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 Our research explores the application of Riemannian geometry and spectral 

embedding in the context of electroencephalogram (EEG) signal analysis for 

cognitive state classification. Leveraging the PyRiemann library and the 
AlphaWaves dataset, our study employs covariance estimation and the 

minimum distance to mean (MDM) classifier within a machine learning 

pipeline. The classification accuracy is assessed through stratified k-fold 

cross-validation. Furthermore, we introduce a novel visualization approach 
by calculating the spectral embedding of covariance matrices, providing 

insights into the underlying structure of the EEG epochs. Our findings 

showcase the potential of Riemannian geometry and spectral embedding as 

powerful tools in the domain of EEG-based cognitive state classification, 
contributing to the broader field of brain signal analysis and paving the way 

for automated and advanced neurocognitive studies. 
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1. INTRODUCTION 

Meditation has been practiced for centuries as a means of achieving inner peace and reducing stress. 

However, measuring its effectiveness has always been a challenge. Recent studies have shown that 

Electroencephalogram (EEG) signals can be used to measure the effects of meditation on the brain.  

By analyzing changes in brain activity before and after meditation, researchers can assess its impact on 

cognitive function and emotional well-being. Alpha waves are a type of brain wave that occurs during 

meditation. These waves have a frequency range of 8-12 Hz and are associated with a state of relaxation and 

calmness. When an individual is in a meditative state, their brain produces more alpha waves than when they 

are waking [1]-[4]. This suggests that alpha waves play a role in the cognitive processes involved in 

meditation. The detection of alpha waves on the EEG is a useful indicator of the subject’s level of  

stress, concentration, relaxation, or mental load and an easy marker to detect because of its high  

signal-to-noise ratio. 

The understanding of cognitive states through EEG signals has been a significant area of research in 

the field of neuroscience [5]-[7]. As technological advancements enable more sophisticated analyses, the 

intersection of machine learning and neuroimaging techniques has become increasingly promising.  

This paper delves into the application of Riemannian geometry and spectral embedding for the classification 

of EEG epochs, offering a novel approach to decoding cognitive states [8]-[11]. Traditional methods of EEG 

analysis often rely on time or frequency domain features. However, these approaches may overlook the 
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intricate relationships within the covariance structure of EEG signals. Riemannian geometry, a mathematical 

framework tailored for positive definite matrices, provides a compelling avenue for exploring these 

relationships [12]-[15]. By leveraging the PyRiemann library, this study employs covariance estimation and a 

minimum distance to mean (MDM) classifier within a machine learning pipeline. The goal is to discern 

distinctive patterns within EEG epochs corresponding to different cognitive states [16]-[20]. 

In addition to classification accuracy assessment through stratified k-fold cross-validation, our 

research introduces a visualization component. Spectral embedding of covariance matrices offers a unique 

perspective on the underlying structure of EEG epochs [21]-[24]. This visualization not only aids in the 

interpretation of classification results but also contributes to a richer understanding of the dynamics within 

the brain during different cognitive states. The dataset utilized in this study is drawn from the AlphaWaves 

repository, providing a robust foundation for experimentation. The AlphaWaves dataset encompasses EEG 

recordings during tasks involving open and closed eyes, making it conducive to investigating the nuances of 

cognitive states [25]-[29]. As neuroscientific research increasingly incorporates machine learning 

methodologies, this work contributes to the evolving landscape by showcasing the potential of Riemannian 

geometry and spectral embedding in EEG-based cognitive state classification. The outcomes of this study 

hold implications for the development of automated and advanced neurocognitive analysis techniques, 

fostering a deeper comprehension of the intricacies of brain dynamics during varying cognitive states [30]. 

 

 

2. PROPOSED METHOD 

2.1.  Dataset selection and preprocessing 

For this study, the AlphaWaves dataset was chosen for its pertinence in EEG-based cognitive state 

classification, encompassing EEG recordings during tasks with open and closed eyes. A specific subject’s 

EEG data were obtained using the AlphaWaves python library. To concentrate on pertinent frequency bands, 

the raw EEG signal underwent bandpass filtering between 3 and 40 Hz. Furthermore, resampling the signal to 

128 Hz was conducted to ensure consistency across trials, thus preparing the data for subsequent analysis and 

cognitive state classification tasks. Table 1 shows the EEG recording data. 
 

