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 Structured query language (SQL) injection threats pose severe risks to web 

applications, necessitating robust detection measures. This study introduced 

DSQLIA, employing ensemble learning algorithms-Bagging, Stacking, and 

AdaBoost classifiers-for SQL injection detection. Results unveiled the 

bagging classifier's 84% accuracy with perfect precision (100%) but 

moderate recall (68%). The stacking classifier achieved 85% accuracy, 

exceptional precision (99%), and balanced memory (72%), yielding an 83% 

F1-Score. Remarkably, the AdaBoost classifier outperformed, achieving 

99% accuracy, high precision (98%), and outstanding recall (99%), leading 

to a remarkable 99% F1-Score. These findings highlight AdaBoost's superior 

ability to identify malicious queries with minimal false positives accurately. 

Overall, this research underscores the potential of ensemble learning in 

fortifying web application security against SQL injection attacks, 

emphasizing the AdaBoost classifier's exceptional performance in achieving 

precise and comprehensive detection. 
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1. INTRODUCTION 

Significant volumes of sensitive information belonging to corporations and institutions are housed 

within specialized databases, either within their own servers or overseas. Safeguarding this data from 

unauthorized entry is paramount across diverse industries [1], [2]. Any breach in this data could profoundly 

affect user privacy and the institution's reputation and financial stability. Consequently, data stands as one of 

the most critical assets necessitating preservation and protection. As a result, databases have evolved into 

vital repositories and fundamental components within contemporary organizations [3]. 

Structured query language (SQL) is the universally accepted language for interacting with and 

managing databases. Its functionality empowers database administrators to execute a wide array of operations 

on data, encompassing storage, retrieval, creation, updating, deletion, and more. Information is organized into 

tables that establish connections within databases, adhering to relational database (RDB) principles [4]. This 

framework delineates explicit relationships among data points, ensuring clarity in understanding the 

connections between tables and field types. These relationships are systematically defined within a schema, 

enhancing the ease of exploration within the data's interconnections [5]. 

Expanding on this concept, RDB thrive on well-defined structures, allowing efficient querying and 

manipulation of interconnected data. Examples of prominent RDB systems include Oracle, MySQL, and 

Microsoft SQL Server, each renowned for their robust capabilities in managing relational data structures 

effectively [6]. Initially identified in 1998, SQL injections persist as an unresolved and persistent concern 

https://creativecommons.org/licenses/by-sa/4.0/
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affecting web applications and APIs even after over two decades. These vulnerabilities continue to threaten 

digital security significantly [7]. The open web application security project (OWASP) underscores the gravity of 

injection flaws by consistently featuring them in the Top 10 lists for web application security risks and API 

security threats, emphasizing the enduring relevance and critical nature of addressing these vulnerabilities [8]. 

Despite extensive efforts to fortify cybersecurity measures, SQL injections endure as a prevalent and 

serious threat within the digital landscape. Their persistent presence underscores the need for continued 

vigilance and advanced security protocols to mitigate their risks effectively. OWASP's consistent inclusion of 

injection flaws in their prominent security risk assessments emphasizes the imperative nature of combating 

these vulnerabilities to safeguard web applications and APIs from potential breaches [9]. 

Web applications face potential exploitation by attackers who leverage SQL statement injections or 

unique symbols via user inputs, aiming at the database layer. These attacks primarily aim to access valuable 

assets [10] illicitly. Vulnerabilities in the validation processes of these applications, often stemming from 

programming errors, offer attackers avenues to bypass authentication mechanisms. This, in turn, grants them 

unauthorized entry into databases, enabling the unauthorized retrieval or manipulation of data [10]. 

Recently, researchers, leveraging machine learning algorithms and deep neural network models, have 

proposed numerous detection approaches. Deep neural networks, a branch of machine learning often referred to 

as deep learning; represent a progressive area in artificial intelligence development. These models are designed 

to comprehend intricate patterns and representations in vast datasets. This ability has proven effective in 

deciphering various data types, spanning text, images, and audio. Deep learning holds promise in enhancing 

Web security, demonstrating broad potential across diverse applications [11]. However, a notable drawback of 

neural networks is their inclination toward overly confident predictions, even when those predictions may be 

incorrect [12]. SQL injection attacks (SQLIA) come in various forms, each exploiting distinct vulnerabilities in 

web applications that interact with databases. Figure 1 shows some common types of SQL Injection Attacks. 

