑃+𝑇𝑁)
  (28) 

 

4.2.  Quantitative and qualitative analysis 

This section provides an examination of the CAE method to determine the F1-score, specificity, 

recall, precision, sensitivity and accuracy. The CAE method’s performance is evaluated using two datasets of 

CASIA V1 and GRIP. The effectiveness of the implemented model is represented in different tables below. 

 

4.2.1. Performance analysis using CASIA V1 dataset 

Table 2 represents the presented feature extraction method’s performance. The presented 

H‑(DTCWT–DCT) and VGG-16 methods are compared with the current feature extraction methods 

including DTCWT, VGG-16, and complex wavelet transform (CWT) using the CASIA V1 dataset. The 

presented H‑(DTCWT–DCT) and VGG-16 methods achieve the highest values of 90% precision, 91% recall, 

93% accuracy, 85% F1-score, 92% sensitivity, and 89% specificity, in contrast to the existing feature 

extraction methods. 

Table 3 denotes the presented feature selection method’s performance. The presented IHH technique 

is compared with current feature selection models like the fruit fly optimization algorithm (FOA), artificial 

bee colony (ABC), and crow search algorithm (CSA) on the CASIA V1 dataset. The presented IHH method 

achieves the highest values of 92.21 % precision, 93.79% recall, 95.62% accuracy, 92.87% F1-score, 90.98% 

sensitivity and 94.26% specificity, when compared with other feature selection methods. 
 

 

Table 2. Performance of feature extraction methods 
Feature extraction methods Accuracy (%) Precision  

(%) 

F1-score  

(%) 

Recall 

(%) 

Specificity 

(%)  

Sensitivity 

(%) 

CWT 71 65 75 68 79 70 

DTCWT 65 72 66 75 75 68 
VGG-16 75 74 81 66 71 65 

H‑(DTCWT–DCT) and VGG-16 93 90 85 91 89 92 

 
 

Table 3. Performance of feature selection methods 
Feature selection methods Accuracy (%) Precision  

(%) 

F1-score  

(%) 

Recall 

(%) 

Specificity 

(%)  

Sensitivity 

(%) 

FOA 79.89 80.78 83.46 81.71 86.74 85.51 

CSA 82.56 89.12 85.13 90.82 91.63 87.62 

ABC 91.23 86.45 89.79 88.93 87.52 88.84 

IHH 95.62 92.21 92.87 93.79 94.26 90.98 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Detection of colorization based image forgeries using convolutional … (Soumyashree Muralidhar Panchal) 

1123 

Table 4 shows the implemented model’s classification performance. The presented CAE model is 

compared with current classification models such as VGG-16, Inception and XceptionNet using the CASIA 

V1 dataset. The implemented CAE method attains the highest values of 99.53% precision, 99.62% recall, 

99.95% accuracy, 99.82% F1-score, 99.70% sensitivity, and 99.89% specificity when compared to the other 

classification models. 

 

 

Table 4. Performance of classification models 
Classification methods Accuracy (%) Precision  

(%) 
F1-score  

(%) 
Recall 

(%) 
Specificity 

(%)  
Sensitivity 

(%) 

VGG-16 91.84 89.82 88.94 92.31 85.99 90.89 

Inception 95.52 92.71 93.61 90.64 94.81 91.57 
XceptionNet 93.28 90.93 94.37 88.97 95.78 95.26 

CAE 99.95 99.53 99.82 99.62 99.89 99.70 

 

 

4.2.2. Performance analysis using GRIP dataset 

Table 5 represents the proposed method’s feature extraction performance. The presented 

H‑(DTCWT–DCT) and VGG-16 methods are compared with current methods of feature extraction, including 

DTCWT, VGG-16 and CWT on the GRIP dataset. The presented H‑(DTCWT–DCT) and VGG-16 methods 

attain superior values of 91% precision, 92% recall, 93% accuracy, 90% F1-score, 91% sensitivity and 92% 

specificity, in contrast to the existing methods of feature extraction. 

 

 

Table 5. Performance of feature extraction methods 
Feature extraction methods Accuracy (%) Precision  

(%) 

F1-score  

(%) 

Recall 

(%) 

Specificity 

(%)  

Sensitivity 

(%) 

CWT 89 70 88 79 85 87 
DTCWT 90 89 75 84 89 79 

VGG-16 78 85 86 90 76 81 

H‑(DTCWT–DCT) and VGG-16 93 91 90 92 92 91 

 

 

Furthermore, Table 6 represents the proposed method’s feature selection performance. The 

presented IHH method is compared with current feature selection techniques like the fruit FOA, ABC, and 

CSA on the GRIP dataset. The presented IHH method achieves the highest values of 93.89% precision, 

94.49% recall, 95.35% accuracy, 93.95% F1-score, 93.95% sensitivity, and 92.62% specificity, contrary to 

the existing feature selection methods. 

 

 

Table 6. Performance of feature selection methods 
Feature selection methods Accuracy (%) Precision  

(%) 
F1-score  

(%) 
Recall 

(%) 
Specificity 

(%)  
Sensitivity 

(%) 

FOA 87.36 88.35 82.93 85.96 79.98 90.45 

CSA 92.25 82.59 85.81 86.85 86.89 83.97 

ABC 89.14 90.78 89.50 91.74 81.72 85.84 
IHH 95.35 93.89 92.75 94.49 92.62 93.95 

 

 

Table 7 shows the implemented model’s classification performance. The presented CAE method is 

compared with current classification VGG-16, Inception, and XceptionNet models on the GRIP dataset. The 

implemented CAE method achieves the highest values of 99.59% precision, 99.70% recall, 99.97% accuracy, 

99.48% F1-score, 99.62% sensitivity and 99.58% specificity, contrary to the existing classification models. 