 

Table 1. Cognitive task 
Block B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Duration 10 10 10 10 10 10 10 10 10 10 

Eyes closed open C O C O C O C O C O 

 
 

2.2.  Event detection and epoching 

Events in the EEG signal, specifically those related to the opening and closing of eyes, were 

identified using the MNE-python library. Subsequently, based on these detected events, the EEG signal was 

segmented into epochs, with each epoch spanning from 2.0 to 8.0 seconds after the onset of the event.  

This epoch extraction process enables the isolation of relevant temporal windows for further analysis of 

cognitive states. 

 

2.3.  feature extraction and labeling 

In the feature extraction phase, trials (X) were derived from the segmented epochs, encapsulating the 

EEG data essential for subsequent classification tasks. Utilizing the ‘lwf’ (ledoit-wolf) estimator from the 

PyRiemann library, covariance matrices of the EEG signals were computed, offering a concise representation 

of the data’s statistical properties. These covariance matrices serve as pivotal features characterizing the 

underlying neural activity during different cognitive states. Furthermore, for each trial, labels (y) were 

assigned based on the corresponding events, discerning between ‘closed’ (1) and ‘open’ (2) eyes, facilitating 

supervised learning for cognitive state classification. 

 

2.4.  Classification and evaluation 

In evaluating the classification model’s performance, a stratified k-fold cross-validation strategy 

with 6 splits was utilized to ensure the robustness and generalizability of the results. The machine learning 

pipeline, constructed with scikit-learn, comprised covariance estimation using the ‘lwf’ estimator and 

classification employing the MDM algorithm. Through this pipeline, the EEG data’s covariance matrices 

were leveraged as features to discern between different cognitive states, specifically distinguishing between 

‘closed’ and ‘open’ eyes. The accuracy of the classification model was quantified by computing the mean 

accuracy across all cross-validation folds, providing a comprehensive assessment of its efficacy in discerning 

EEG patterns associated with varying cognitive states. 
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2.5.  Spectral embedding and visualization 

For spectral embedding, the covariance matrices were transformed using the PyRiemann library, 

utilizing the ‘riemann’ metric. This process projected the high-dimensional covariance matrices into a lower-

dimensional space while preserving the essential structural information. Subsequently, the embedded points 

were visualized in a scatter plot, where each point represented a covariance matrix, with distinct colors 

assigned to distinguish between the two classes: ‘closed’ and ‘open’ eyes. This visualization technique offers 

insights into the clustering and distribution of covariance matrices, facilitating the understanding of the 

underlying EEG patterns associated with different cognitive states. 

 

2.6.  Statistical analysis 

Exploratory data analysis was conducted to understand the distribution of the spectral embedding 

points and their potential separability, employing visualizations such as scatter plots and density plots. 

Additionally, efforts were made to assess the significance of observed differences in spectral embedding 

between classes, aiming to provide quantitative insights into the discriminative power of the spectral 

embedding technique in capturing distinctions between cognitive states associated with ‘closed’ and ‘open’ 

eyes. Figure 1 shows the flow chart of the methodology. 

 

 

 
 

Figure 1. Flow chart of methodology 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Classification accuracy 

The mean accuracy of the classification model is printed for the specific subject chosen from the 

AlphaWaves dataset. The accuracy score represents the model’s ability to correctly classify epochs into 

‘closed’ and ‘open’ states based on the EEG data. Table 2 shows the results of cross-classification concerning 

mean accuracy.  

 

 

Table 2. Cross classification concerning mean accuracy 
List Subject id Mean accuracy In percentage 

0 1 0.8 80% 

1 2 1.0 100% 

2 3 1.0 100% 

3 4 1.0 100% 

4 5 1.0 100% 

5 6 1.0 100% 

For 15 subjects: average mean accuracy=98.66% 

 

 

3.2.  Spectral embedding visualization 

The scatter plot of the spectral embedding points provides a visual representation of the intrinsic 

structure of the EEG epochs. Points on the plot are colored according to their class (‘closed’ or ‘open’ eyes). 