 

 

 
 

Figure 1. Types of SQL injection attack 

 

 

The first type is In-band SQL Injection Attacks, also known as error-based and union-based attacks, 

involve using the same communication channel for both the attack and data retrieval. Error-based attacks 

exploit error messages returned by the database to extract information. For instance, an attacker might input 

SQL statements like ' OR 1=1; -- into a login form to provoke an error message disclosing sensitive database 

details. Union-based attacks involve the UNION SQL operator merging the results of two SELECT queries, 

enabling the attacker to obtain data from another table in the database [13]. Example SQL Statement: 

 

 
 

The second type is Out-of-band SQL Injection Attacks leverage a separate communication channel 

to extract data from the database. Attackers use these attacks when in-band techniques are not feasible due to 

firewall restrictions or other limitations. For instance, an attacker might insert malicious queries into the 

application, causing the database to perform DNS requests or trigger outbound HTTP requests to a controlled 

server, thereby exfiltrating sensitive data [14]. Example SQL Statement: 

 

 
 

The last type is Blind SQL Injection Attacks exploit the application's behavior in response to true or 

false conditions without directly extracting data from the database. Boolean-based attacks involve sending 
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crafted SQL statements and analyzing the application's response to deduce the database's structure and data. 

Time-based attacks manipulate SQL queries to introduce time delays, revealing data through the application's 

response times [15]. Example SQL Statement: 

 

 
 

 

2. THE PROPOSED METHODS 

In the domain of intelligent transportation, Zhou and Wang [16] introduced an innovative model 

leveraging the Bayesian network algorithm for detecting XSS attacks. Their study proposed an ensemble 

learning approach incorporating domain expertise and threat intelligence, resulting in an exceptional 

accuracy rate of 96.9%. This accuracy surpasses several other algorithms, such as SVM, random forest, and 

decision tree. Li et al. [17] focused on an intelligent system to detect SQL injection by utilizing LSTM 

networks, achieving an accuracy of 91.79%. Their experimental findings emphasized the effectiveness of a 

sample positive generation method during data collection, mitigating overfitting issues and significantly 

enhancing SQL injection detection in transportation systems. Concurrently, Xie et al. [18] conducted 

research on SQL injection detection, employing an elastic-pooling convolutional neural network (EP-CNN) 

with approximately 4.48 million real-time web log data. Their study revealed that EP-CNN-based detection 

automatically identifies hidden patterns in SQL attacks, swiftly discerning malicious traffic while evading 

conventional SQL injection techniques. 

Alarfaj and Khan [19] introduced a model that employs a probabilistic neural network (PNN) to 

identify instances of SQL injection attacks. To optimize the model’s performance, the authors utilized the 

BAT algorithm, a metaheuristic optimization technique, to determine the most effective smoothing 

parameter. This study utilized a dataset containing 6,000 instances of SQL injections and 3500 normal 

queries. Features were extracted through tokenization and regular expression-based methods, followed by 

selection using Chi-Square testing. Kavitha et al. [20] introduced an approach to prevent SQL injection by 

employing four distinct classifiers: Support vector machines (SVM), artificial neural networks (ANN), 

boosted decision tree, and decision tree. This study utilized a database comprising 1100 vulnerable SQL 

injection samples. Comparative analysis among the classifiers revealed that the decision tree exhibited 

superior performance, albeit at the cost of significant processing time. 

Muhammad and Ghafory [21] proposed an approach utilising a Naive Bayes classifier built upon 

role-based access control to address SQL injection. Their experimental findings demonstrated an accuracy of 

93.3%, with precision at 1.0% and recall at 0.89%. However, this study specifically focused on a particular 

type of SQL injection attack. Dawadi et al. [22] introduced and implemented a Fuzzy neural network to 

construct an expert system for detecting SQL injection attacks. While effective, developing expert systems 

like this is intricate and time-consuming. Ndichu et al. [23] proposed REGEX, a regular expression filter 

approach, for detecting SQL injection attacks, employing a dataset of 20,474 queries. However, the limitation 

of this method lies in its inability to identify novel SQL injection attacks. 

Baliarsingh et al. [24] authors introduced CODDLE, an approach employing a Convolutional Deep 

Neural Network to detect malicious injection attacks by encoding SQL/XSS symbols during the pre-

processing stage. The experimental outcomes demonstrated an accuracy of 95%, with precision reaching 

99% and a recall value of 92%. Conventional machine learning techniques often necessitate manual feature 

crafting, whereas deep learning models [25] can learn intricate hierarchical data representations 

autonomously. Moreover, deep learning exhibits scalability and excels particularly with extensive datasets, 

continuously enhancing performance with dataset expansion. Zhuo and Wang [16] introduced a novel 

detection approach utilizing long short-term memory (LSTM) and abstract syntax trees. This method 

effectively identifies SQLIA within raw query strings, even in scenarios where SQL detection bypasses 

occur. Inspired by the layered architecture of LSTM, Dawadi et al. [21] devised a multi-layered model for 

detecting various web attacks, achieving an 89.34% accuracy rate in SQLIA detection. 

