
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 35, No. 2, August 2024, pp. 1004~1012

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v35.i2.pp1004-1012  1004

Journal homepage: http://ijeecs.iaescore.com

Ensemble learning techniques against structured query

language injection attacks

Ammar Odeh, Anas Abu Taleb
Department of Computer Science, Princess Sumaya University of Technology, Amman, Jordan

Article Info ABSTRACT

Article history:

Received Mar 14, 2024

Revised Apr 8, 2024

Accepted Apr 13, 2024

 Structured query language (SQL) injection threats pose severe risks to web

applications, necessitating robust detection measures. This study introduced

DSQLIA, employing ensemble learning algorithms-Bagging, Stacking, and

AdaBoost classifiers-for SQL injection detection. Results unveiled the

bagging classifier's 84% accuracy with perfect precision (100%) but

moderate recall (68%). The stacking classifier achieved 85% accuracy,

exceptional precision (99%), and balanced memory (72%), yielding an 83%

F1-Score. Remarkably, the AdaBoost classifier outperformed, achieving

99% accuracy, high precision (98%), and outstanding recall (99%), leading

to a remarkable 99% F1-Score. These findings highlight AdaBoost's superior

ability to identify malicious queries with minimal false positives accurately.

Overall, this research underscores the potential of ensemble learning in

fortifying web application security against SQL injection attacks,

emphasizing the AdaBoost classifier's exceptional performance in achieving

precise and comprehensive detection.

Keywords:

Ensemble learning

Information security

Malicious query detection

SQL injection attacks

Web application vulnerability

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ammar Odeh

Department of Computer Science, Princess Sumaya University of Technology

Amman 1196, Jordan

Email: a.odeh@psut.edu.jo

1. INTRODUCTION

Significant volumes of sensitive information belonging to corporations and institutions are housed

within specialized databases, either within their own servers or overseas. Safeguarding this data from

unauthorized entry is paramount across diverse industries [1], [2]. Any breach in this data could profoundly

affect user privacy and the institution's reputation and financial stability. Consequently, data stands as one of

the most critical assets necessitating preservation and protection. As a result, databases have evolved into

vital repositories and fundamental components within contemporary organizations [3].

Structured query language (SQL) is the universally accepted language for interacting with and

managing databases. Its functionality empowers database administrators to execute a wide array of operations

on data, encompassing storage, retrieval, creation, updating, deletion, and more. Information is organized into

tables that establish connections within databases, adhering to relational database (RDB) principles [4]. This

framework delineates explicit relationships among data points, ensuring clarity in understanding the

connections between tables and field types. These relationships are systematically defined within a schema,

enhancing the ease of exploration within the data's interconnections [5].

Expanding on this concept, RDB thrive on well-defined structures, allowing efficient querying and

manipulation of interconnected data. Examples of prominent RDB systems include Oracle, MySQL, and

Microsoft SQL Server, each renowned for their robust capabilities in managing relational data structures

effectively [6]. Initially identified in 1998, SQL injections persist as an unresolved and persistent concern

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Ensemble learning techniques against structured query language injection attacks (Ammar Odeh)

1005

affecting web applications and APIs even after over two decades. These vulnerabilities continue to threaten

digital security significantly [7]. The open web application security project (OWASP) underscores the gravity of

injection flaws by consistently featuring them in the Top 10 lists for web application security risks and API

security threats, emphasizing the enduring relevance and critical nature of addressing these vulnerabilities [8].

Despite extensive efforts to fortify cybersecurity measures, SQL injections endure as a prevalent and

serious threat within the digital landscape. Their persistent presence underscores the need for continued

vigilance and advanced security protocols to mitigate their risks effectively. OWASP's consistent inclusion of

injection flaws in their prominent security risk assessments emphasizes the imperative nature of combating

these vulnerabilities to safeguard web applications and APIs from potential breaches [9].

Web applications face potential exploitation by attackers who leverage SQL statement injections or

unique symbols via user inputs, aiming at the database layer. These attacks primarily aim to access valuable

assets [10] illicitly. Vulnerabilities in the validation processes of these applications, often stemming from

programming errors, offer attackers avenues to bypass authentication mechanisms. This, in turn, grants them

unauthorized entry into databases, enabling the unauthorized retrieval or manipulation of data [10].