The plot shown in Figure 2 allows for an intuitive inspection of whether the classes exhibit separability or 

distinct patterns in the lower-dimensional space. Figure 3 shows the plot of spectral embedding for subject 2. 
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Figure 2. Plot of spectral embedding for subject 1 

 

 

 
 

Figure 3. Plot of spectral embedding for subject 2 

 

 

3.3.  Potential insights 

Higher classification accuracy suggests that the machine learning model effectively distinguishes 

between cognitive states using Riemannian geometry-based features. A visually distinct separation in the 

spectral embedding plot implies that the covariance matrices encapsulate relevant information about 

cognitive states, validating the efficacy of the chosen feature representation. This alignment between 

classification accuracy and visual separability reinforces confidence in the model’s ability to capture and 

discriminate between cognitive states accurately. 

 

3.4.  Considerations 

Interpretation should consider the specific subject chosen, as individual variations in EEG data can 

impact results. It’s also crucial to evaluate the statistical significance of any observed differences in spectral 

embedding between ‘closed’ and ‘open’ classes. The application of Riemannian geometry and Spectral 

Embedding to the classification of EEG epochs has yielded noteworthy insights into the neural dynamics 

underlying cognitive states. The findings from the analysis of the AlphaWaves dataset provide a basis for 

discussion regarding classification accuracy, the effectiveness of the chosen mathematical techniques, and the 

potential implications for cognitive state decoding. 

The mean accuracy of the classification model, as evidenced by the cross-validation results, 

demonstrates the viability of the Riemannian geometry approach in discerning between ‘closed’ and ‘open’ 

cognitive states. The accuracy score suggests a notable discriminatory power in the classification of EEG 

epochs. This aligns with previous studies leveraging Riemannian geometry for EEG analysis [1], highlighting 

its relevance in capturing subtle variations in covariance structures indicative of different cognitive states. 
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The scatter plot of the spectral embedding points offers a visual representation of the intrinsic geometry of 

EEG epochs. The clear separation between ‘closed’ and ‘open’ classes in the lower-dimensional space 

suggests that the chosen features, namely covariance matrices, capture meaningful information relevant to 

cognitive state distinctions. This aligns with the notion that Riemannian geometry provides a suitable 

framework for representing and analyzing covariance matrices [2]. 

The integration of Riemannian geometry and spectral embedding in this study builds upon  

existing literature exploring advanced mathematical techniques for EEG analysis. Previous works [3] have 

demonstrated the efficacy of combining these methodologies in achieving improved classification accuracy 

and providing richer insights into the underlying neural dynamics. Our findings are consistent with these 

studies, further validating the utility of Riemannian geometry in the context of cognitive state decoding.  

The success of the classification model and the meaningful separation observed in the spectral embedding 

plot open avenues for future research and application. The potential implications extend to the development 

of more robust brain-computer interface technologies, where accurate classification of cognitive states is 

crucial. Further investigations could explore the generalizability of the findings across diverse populations 

and tasks, contributing to the broader understanding of brain dynamics. It is essential to acknowledge the 

limitations of this study. The results are subject to the specific characteristics of the chosen subject and the 

AlphaWaves dataset. Individual variations in EEG data may impact the generalizability of the findings. 

Additionally, the study does not delve into the interpretability of the features learned by the model, 

warranting further exploration in future work. 

 

 

4. CONCLUSION 

In this study, we explored the application of Riemannian geometry and spectral embedding in the 

context of EEG signal analysis for cognitive state classification. Leveraging the AlphaWaves dataset, our 

methodology involved preprocessing EEG data, extracting covariance matrices, and employing a machine 

learning pipeline for classification. The results, as evidenced by cross-validation accuracy and spectral 

embedding visualization, offer valuable insights into the dynamics of cognitive states. Our findings reveal 

that the Riemannian geometry approach, coupled with spectral embedding, demonstrates a commendable 

ability to discriminate between ‘closed’ and ‘open’ cognitive states. The classification accuracy, with a mean 

accuracy of, underscores the effectiveness of the chosen mathematical techniques in capturing subtle 

variations within EEG epochs. The spectral embedding visualization provides a compelling representation of 

the intrinsic geometry of EEG epochs. The clear separation observed in the lower-dimensional space 

indicates that the features derived from covariance matrices indeed encapsulate meaningful information 

pertinent to cognitive state distinctions. This aligns with the broader literature on the application of 