Recent studies have demonstrated the potential of machine learning in medical diagnostics.  

Anaraki et al. [26] utilized convolutional neural networks (CNNs) and genetic algorithms. In another study, 

Desai and Shah [27] applied multi-layer perceptron neural networks and CNNs, indicating the significant 

benefits of advanced neural network models. Gandhi et al. [28] proposed a hybrid detection mechanism 

known as CNN-Bi-LSTM , combining convolutional neural networks for feature extraction and Bidirectional 

LSTMs for capturing long-term data dependencies. This approach attained an experimental accuracy rate of 

98%. Meanwhile, Li et al. [17]. introduced an SQLIA detection method based on adaptive deep forests [29], 

effectively addressing the degradation issue in deep forests' original features as layer numbers increase. Their 

experimental outcomes demonstrated an accuracy rate of 98.75%. 
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3. METHOD 

Figure 2 illustrates the intricate system architecture meticulously crafted to combat the pervasive 

threat of malicious SQL injections using a cutting-edge ensemble learning approach. This holistic system 

blueprint embodies a strategic amalgamation of sophisticated components geared toward robust defense 

mechanisms. Delving deeper into the intricacies depicted in the figure, we discern three pivotal subsystems 

orchestrated to operate in tandem seamlessly: the data collection and preprocessing module, the ensemble 

models framework, and the model performance evaluation apparatus. Each of these subsystems plays a 

pivotal role in fortifying the system's resilience against evolving cyber threats, collectively forming a 

formidable bulwark safeguarding sensitive databases from nefarious exploits. 

 

 

 
 

Figure 2. Proposed model architecture 

 

 

3.1.  Data collection and preprocessing 

The initial phase of the system is dedicated to a series of pivotal steps aimed at priming the data for 

subsequent analysis and model training. Commencing with the acquisition of a dataset containing SQL 

statements, this research employed the Kaggle dataset [30] to train, evaluate, and compare the performance of 

the ensemble classifier. This dataset compilation involved the collection of diverse SQL injection queries 

from multiple websites, comprising a total of 30,919 SQL query statements structured around “SELECT 

FROM” and associated variations. Each statement within the dataset was tagged with a binary label, wherein 

a value of 1 denoted malicious queries, while 0 indicated benign queries. 

Following data acquisition, the subsequent stage involves data cleaning, an essential process for 

identifying and managing inconsistencies, missing values, or noise present within the dataset. In addressing 

the creation of a balanced dataset, this step seeks to tackle class imbalance issues. Strategies encompassing 

oversampling, undersampling, or synthetic data generation are implemented to ensure a more equitable 

distribution among classes, distinguishing between malicious and non-malicious SQL statements. Figure 3 

outlines the dataset before and after we apply the balancing process. 

The subsequent phase in the proposed system centers around Tokenization for SQL Statements, a 

critical procedure responsible for segmenting SQL statements into individual tokens or words. Specifically 

tailored for SQL, this segmentation process disassembles SQL queries into distinct components such as 

keywords, table names, column names, and operators. This breakdown serves to streamline further analysis of 

the data. 

Continuing the progression, the application of term frequency-inverse document frequency (TF-

IDF) takes precedence. As a transformational technique, TF-IDF converts textual data, in this context, the 

tokenized SQL statements, into numerical vectors. TF-IDF's weighted approach prioritizes the importance of 

words within a document concerning an entire document collection, assigning higher weights to terms that 

exhibit significance within a particular document yet maintain lower frequency across the whole document 

corpus. This transformation process serves to prepare the tokenized SQL statements in a numerical format 

compatible with machine learning algorithms. 

Upon completion of preprocessing and vectorization, the dataset undergoes segmentation into 

distinct training and testing subsets. While the training set is designated for machine learning model training, 

the testing set evaluates the models' performance. Employing randomization ensures unbiased representation 

and safeguards against the influence of inherent data order during model training and evaluation. 
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Figure 3. Data balance 

 

 

3.2.  Ensemble classifiers 

To detect SQLIA, a series of three distinct ensemble classifiers were methodically employed to 

ascertain the most effective approach. The initial ensemble model adopted was the bagging classifier, 

employing decision tree as the base estimator. This classifier operates by creating multiple decision tree 

models, each trained on a subset of the dataset. Subsequently, these models contribute to the final prediction 

through aggregation, thereby mitigating overfitting and enhancing the overall robustness of the predictive 

outcome. 