Recently, researchers, leveraging machine learning algorithms and deep neural network models, have

proposed numerous detection approaches. Deep neural networks, a branch of machine learning often referred to

as deep learning; represent a progressive area in artificial intelligence development. These models are designed

to comprehend intricate patterns and representations in vast datasets. This ability has proven effective in

deciphering various data types, spanning text, images, and audio. Deep learning holds promise in enhancing

Web security, demonstrating broad potential across diverse applications [11]. However, a notable drawback of

neural networks is their inclination toward overly confident predictions, even when those predictions may be

incorrect [12]. SQL injection attacks (SQLIA) come in various forms, each exploiting distinct vulnerabilities in

web applications that interact with databases. Figure 1 shows some common types of SQL Injection Attacks.

Figure 1. Types of SQL injection attack

The first type is In-band SQL Injection Attacks, also known as error-based and union-based attacks,

involve using the same communication channel for both the attack and data retrieval. Error-based attacks

exploit error messages returned by the database to extract information. For instance, an attacker might input

SQL statements like ' OR 1=1; -- into a login form to provoke an error message disclosing sensitive database

details. Union-based attacks involve the UNION SQL operator merging the results of two SELECT queries,

enabling the attacker to obtain data from another table in the database [13]. Example SQL Statement:

The second type is Out-of-band SQL Injection Attacks leverage a separate communication channel

to extract data from the database. Attackers use these attacks when in-band techniques are not feasible due to

firewall restrictions or other limitations. For instance, an attacker might insert malicious queries into the

application, causing the database to perform DNS requests or trigger outbound HTTP requests to a controlled

server, thereby exfiltrating sensitive data [14]. Example SQL Statement:

The last type is Blind SQL Injection Attacks exploit the application's behavior in response to true or

false conditions without directly extracting data from the database. Boolean-based attacks involve sending

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 1004-1012

1006

crafted SQL statements and analyzing the application's response to deduce the database's structure and data.

Time-based attacks manipulate SQL queries to introduce time delays, revealing data through the application's

response times [15]. Example SQL Statement:

2. THE PROPOSED METHODS

In the domain of intelligent transportation, Zhou and Wang [16] introduced an innovative model

leveraging the Bayesian network algorithm for detecting XSS attacks. Their study proposed an ensemble

learning approach incorporating domain expertise and threat intelligence, resulting in an exceptional

accuracy rate of 96.9%. This accuracy surpasses several other algorithms, such as SVM, random forest, and

decision tree. Li et al. [17] focused on an intelligent system to detect SQL injection by utilizing LSTM

networks, achieving an accuracy of 91.79%. Their experimental findings emphasized the effectiveness of a

sample positive generation method during data collection, mitigating overfitting issues and significantly

enhancing SQL injection detection in transportation systems. Concurrently, Xie et al. [18] conducted

research on SQL injection detection, employing an elastic-pooling convolutional neural network (EP-CNN)

with approximately 4.48 million real-time web log data. Their study revealed that EP-CNN-based detection

automatically identifies hidden patterns in SQL attacks, swiftly discerning malicious traffic while evading

conventional SQL injection techniques.

Alarfaj and Khan [19] introduced a model that employs a probabilistic neural network (PNN) to

identify instances of SQL injection attacks. To optimize the model’s performance, the authors utilized the

BAT algorithm, a metaheuristic optimization technique, to determine the most effective smoothing

parameter. This study utilized a dataset containing 6,000 instances of SQL injections and 3500 normal

queries. Features were extracted through tokenization and regular expression-based methods, followed by

selection using Chi-Square testing. Kavitha et al. [20] introduced an approach to prevent SQL injection by

employing four distinct classifiers: Support vector machines (SVM), artificial neural networks (ANN),

boosted decision tree, and decision tree. This study utilized a database comprising 1100 vulnerable SQL

injection samples. Comparative analysis among the classifiers revealed that the decision tree exhibited

superior performance, albeit at the cost of significant processing time.