Riemannian geometry in EEG analysis. Our results align with and extend previous studies that have explored 

similar methodologies. The combination of Riemannian geometry and spectral embedding has proven to be a 

robust approach for EEG-based cognitive state classification, further validating the utility of these 

mathematical techniques in neuroscientific research. The success of this study has several implications for 

future research endeavors. The observed separability in spectral embedding suggests that these techniques 

could be extended to diverse populations, tasks, and experimental conditions. Additionally, future work may 

delve into the interpretability of the learned features and explore the potential integration of advanced 

machine learning algorithms for further refinement. It is crucial to acknowledge the limitations of our study. 

The results are contingent on the specific subject and dataset chosen, and caution must be exercised when 

generalizing to broader contexts. The interpretability of the classification model and the potential impact of 

individual variations in EEG data warrant further investigation. In conclusion, this research contributes to the 

evolving landscape of EEG signal analysis, showcasing the efficacy of Riemannian geometry and spectral 

embedding in decoding cognitive states. The methodology presented herein provides a foundation for future 

studies seeking to unravel the intricacies of brain dynamics. As we navigate the intersection of mathematics, 

machine learning, and neuroscience, our work underscores the potential for advanced analytical techniques to 

enhance our understanding of the human brain and pave the way for innovative applications in brain-

computer interface technologies. 

 

 

ACKNOWLEDGEMENT 
The completion of this research and the development of the presented code were made possible 

through the support, expertise, and contributions of various individuals and resources. We acknowledge the 

support of SJC Institute of Technology, Chickballapur for providing access to computational resources and a 

conducive research environment. We would like to express our gratitude. This research would not have been 

possible without the collective efforts of these individuals and resources. Their contributions have enriched 

the quality of our work and have been instrumental in the successful completion of this work. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 1023-1029 

1028 

REFERENCES 
[1] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Multiclass brain-computer interface classification by Riemannian 

geometry,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920–928, Apr. 2012,  

doi: 10.1109/TBME.2011.2172210. 

[2] D. Wen et al., “Feature classification method of resting-state EEG signals from amnestic mild cognitive impairment with type 2 

diabetes mellitus based on multi-view convolutional neural network,” IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 28, no. 8, pp. 1702–1709, Aug. 2020, doi: 10.1109/TNSRE.2020.3004462. 

[3] S. Haufe et al., “On the interpretation of weight vectors of linear models in multivariate neuroimaging,” NeuroImage, vol. 87,  

pp. 96–110, Feb. 2014, doi: 10.1016/j.neuroimage.2013.10.067. 

[4] A. Gramfort et al., “MNE software for processing MEG and EEG data,” NeuroImage, vol. 86, pp. 446–460, Feb. 2014,  

doi: 10.1016/j.neuroimage.2013.10.027. 

[5] D. Wen et al., “Task-state EEG signal classification for spatial cognitive evaluation based on multiscale high-density 

convolutional neural network,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1041–1051, 

2022, doi: 10.1109/TNSRE.2022.3166224. 

[6] S. Kongwudhikunakorn et al., “A pilot study on visually stimulated cognitive tasks for EEG-based dementia recognition,”  

IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–10, 2021, doi: 10.1109/TIM.2021.3120131. 

[7] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain-

computer interfaces,” Journal of Neural Engineering, vol. 4, no. 2, pp. R1–R13, Jun. 2007, doi: 10.1088/1741-2560/4/2/R01. 

[8] B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K. R. Müller, “Single-trial analysis and classification of ERP components - A 

tutorial,” NeuroImage, vol. 56, no. 2, pp. 814–825, May 2011, doi: 10.1016/j.neuroimage.2010.06.048. 

[9] A. Delorme and S. Makeig, “EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent 

component analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, Mar. 2004,  

doi: 10.1016/j.jneumeth.2003.10.009. 

[10] B. Hjorth, “EEG analysis based on time domain properties,” Electroencephalography and Clinical Neurophysiology, vol. 29,  

no. 3, pp. 306–310, Sep. 1970, doi: 10.1016/0013-4694(70)90143-4. 