Following the bagging classifier, the stacking classifier was deployed, integrating both decision tree 

and random forest as base estimators, with logistic regression serving as the final estimator. In this ensemble 

configuration, the predictions from the base models, namely decision tree and random forest, are utilized as 

inputs for the logistic regression model, which learns to combine their predictions optimally. By leveraging 

the strengths of multiple algorithms, the stacking classifier endeavours to exploit diverse decision-making 

strategies, potentially resulting in improved performance and generalization capabilities. 

Lastly, the AdaBoost classifier was introduced into the ensemble framework, employing decision 

tree as the base estimator with a maximum depth of 1. AdaBoost operates iteratively by assigning weights to 

incorrectly classified instances in each consecutive training iteration, allowing the subsequent model to focus 

on these misclassified instances. This iterative process facilitates the creation of a strong learner by 

sequentially emphasizing the previously misclassified data points, thereby enhancing the overall predictive 

accuracy and addressing complex decision boundaries effectively. 

Each of these ensemble classifiers, from Bagging and Stacking to AdaBoost, offers unique 

advantages in harnessing the collective power of multiple models to detect intricate patterns indicative of 

SQL Injection Attacks. By leveraging the complementary strengths of diverse base estimators and ensemble 

strategies. These models collectively aim to fortify the detection capability and resilience against various 

SQLIA patterns present within the dataset. 

 

3.3.  Model performance assessment 

Evaluating Ensemble classifiers is crucial to understanding their performance and recognizing their 

strengths and weaknesses. This research tested the model using a 5-fold cross-validation technique and 

assessed it with separate testing datasets. This comprehensive process thoroughly scrutinized and evaluated 

the model's effectiveness. Standard evaluation metrics were utilized to measure the detection model's 

efficiency throughout the training, validation, and testing phases. Figure 4 summarizes the standardized 

performance evaluation metrics. 

 

 

4. RESULTS AND DISCUSSION 

This section highlights the experimental outcomes of the system implemented in the Python 

environment. Figure 5 shows a confusion matrices for three ensemble machine learning classifiers: Bagging, 
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Stacking, and AdaBoost. For the bagging classifier, the matrix indicates a high number of true positives and 

true negatives, with a count of 5.282 and 7.887, respectively, showing that the classifier can correctly identify 

both classes. The false positives are relatively fewer, recorded at 2.444, and the false negatives are minimal, 

at just 11. Figure 5(a) depicts the Bagging Classifier, which correctly identifies 5.282 True Positives (TP), 

7.887 True Negatives (TN), 2444 False Positives (FP) and 11 False Negatives (FN). This classifier 

demonstrates a robust ability to accurately identify both positive and negative cases, with a particularly low 

rate of false negatives. In Figure 5(b), the Stacking Classifier is presented, featuring a count of 5.537 TP, 

7841 TN, 2.189 FP and 57 FN. The matrix suggests that this classifier performs well in identifying true 

positives and true negatives, although it experiences a moderate number of false positives when compared to 

the Bagging Classifier. Figure 5(c) displays the AdaBoost classifier, which has a TP count of 7.652, TN 

count of 7.739, FP count of 74 and FN count of 159. This classifier is exemplary in minimizing false 

positives while still maintaining high accuracy in detecting true positives and negatives, indicating its 

effective application in scenarios where reducing false alarms is critical. 

The stacking classifier also exhibits a robust performance with 5.537 true positives and 7.841 true 

negatives, suggesting its effectiveness in classification. The false positives count is 2.189, and false negatives 

are 57, slightly higher than the bagging classifier but still indicating a robust predictive ability. Lastly, the 

AdaBoost classifier shows the highest number of true positives and true negatives among the three, with 

7.652 and 7.739, respectively, indicating its potent classification strength. It has the lowest false positives and 

false negatives, at 74 and 159, respectively, demonstrating a very high prediction accuracy. Table 1 provides 

a comprehensive summary detailing the performance of the three ensemble models concerning essential 

evaluation metrics, including accuracy, precision, recall, and F1-Score. 

 

 

 
 

Figure 4. Standard performance assessment indicators 

 

 

 
 

Figure 1. Confusion matrices for three different ensemble machine learning classifiers: (a) bagging,  

(b) stacking, and (c) AdaBoost from left to right 
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Table 1. Performance metrics for the proposed models 
 Accuracy Precision Recall F1-Score 

Bagging classifier 84% 100% 68% 81% 
Stacking classifier 85% 99% 72% 83% 

AdaBoost classifier 99% 98% 99% 99% 

 

 

Table 1 outlines the performance evaluation metrics, including accuracy, precision, recall, and F1-

Score, for three distinct classifiers utilized in detecting SQL injection attacks. The bagging classifier achieved 

an accuracy of 84%. It demonstrated perfect precision (100%), indicating that all instances identified as 

malicious were correct. However, its recall stood at 68%, suggesting a moderate ability to detect actual 

malicious instances among all positives. The combined F1-Score for precision and recall was computed at 

81%. 