 

 

Table 7. Performance of classification models 
Classification methods Accuracy (%) Precision  

(%) 
F1-score  

(%) 
Recall 

(%) 
Specificity 

(%)  
Sensitivity 

(%) 

VGG-16 85.90 80.97 91.68 89.98 95.17 87.84 

Inception 93.84 92.50 92.18 90.65 93.28 89.95 

XceptionNet 89.99 90.64 93.35 92.32 92.93 94.86 
CAE 99.97 99.59 99.48 99.70 99.58 99.62 
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4.3.  Comparative analysis 

The implemented model’s performance is analyzed by using parameters of precision, recall,  

F1-score, accuracy, specificity and sensitivity, as represented in this section. Table 8 denotes the accuracy of 

The existing and implemented methods on CASIA V1 and GRIP datasets. Table 9 displays the outcomes of 

the existing and implemented methods on both datasets. The suggested model outperforms other methods 

including SD-LBP [21], multiple LBP [22], KBFA with H-GWAL [23], hybrid DCCAE [24], Superpoint [25], 

SAE [26] and RGMS [27], as opposed to the pervious methods with the highest performance values. 

 

 

Table 8. Comparative analysis of accuracy of existing and implemented methods 
Datasets Methods Accuracy (%) 

CASIA V1 dataset SD-LBP [21] 99.31 

Multiple LBP [22] 98.2 

KBFA with H-GWAL [23] 99.56 
Hybrid DCCAE [24] 99.23 

SAE [26] 95.90 

CAE 99.95 
GRIP dataset Hybrid DCCAE [24] 98.07 

Superpoint [25] N/A 

RGMS [27] 96.6 
CAE 99.97 

 

 

Table 9. Comparative analysis of existing and implemented methods 
Datasets Methods Precision 

(%) 
F1-score 

(%) 
Recall 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 

CASIA V1 dataset Multiple LBP [22] N/A N/A N/A 99.1 97.13 

KBFA with H-GWAL [23] 98.97 98.96 99.03 N/A N/A 

CAE 99.53 99.82 99.62 99.89 99.70 

GRIP dataset Hybrid DCCAE [24] 98.07 98.75 98.75 N/A N/A 

Superpoint [25] N/A 96.93 N/A N/A N/A 

RGMS [27] N/A 96.6 96.6 N/A N/A 

CAE 99.59 99.48 99.70 99.58 99.62 

 

 

4.4.  Discussion 

In this work, a CAE model is implemented for colorization-based image forgeries detection. The 

existing method’s limitations and implemented approach’s benefits are discussed in this section. Some 

limitations of the existing methods are that the SD-LBP [21] method has less forgery detected, hence needing 

to extend the detection of forgery by providing an income to neural network. Multiple LBP [22] method has 

an impact on localizing the forged part in spliced images, and so needs to combine other DL and ML 

methods to efficiently localize forged parts in spliced images. Hybrid DCCAE [24] method restricts in 

forgery detection performance due to the challenge in combining capsule networks with autoencoder, and 

also did not recognize the image accurately. Superpoint [25] approach had difficulties for large-scale 

applications. To overcome these issues, CAE model is implemented in this research. The implemented CAE 

combined with CNN effectively extracts the discriminative features from colorized images, enabling the 

forged regions detection based on the difference in colorization patterns. Through the abvementioned 

comparative analysis of Table 8, and as opposed to the existing methods like SD-LBP [21], multiple LBP [22], 

KBFA with H-GWAL [18], hybrid DCCAE [24], Superpoint [25], and SAE [26], the implemented CAE 

method achieves a superior accuracy of 99.95% on CASIS V1 dataset, while achieving 99.97% on the GRIP 

dataset. By using difference in colorization pattern, the implemented CAE method enables to effectively 

distinguish among regions that are forged and authentic, and also obtains commendable accuracy in forgery 

detection. As a further extension, more relevant databases can be included for retrieving the forgery images 

accurately. 

 

 

5. CONCLUSION 

In this paper, colorization-based image forgeries are detected using the implemented CAE model. 

The implemented CAEs are effectively utilized for colorization-based image forgery detection by deploying 

their ability to attain images’ compact representations, while maintaining significant image features. At first, 

the income forgery images are pre-processed for efficient noise removal utilizing the WE-CLAHE method. 

The optimal features are extracted from the clustered data by employing H‑DTCWT–DCT and VGG-16 
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methods. In addition, the feature dimensionality is decreased along IHH, so as to increase the accuracy of 

categorization. At last, the CAE model is developed for significant recognition of image forgery. This 

implemented model is trained on forgery and original images, and the performance is tested on two datasets 

that consist of ground truth, forgery and original images. The implemented CAE model is compared with 

existing methods including SD-LBP, multiple LBP, KBFA with H-GWAL, hybrid DCCAE, Superpoint, and 

SAE, based on metrics of precision, recall, F1-score, accuracy, specificity and sensitivity. When applied on 

CASIA V1 and GRIP datasets, the model obtains commendable accuracy values of 99.95% and 99.97%, 

respectively. Therefore, the implemented method proves to be most robust in forgery detection, as opposed to 

the existing methods. In the future, this work will use more relevant databases to retrieve the forgery images 

accurately. 
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