Muhammad and Ghafory [21] proposed an approach utilising a Naive Bayes classifier built upon

role-based access control to address SQL injection. Their experimental findings demonstrated an accuracy of

93.3%, with precision at 1.0% and recall at 0.89%. However, this study specifically focused on a particular

type of SQL injection attack. Dawadi et al. [22] introduced and implemented a Fuzzy neural network to

construct an expert system for detecting SQL injection attacks. While effective, developing expert systems

like this is intricate and time-consuming. Ndichu et al. [23] proposed REGEX, a regular expression filter

approach, for detecting SQL injection attacks, employing a dataset of 20,474 queries. However, the limitation

of this method lies in its inability to identify novel SQL injection attacks.

Baliarsingh et al. [24] authors introduced CODDLE, an approach employing a Convolutional Deep

Neural Network to detect malicious injection attacks by encoding SQL/XSS symbols during the pre-

processing stage. The experimental outcomes demonstrated an accuracy of 95%, with precision reaching

99% and a recall value of 92%. Conventional machine learning techniques often necessitate manual feature

crafting, whereas deep learning models [25] can learn intricate hierarchical data representations

autonomously. Moreover, deep learning exhibits scalability and excels particularly with extensive datasets,

continuously enhancing performance with dataset expansion. Zhuo and Wang [16] introduced a novel

detection approach utilizing long short-term memory (LSTM) and abstract syntax trees. This method

effectively identifies SQLIA within raw query strings, even in scenarios where SQL detection bypasses

occur. Inspired by the layered architecture of LSTM, Dawadi et al. [21] devised a multi-layered model for

detecting various web attacks, achieving an 89.34% accuracy rate in SQLIA detection.

Recent studies have demonstrated the potential of machine learning in medical diagnostics.

Anaraki et al. [26] utilized convolutional neural networks (CNNs) and genetic algorithms. In another study,

Desai and Shah [27] applied multi-layer perceptron neural networks and CNNs, indicating the significant

benefits of advanced neural network models. Gandhi et al. [28] proposed a hybrid detection mechanism

known as CNN-Bi-LSTM , combining convolutional neural networks for feature extraction and Bidirectional

LSTMs for capturing long-term data dependencies. This approach attained an experimental accuracy rate of

98%. Meanwhile, Li et al. [17]. introduced an SQLIA detection method based on adaptive deep forests [29],

effectively addressing the degradation issue in deep forests' original features as layer numbers increase. Their

experimental outcomes demonstrated an accuracy rate of 98.75%.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Ensemble learning techniques against structured query language injection attacks (Ammar Odeh)

1007

3. METHOD

Figure 2 illustrates the intricate system architecture meticulously crafted to combat the pervasive

threat of malicious SQL injections using a cutting-edge ensemble learning approach. This holistic system

blueprint embodies a strategic amalgamation of sophisticated components geared toward robust defense

mechanisms. Delving deeper into the intricacies depicted in the figure, we discern three pivotal subsystems

orchestrated to operate in tandem seamlessly: the data collection and preprocessing module, the ensemble

models framework, and the model performance evaluation apparatus. Each of these subsystems plays a

pivotal role in fortifying the system's resilience against evolving cyber threats, collectively forming a

formidable bulwark safeguarding sensitive databases from nefarious exploits.

Figure 2. Proposed model architecture

3.1. Data collection and preprocessing

The initial phase of the system is dedicated to a series of pivotal steps aimed at priming the data for

subsequent analysis and model training. Commencing with the acquisition of a dataset containing SQL

statements, this research employed the Kaggle dataset [30] to train, evaluate, and compare the performance of

the ensemble classifier. This dataset compilation involved the collection of diverse SQL injection queries

from multiple websites, comprising a total of 30,919 SQL query statements structured around “SELECT

FROM” and associated variations. Each statement within the dataset was tagged with a binary label, wherein

a value of 1 denoted malicious queries, while 0 indicated benign queries.