Meanwhile, the stacking classifier showcased a slightly higher accuracy at 85%. It maintained a 

high precision rate of 99%, implying minimal false positives in its predictions. However, its recall rate was 

measured at 72%, indicating a lower ability to capture all actual malicious instances. The resultant F1-Score 

reached 83%, indicating a good trade-off between precision and recall. 

In contrast, the AdaBoost classifier outperformed the others with an accuracy of 99%. It exhibited a 

high precision of 98%, signifying a low rate of false positive predictions. Moreover, its recall rate stood at 99%, 

demonstrating a robust capability to identify malicious instances. The resultant F1-Score reached an impressive 

99%, denoting an outstanding overall performance by combining precision and recall. These metrics offer a 

comprehensive understanding of the individual classifiers' capabilities in accurately identifying SQL injection 

attacks while also shedding light on their respective trade-offs between precision and recall. 

Table 2 presents a comprehensive comparison of several prominent machine learning algorithms along 

with their corresponding accuracy rates. Our proposed AdaBoost classifier stands out prominently among the 

array of algorithms in terms of accuracy, boasting a remarkable 99% accuracy rate. When compared to other 

prominent models like the Bayesian network algorithm with 97%, LSTM with 92%, Elastic-pooling 

convolutional neural network with 98.7%, Naive Bayes classifier with 93.3%, Convolutional deep neural 

network with 95%, CNN-Bi-LSTM with 98%, and even 'deep forests' with 99%, our AdaBoost classifier 

surpasses them all. Its ability to consistently achieve such a high accuracy rate positions it as a superior choice, 

demonstrating its robustness and efficacy in handling complex data sets with exceptional precision. 

 

 

Table 2. Comprehensive comparison of algorithms for SQL injection techniques 
Source Model Accuracy 

Zhou and Wang [16] Bayesian network algorithm 97% 
Li et al. [17] LSTM 92% 

Xie et al. [18] Elastic-pooling convolutional neural network 97.7 

Muhammad and Ghafory [21] Naive Bayes classifier 93.3 
Baliarsingh et al. [24] Convolutional deep neural network 95% 

Nasereddin et al. [28] CNN-Bi-LSTM 98% 

Krishnan et al. [29]  deep forests' 98% 
Proposed Model AdaBoost classifier 99% 

 

 

5. CONCLUSIONS 

SQL injection attacks represent a critical security threat to web applications, demanding robust 

detection mechanisms. In this study, we introduced DSQLIA, an innovative SQL injection detection model 

harnessing ensemble learning algorithms. Specifically, we integrated three prominent algorithms - bagging 

classifier employing decision tree, stacking classifier combining decision tree and random forest, and 

AdaBoost classifier utilizing decision tree with a maximum depth of 1. The simulation results unveil notable 

insights into the performance of each classifier within our model. The bagging classifier demonstrated an 

accuracy of 84%, exhibiting perfect precision (100%) in correctly identifying malicious instances but 

displaying a moderate recall (68%), indicating room for improvement in detecting all actual malicious 

queries. Its combined F1-Score reached 81%, reflecting the balance between precision and recall. 

Meanwhile, the stacking classifier showed slightly higher accuracy (85%) with outstanding 

precision (99%) and a trade-off in recall (72%). This classifier achieved an F1-Score of 83%, indicating a 

commendable equilibrium between precision and recall rates. In stark contrast, the AdaBoost classifier 

emerged as the top-performing model, boasting an exceptional accuracy of 99%. It showcased high precision 

(98%) and outstanding recall (99%), indicating remarkable capability to identify malicious instances 

accurately. The resulting F1-Score of 99% underscores its outstanding overall performance by harmonizing 
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precision and recall. These metrics comprehensively evaluate each classifier's capacity to identify SQL 

injection attacks effectively. Additionally, they shed light on the trade-offs between precision and recall, 

emphasizing the AdaBoost classifier's superiority in achieving exceptional detection accuracy with minimal 

false positives and a robust ability to capture malicious queries. The findings from our model serve as a 

stepping-stone towards bolstering web application security against SQL injection attacks, showcasing the 

potential of ensemble learning in enhancing detection systems. 
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