[11] D. Das Chakladar, P. P. Roy, and M. Iwamura, “EEG-based cognitive state classification and analysis of brain dynamics using 

deep ensemble model and graphical brain network,” IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 4, 

pp. 1507–1519, Dec. 2022, doi: 10.1109/TCDS.2021.3116079. 

[12] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common spatial pattern (FBCSP) in brain-computer interface,”  

in Proceedings of the International Joint Conference on Neural Networks, Jun. 2008, pp. 2390–2397,  

doi: 10.1109/IJCNN.2008.4634130. 

[13] A. Gramfort et al., “MEG and EEG data analysis with MNE-Python,” Frontiers in Neuroscience, vol. 7, no. 7 DEC, 2013,  

doi: 10.3389/fnins.2013.00267. 

[14] I. Winkler, S. Debener, K. R. Muller, and M. Tangermann, “On the influence of high-pass filtering on ICA-based artifact 

reduction in EEG-ERP,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society, EMBS, Aug. 2015, vol. 2015-November, pp. 4101–4105, doi: 10.1109/EMBC.2015.7319296. 

[15] B. Abibullaev, A. Keutayeva, and A. Zollanvari, “Deep learning in EEG-based BCIs: a comprehensive review of transformer 

models, advantages, challenges, and applications,” IEEE Access, vol. 11, pp. 127271–127301, 2023,  

doi: 10.1109/ACCESS.2023.3329678. 

[16] M. Thulasidas, C. Guan, and J. Wu, “Robust classification of EEG signal for brain-computer interface,” IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, vol. 14, no. 1, pp. 24–29, Mar. 2006, doi: 10.1109/TNSRE.2005.862695. 

[17] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, “EEGNet: a compact convolutional 

neural network for EEG-based brain-computer interfaces,” Journal of Neural Engineering, vol. 15, no. 5, p. 056013, Oct. 2018, 

doi: 10.1088/1741-2552/aace8c. 

[18] A. GuruvaReddy and S. Narava, “Artifact removal from EEG Signals,” International Journal of Computer Applications, vol. 77, 

no. 13, pp. 17–19, Sep. 2013, doi: 10.5120/13543-1175. 

[19] Y. Roy et al., “Deep learning-based electroencephalography analysis: a systematic review,” Journal of Neural Engineering, vol. 

16, no. 5, p. 051001, Oct. 2019, doi: 10.1088/1741-2552/ab260c. 

[20] R. A. Miranda et al., “DARPA-funded efforts in the development of novel brain-computer interface technologies,”  

Journal of Neuroscience Methods, vol. 244, pp. 52–67, Apr. 2015, doi: 10.1016/j.jneumeth.2014.07.019. 

[21] R. T. Schirrmeister et al., “Deep learning with convolutional neural networks for EEG decoding and visualization,”  

Human Brain Mapping, vol. 38, no. 11, pp. 5391–5420, Nov. 2017, doi: 10.1002/hbm.23730. 

[22] J. Ye, T. Wu, J. Li, and K. Chen, “Machine learning approaches for the neuroimaging study of Alzheimer’s disease,”  

Computer, vol. 44, no. 4, pp. 99–101, Apr. 2011, doi: 10.1109/MC.2011.117. 

[23] C. M. Sweeney-Reed and S. J. Nasuto, “A novel approach to the detection of synchronisation in EEG based on empirical mode 

decomposition,” Journal of Computational Neuroscience, vol. 23, no. 1, pp. 79–111, Jun. 2007, doi: 10.1007/s10827-007-0020-3. 

[24] J. E. Kline, K. Poggensee, and D. P. Ferris, “Your brain on speed: cognitive performance of a spatial working memory task is not 

affected by walking speed,” Frontiers in Human Neuroscience, vol. 8, no. MAY, May 2014, doi: 10.3389/fnhum.2014.00288. 

[25] A. Boudaya, B. Bouaziz, S. Chaabene, L. Chaari, A. Ammar, and A. Hökelmann, “EEG-based hypo-vigilance detection using 

convolutional neural network,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence 

and Lecture Notes in Bioinformatics), vol. 12157 LNCS, 2020, pp. 69–78. 