Following data acquisition, the subsequent stage involves data cleaning, an essential process for

identifying and managing inconsistencies, missing values, or noise present within the dataset. In addressing

the creation of a balanced dataset, this step seeks to tackle class imbalance issues. Strategies encompassing

oversampling, undersampling, or synthetic data generation are implemented to ensure a more equitable

distribution among classes, distinguishing between malicious and non-malicious SQL statements. Figure 3

outlines the dataset before and after we apply the balancing process.

The subsequent phase in the proposed system centers around Tokenization for SQL Statements, a

critical procedure responsible for segmenting SQL statements into individual tokens or words. Specifically

tailored for SQL, this segmentation process disassembles SQL queries into distinct components such as

keywords, table names, column names, and operators. This breakdown serves to streamline further analysis of

the data.

Continuing the progression, the application of term frequency-inverse document frequency (TF-

IDF) takes precedence. As a transformational technique, TF-IDF converts textual data, in this context, the

tokenized SQL statements, into numerical vectors. TF-IDF's weighted approach prioritizes the importance of

words within a document concerning an entire document collection, assigning higher weights to terms that

exhibit significance within a particular document yet maintain lower frequency across the whole document

corpus. This transformation process serves to prepare the tokenized SQL statements in a numerical format

compatible with machine learning algorithms.

Upon completion of preprocessing and vectorization, the dataset undergoes segmentation into

distinct training and testing subsets. While the training set is designated for machine learning model training,

the testing set evaluates the models' performance. Employing randomization ensures unbiased representation

and safeguards against the influence of inherent data order during model training and evaluation.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 1004-1012

1008

Figure 3. Data balance

3.2. Ensemble classifiers

To detect SQLIA, a series of three distinct ensemble classifiers were methodically employed to

ascertain the most effective approach. The initial ensemble model adopted was the bagging classifier,

employing decision tree as the base estimator. This classifier operates by creating multiple decision tree

models, each trained on a subset of the dataset. Subsequently, these models contribute to the final prediction

through aggregation, thereby mitigating overfitting and enhancing the overall robustness of the predictive

outcome.

Following the bagging classifier, the stacking classifier was deployed, integrating both decision tree

and random forest as base estimators, with logistic regression serving as the final estimator. In this ensemble

configuration, the predictions from the base models, namely decision tree and random forest, are utilized as

inputs for the logistic regression model, which learns to combine their predictions optimally. By leveraging

the strengths of multiple algorithms, the stacking classifier endeavours to exploit diverse decision-making

strategies, potentially resulting in improved performance and generalization capabilities.

Lastly, the AdaBoost classifier was introduced into the ensemble framework, employing decision

tree as the base estimator with a maximum depth of 1. AdaBoost operates iteratively by assigning weights to

incorrectly classified instances in each consecutive training iteration, allowing the subsequent model to focus

on these misclassified instances. This iterative process facilitates the creation of a strong learner by

sequentially emphasizing the previously misclassified data points, thereby enhancing the overall predictive

accuracy and addressing complex decision boundaries effectively.

Each of these ensemble classifiers, from Bagging and Stacking to AdaBoost, offers unique

advantages in harnessing the collective power of multiple models to detect intricate patterns indicative of

SQL Injection Attacks. By leveraging the complementary strengths of diverse base estimators and ensemble

strategies. These models collectively aim to fortify the detection capability and resilience against various

SQLIA patterns present within the dataset.

3.3. Model performance assessment

Evaluating Ensemble classifiers is crucial to understanding their performance and recognizing their

strengths and weaknesses. This research tested the model using a 5-fold cross-validation technique and

assessed it with separate testing datasets. This comprehensive process thoroughly scrutinized and evaluated

the model's effectiveness. Standard evaluation metrics were utilized to measure the detection model's

efficiency throughout the training, validation, and testing phases. Figure 4 summarizes the standardized

performance evaluation metrics.

4. RESULTS AND DISCUSSION

This section highlights the experimental outcomes of the system implemented in the Python

environment. Figure 5 shows a confusion matrices for three ensemble machine learning classifiers: Bagging,

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Ensemble learning techniques against structured query language injection attacks (Ammar Odeh)

1009

Stacking, and AdaBoost. For the bagging classifier, the matrix indicates a high number of true positives and

true negatives, with a count of 5.282 and 7.887, respectively, showing that the classifier can correctly identify

both classes. The false positives are relatively fewer, recorded at 2.444, and the false negatives are minimal,

at just 11. Figure 5(a) depicts the Bagging Classifier, which correctly identifies 5.282 True Positives (TP),

7.887 True Negatives (TN), 2444 False Positives (FP) and 11 False Negatives (FN). This classifier

demonstrates a robust ability to accurately identify both positive and negative cases, with a particularly low

rate of false negatives. In Figure 5(b), the Stacking Classifier is presented, featuring a count of 5.537 TP,

7841 TN, 2.189 FP and 57 FN. The matrix suggests that this classifier performs well in identifying true

positives and true negatives, although it experiences a moderate number of false positives when compared to

the Bagging Classifier. Figure 5(c) displays the AdaBoost classifier, which has a TP count of 7.652, TN

count of 7.739, FP count of 74 and FN count of 159. This classifier is exemplary in minimizing false

positives while still maintaining high accuracy in detecting true positives and negatives, indicating its

effective application in scenarios where reducing false alarms is critical.

The stacking classifier also exhibits a robust performance with 5.537 true positives and 7.841 true

negatives, suggesting its effectiveness in classification. The false positives count is 2.189, and false negatives

are 57, slightly higher than the bagging classifier but still indicating a robust predictive ability. Lastly, the

AdaBoost classifier shows the highest number of true positives and true negatives among the three, with

7.652 and 7.739, respectively, indicating its potent classification strength. It has the lowest false positives and

false negatives, at 74 and 159, respectively, demonstrating a very high prediction accuracy. Table 1 provides

a comprehensive summary detailing the performance of the three ensemble models concerning essential

evaluation metrics, including accuracy, precision, recall, and F1-Score.

Figure 4. Standard performance assessment indicators

Figure 1. Confusion matrices for three different ensemble machine learning classifiers: (a) bagging,

(b) stacking, and (c) AdaBoost from left to right

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 1004-1012

1010

Table 1. Performance metrics for the proposed models
 Accuracy Precision Recall F1-Score

Bagging classifier 84% 100% 68% 81%
Stacking classifier 85% 99% 72% 83%

AdaBoost classifier 99% 98% 99% 99%

Table 1 outlines the performance evaluation metrics, including accuracy, precision, recall, and F1-

Score, for three distinct classifiers utilized in detecting SQL injection attacks. The bagging classifier achieved

an accuracy of 84%. It demonstrated perfect precision (100%), indicating that all instances identified as

malicious were correct. However, its recall stood at 68%, suggesting a moderate ability to detect actual

malicious instances among all positives. The combined F1-Score for precision and recall was computed at

81%.

Meanwhile, the stacking classifier showcased a slightly higher accuracy at 85%. It maintained a

high precision rate of 99%, implying minimal false positives in its predictions. However, its recall rate was

measured at 72%, indicating a lower ability to capture all actual malicious instances. The resultant F1-Score

reached 83%, indicating a good trade-off between precision and recall.

In contrast, the AdaBoost classifier outperformed the others with an accuracy of 99%. It exhibited a

high precision of 98%, signifying a low rate of false positive predictions. Moreover, its recall rate stood at 99%,

demonstrating a robust capability to identify malicious instances. The resultant F1-Score reached an impressive

99%, denoting an outstanding overall performance by combining precision and recall. These metrics offer a

comprehensive understanding of the individual classifiers' capabilities in accurately identifying SQL injection

attacks while also shedding light on their respective trade-offs between precision and recall.

Table 2 presents a comprehensive comparison of several prominent machine learning algorithms along

with their corresponding accuracy rates. Our proposed AdaBoost classifier stands out prominently among the

array of algorithms in terms of accuracy, boasting a remarkable 99% accuracy rate. When compared to other

prominent models like the Bayesian network algorithm with 97%, LSTM with 92%, Elastic-pooling

convolutional neural network with 98.7%, Naive Bayes classifier with 93.3%, Convolutional deep neural

network with 95%, CNN-Bi-LSTM with 98%, and even 'deep forests' with 99%, our AdaBoost classifier

surpasses them all. Its ability to consistently achieve such a high accuracy rate positions it as a superior choice,

demonstrating its robustness and efficacy in handling complex data sets with exceptional precision.