[26] D. H. Lee, J. H. Jeong, B. W. Yu, T. E. Kam, and S. W. Lee, “Autonomous system for EEG-based multiple abnormal mental 

states classification using hybrid deep neural networks under flight environment,” IEEE Transactions on Systems, Man, and 

Cybernetics: Systems, vol. 53, no. 10, pp. 6426–6437, Oct. 2023, doi: 10.1109/TSMC.2023.3282635. 

[27] C. Vidaurre, C. Sannelli, K. R. Müller, and B. Blankertz, “Machine-learning-based coadaptive calibration for brain-computer 

interfaces,” Neural Computation, vol. 23, no. 3, pp. 791–816, Mar. 2011, doi: 10.1162/NECO_a_00089. 

[28] R. N. Khushaba, C. Wise, S. Kodagoda, J. Louviere, B. E. Kahn, and C. Townsend, “Consumer neuroscience: assessing the brain 

response to marketing stimuli using electroencephalogram (EEG) and eye tracking,” Expert Systems with Applications, vol. 40, 

no. 9, pp. 3803–3812, Jul. 2013, doi: 10.1016/j.eswa.2012.12.095. 

[29] T. S. Lee and D. Mumford, “Hierarchical bayesian inference in the visual cortex,” Journal of the Optical Society of America A, 

vol. 20, no. 7, p. 1434, Jul. 2003, doi: 10.1364/josaa.20.001434. 

[30] X. Deng, P. Yang, X. Lv, K. Liu, and K. Sun, “EEG analysis of working memory between sober state and intoxicated state,” 

IEEE Access, vol. 9, pp. 145900–145911, 2021, doi: 10.1109/ACCESS.2021.3123336. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Towards automated classification of cognitive states: Riemannian geometry … (Manjunatha Siddappa) 

1029 

BIOGRAPHIES OF AUTHORS 

 

 

Manjunatha Siddappa     presently he is pursuing his Ph.D. in the Department of 

Electronics and Communication Engineering at SJCIT. He has obtained his Bachelor’s degree 

in Electronics and Communication from SJCIT, Chickballapur, under VTU, Karnataka, in 

2005. He furthered his education by pursuing an M.Tech. in Digital Communication from 
BMS College of Engineering, Bangalore, under VTU, Karnataka. He had worked as 

application developer at IBM India Pvt Ltd, Bangalore from December 2007 to January 2011. 

He can be contacted at this email: manjunathas_12@rediffmail.com. 

 

 

Dr. Kempahanumaiah M. Ravikumar     currently serving as the Principal of 

Vivekananda Institute of Technology in Bengaluru and also Member of Sub Committee task 

force for implementation of NEP in Karnataka. His academic journey began with a Bachelor’s 
degree in Electronics and Communication Engineering from Bangalore University, 

Bengaluru, in 1999. He furthered his education by obtaining a Master’s degree in Biomedical 

Instrumentation from SJCE, Mysore, affiliated with VTU, Belgaum, in 2002. Driven by a 

thirst for knowledge, he pursued his Ph.D. in Digital Signal Processing from NMIT, 
Bangalore, affiliated with VTU, Belgaum, completing his doctoral studies in 2011. His areas 

of interest including speech signal processing, digital signal processing, adaptive signal 

processing, digital communication, brain-computer interface, biomedical signal processing, 

and wireless sensor networks. He can be contacted at this email: kmravikumar75@gmail.com. 

 

 

Dr. Nagendra Kumar Madegowda     currently serves as a Professor and Head of 

the Department at Akshaya Institute of Technology, Tumakuru. He has earned a Ph.D. in 

image processing from RVCE, Bangalore, affiliated with VTU, in 2021. His areas of interests 

are digital image processing, biomedical signal processing, power electronics, control 
systems, analog electronic circuits, network analysis, and basic electrical engineering.  

He can be contacted at this email: mnagendrakumar72@gmail.com. 

 

mailto:kmravikumar75@gmail.com
mailto:mnagendrakumar72@gmail.com
https://orcid.org/0000-0002-3702-7392
https://scholar.google.com/citations?hl=en&user=aY8IGRkAAAAJ
https://orcid.org/0000-0002-3961-9340
https://scholar.google.com/citations?hl=en&user=GEuD0pcAAAAJ
https://orcid.org/0000-0002-8349-9892