Table 2. Comprehensive comparison of algorithms for SQL injection techniques
Source Model Accuracy

Zhou and Wang [16] Bayesian network algorithm 97%
Li et al. [17] LSTM 92%

Xie et al. [18] Elastic-pooling convolutional neural network 97.7

Muhammad and Ghafory [21] Naive Bayes classifier 93.3
Baliarsingh et al. [24] Convolutional deep neural network 95%

Nasereddin et al. [28] CNN-Bi-LSTM 98%

Krishnan et al. [29] deep forests' 98%
Proposed Model AdaBoost classifier 99%

5. CONCLUSIONS

SQL injection attacks represent a critical security threat to web applications, demanding robust

detection mechanisms. In this study, we introduced DSQLIA, an innovative SQL injection detection model

harnessing ensemble learning algorithms. Specifically, we integrated three prominent algorithms - bagging

classifier employing decision tree, stacking classifier combining decision tree and random forest, and

AdaBoost classifier utilizing decision tree with a maximum depth of 1. The simulation results unveil notable

insights into the performance of each classifier within our model. The bagging classifier demonstrated an

accuracy of 84%, exhibiting perfect precision (100%) in correctly identifying malicious instances but

displaying a moderate recall (68%), indicating room for improvement in detecting all actual malicious

queries. Its combined F1-Score reached 81%, reflecting the balance between precision and recall.

Meanwhile, the stacking classifier showed slightly higher accuracy (85%) with outstanding

precision (99%) and a trade-off in recall (72%). This classifier achieved an F1-Score of 83%, indicating a

commendable equilibrium between precision and recall rates. In stark contrast, the AdaBoost classifier

emerged as the top-performing model, boasting an exceptional accuracy of 99%. It showcased high precision

(98%) and outstanding recall (99%), indicating remarkable capability to identify malicious instances

accurately. The resulting F1-Score of 99% underscores its outstanding overall performance by harmonizing

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Ensemble learning techniques against structured query language injection attacks (Ammar Odeh)

1011

precision and recall. These metrics comprehensively evaluate each classifier's capacity to identify SQL

injection attacks effectively. Additionally, they shed light on the trade-offs between precision and recall,

emphasizing the AdaBoost classifier's superiority in achieving exceptional detection accuracy with minimal

false positives and a robust ability to capture malicious queries. The findings from our model serve as a

stepping-stone towards bolstering web application security against SQL injection attacks, showcasing the

potential of ensemble learning in enhancing detection systems.

REFERENCES
[1] T. M. Allam, “Estimate the performance of cloudera decision support queries,” International journal of online and biomedical

engineering, vol. 18, no. 1, pp. 127–138, Jan. 2022, doi: 10.3991/ijoe.v18i01.27877.

[2] M. S. A. El-Seoud, H. F. El-Sofany, and I. A. T. F. Taj-Eddin, “Mobile applications and semantic-web: A case study on
automated course management,” International Journal of Interactive Mobile Technologies, vol. 10, no. 3, pp. 42–53, Jul. 2016,

doi: 10.3991/ijim.v10i3.5770.

[3] M. S. Al Reshan, “IoT-based application of information security triad,” International Journal of Interactive Mobile Technologies,
vol. 15, no. 24, pp. 61–76, Dec. 2021, doi: 10.3991/IJIM.V15I24.27333.

[4] M. L. E. Chang and H. N. Chua, “SQL and NoSQL database comparison: from performance perspective in supporting semi-structured

data,” in Advances in Intelligent Systems and Computing, vol. 886, Springer International Publishing, 2019, pp. 294–310.
[5] L. Sheldon, “Exploring the experiences that prompt data literacies: a mixed methods research study,” The University of Arizona,

2022.
[6] J. F. Sequeda, W. J. Briggs, D. P. Miranker, and W. P. Heideman, “A Pay-as-you-go methodology to design and build enterprise

knowledge graphs from relational databases,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 11779 LNCS, Springer International Publishing, 2019, pp. 526–545.
[7] R. U. Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, and J. Qadir, “Security and privacy of internet of medical things: A

contemporary review in the age of surveillance, botnets, and adversarial ML,” Journal of Network and Computer Applications,

vol. 201, p. 103332, May 2022, doi: 10.1016/j.jnca.2022.103332.
[8] Sunardi, I. Riadi, and P. A. Raharja, “Vulnerability analysis of E-voting application using open web application security project

(OWASP) framework,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 11, pp. 135–143,

2019, doi: 10.14569/IJACSA.2019.0101118.
[9] H. A. Noman and O. M. F. Abu-Sharkh, “Code injection attacks in wireless-based internet of things (IoT): A comprehensive

review and practical implementations,” Sensors, vol. 23, no. 13, p. 6067, Jun. 2023, doi: 10.3390/s23136067.

[10] N. F. Syed, S. W. Shah, R. Trujillo-Rasua, and R. Doss, “Traceability in supply chains: A cyber security analysis,” Computers
and Security, vol. 112, p. 102536, Jan. 2022, doi: 10.1016/j.cose.2021.102536.

[11] Z. Alkhalil, C. Hewage, L. Nawaf, and I. Khan, “Phishing attacks: A recent comprehensive study and a new anatomy,” Frontiers

in Computer Science, vol. 3, Mar. 2021, doi: 10.3389/fcomp.2021.563060.
[12] J. Gawlikowski et al., “A survey of uncertainty in deep neural networks,” Artificial Intelligence Review, vol. 56, no. S1, pp. 1513–

1589, Jul. 2023, doi: 10.1007/s10462-023-10562-9.

[13] N. Singh and P. Tiwari, “SQL injection attacks, detection techniques on web application databases,” in Lecture Notes in Networks
and Systems, vol. 434, Springer Nature Singapore, 2022, pp. 387–394.

[14] A. Rai, M. M. I. Miraz, D. Das, H. Kaur, and Swati, “SQL injection: classification and prevention,” in Proceedings of 2021 2nd

International Conference on Intelligent Engineering and Management, ICIEM 2021, Apr. 2021, pp. 367–372, doi:
10.1109/ICIEM51511.2021.9445347.

[15] J. R. Dora, L. Hluchý, and K. Nemoga, “Ontology for blind SQL injection,” Computing and Informatics, vol. 42, no. 2, pp. 480–

500, 2023, doi: 10.31577/cai_2023_2_480.
[16] Y. Zhou and P. Wang, “An ensemble learning approach for XSS attack detection with domain knowledge and threat intelligence,”

Computers and Security, vol. 82, pp. 261–269, May 2019, doi: 10.1016/j.cose.2018.12.016.

[17] Q. Li, F. Wang, J. Wang, and W. Li, “LSTM-based SQL injection detection method for intelligent transportation system,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4182–4191, 2019, doi: 10.1109/TVT.2019.2893675.

[18] X. Xie, C. Ren, Y. Fu, J. Xu, and J. Guo, “SQL injection detection for web applications based on elastic-pooling CNN,” IEEE

Access, vol. 7, pp. 151475–151481, 2019, doi: 10.1109/ACCESS.2019.2947527.
[19] F. K. Alarfaj and N. A. Khan, “Enhancing the performance of SQL injection attack detection through probabilistic neural

networks,” Applied Sciences (Switzerland), vol. 13, no. 7, p. 4365, Mar. 2023, doi: 10.3390/app13074365.

[20] M. Kavitha, V. Vennila, G. Padmapriya, and A. R. Kannan, “Prevention of SQL injection attack using unsupervised machine
learning approach,” International Journal of Aquatic Science, vol. 12, no. 03, pp. 1413–1424, 2021.

[21] T. Muhammad and H. Ghafory, “SQL injection attack detection using machine learning algorithm,” Mesopotamian Journal of

CyberSecurity, vol. 2022, pp. 5–17, Feb. 2022, doi: 10.58496/MJCS/2022/002.
[22] Dawadi, B.R.; Adhikari, B.; Srivastava, D.K. Deep Learning Technique-Enabled Web Application Firewall for the Detection of

Web Attacks. Sensors 2023, 23, 2073

[23] S. Ndichu, S. Kim, S. Ozawa, T. Misu, and K. Makishima, “A machine learning approach to detection of JavaScript-based attacks using
AST features and paragraph vectors,” Applied Soft Computing Journal, vol. 84, p. 105721, 2019, doi: 10.1016/j.asoc.2019.105721.

[24] S. K. Baliarsingh, S. Vipsita, A. H. Gandomi, A. Panda, S. Bakshi, and S. Ramasubbareddy, “Analysis of high-dimensional

genomic data using MapReduce based probabilistic neural network,” Computer Methods and Programs in Biomedicine, vol. 195,
p. 105625, Oct. 2020, doi: 10.1016/j.cmpb.2020.105625.

[25] E. H. A. Rady and A. S. Anwar, “Prediction of kidney disease stages using data mining algorithms,” Informatics in Medicine

Unlocked, vol. 15, p. 100178, 2019, doi: 10.1016/j.imu.2019.100178.
[26] A. K. Anaraki, M. Ayati, and F. Kazemi, “Magnetic resonance imaging-based brain tumor grades classification and grading via

convolutional neural networks and genetic algorithms,” Biocybernetics and Biomedical Engineering, vol. 39, no. 1, pp. 63–74,

Jan. 2019, doi: 10.1016/j.bbe.2018.10.004.
[27] M. Desai and M. Shah, “An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network

(MLP) and Convolutional neural network (CNN),” Clinical eHealth, vol. 4, pp. 1–11, 2021, doi: 10.1016/j.ceh.2020.11.002.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 1004-1012

1012

[28] N. Gandhi, J. Patel, R. Sisodiya, N. Doshi, and S. Mishra, “A CNN-BiLSTM based approach for detection of SQL injection attacks,”

In Proceedings of the 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai,
United Arab Emirates, 17–18 March 2021; pp. 378–383.

[29] A. K. S.S., “SQL injection detection using machine learning,” Revista Gestão Inovação e Tecnologias, vol. 11, no. 3, pp. 300–

310, Jun. 2021, doi: 10.47059/revistageintec.v11i3.1939.
[30] Sajid, “SQL injection dataset,” 2021. https://www.kaggle.com/datasets/sajid576/sql-injection-dataset (accessed Apr. 27, 2023).

BIOGRAPHIES OF AUTHORS

Ammar Odeh received his Ph.D. from University of Bridgeport (UB), USA, in

2015. He is an Associate Professor at the Department of Computer Science, Faculty of King

Hussein School of Computing Sciences, Princess Sumaya University for Technology,

Amman, Jordan. His research interests include cybersecurity and cryptography, the internet of

things (IoT). He can be contacted at email: a.odeh@psut.edu.jo.

Anas Abu Taleb is an associate professor in the Department of Computer

Science at Princess Sumaya University for Technology, Amman, Jordan. He received a Ph.D.

in Computer Science from the University of Bristol, UK 2010, an MS.c. in Computer Science

from the University of the West of England, UK, 2007 and a BS.c. Degree in Computer

Science from Princess Sumaya University for Technology, Jordan, 2004. Dr. Abu Taleb has

published several journal and conference papers on sensor networks. In addition to sensor

networks, Dr. Abu Taleb is interested in network fault tolerance, routing algorithms, and

mobility models. He can be contacted at email: a.abutaleb@psut.edu.jo.

https://orcid.org/0000-0002-9929-2116
https://scholar.google.com/citations?user=lBc6CO8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55320073300
https://www.webofscience.com/wos/author/record/3810986
https://orcid.org/0000-0002-8286-1829
https://scholar.google.com/citations?user=5NhxktsAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=24831286900
https://www.webofscience.com/wos/author/record/KGL-0939-2024

