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 Wireless sensor network (WSN) is made of several sensor nodes (SN) that 
monitor various applications and collect environmental data. WSNs are 

essential for a wide range application, including healthcare, industrial 

automation, and environmental monitoring. However, these networks are 

susceptible to several security threats, underscoring the need for robust 
attack detection systems. Therefore, in this study, a multi-objective-trust 

aware improved grey wolf optimization (M-TAIGWO) is implemented to 

mitigate various attacks types. This implemented M-TAIGWO method is 

used to select secure cluster heads (CH) and routes to obtain secure 
communication through the network. The implemented M-TAIGWO 

provides improved security against malicious attacks by increasing the 

energy efficiency. The important aim of M-TAIGWO is to attain secured 

data transmission and maximize the WSN network lifetime. The  
M-TAIGWO method’s performance is evaluated through energy 

consumption and delay. The implemented method obtains a high PDR of 

98% for 500 nodes, which is superior to the quantum behavior and gaussian 

mutation Archimedes optimization algorithm (QGAOA), with a delay of  
15 ms for 100 nodes which is lesser than fuzzy and secured clustering 

algorithms. In comparison to the trust-based routing protocol for WSNs 

utilizing an adaptive genetic algorithm (TAGA), this implemented method 

achieves defense hello fold, black hole, sinkhole, and selective forwarding 
attacks effectively. 
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1. INTRODUCTION 

Wireless sensor network (WSN) consists of several low-power, low-processing sensor nodes (SN) 

that leverage their inherent ability to self-organize and create a small network for data processing, 

transmission, and collection [1], [2]. Road accidents, pollution, and traffic congestion are getting worse, as a 

consequence of the massive increase in the demand for various forms of transport, including pedestrian 

traffic and public transport. Other factors contributing to this problem include inadequate infrastructure and 

work zones, poor capacity management (i.e., poor traffic timing), and inadequate infrastructure [3]. 

Temperature, pressure, soil moisture content, and other physical factors are examples of data collection 

parameters. Data over wireless links are organized at a single location known as the base station (BS), all at a 

https://creativecommons.org/licenses/by-sa/4.0/
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time [4]. A security attack is any activity that compromises the machine’s security by creating an intellectual 

risk to the unit. There exist numerous types of threats categorized into two primary forms of defensive 

threats, active attacks and passive attacks. The attacks endure many security services such as access control 

authentication non-repudiation, and data completeness and encryption [5]. They are crucial to WSNs as they 

manage the path in which the data goes from SN to BSs, significantly affecting the network’s quality of life, 

energy conception, and performance [6]. The primary problem is to develop an effective security strategy 

that protects the empirical data while using the least number of resources possible, because of the ignored 

environment of its deployment [7]. In a WSN, each SN is capable of sensing, processing, and sending data to 

other SNs or BS directly, or in response to a request [8]. Consequently, WSNs are viewed as a collection of 

resources that force SN to collect data from their surroundings, process the outputs into a prepared form, and 

then wirelessly transfer formatted data to the designated terminal [9]. Moreover, in WSNs, the stability of 

root selection, the security of data transfer, and the balance of energy consumption are all very crucial [10]. 

However, the extensive use of WSNs creates security issues, making the network vulnerable to a variety of 

criminal operations and assaults [11]. The network’s lifespan is potentially reduced with energy gaps 

appearing if its nodes employ different power quantities [12]. Therefore, the connection between the source 

and destination has failed to transfer the data from source to destination [13]. Sensor data from the physical 

area is sent to a BS multi-hop or multi-path routing. Self-organizing networks or WSNs have a limited 

battery capacity [14]. The selection of rooting algorithms is a critical factor in the effective transport of 

sensor data from source to destination. Depending on the application domains and network architecture, 

several energy-efficient routing strategies have been devised for WSN [15]. 

Kranthikumar and Velusamy [16] presented a novel fuzzy and secured clustering algorithm which 

was utilized to increase cluster based secure routing in WSNs. This method employed a key generation 

method to generate public and private keys for the process of encryption and decryption. It had the benefits 

of increased security and good overall performance, alongside reducing the energy consumption and delay by 

utilizing trust-based fuzzy logic. Yet, the implemented method had difficulty in selecting the optimal clusters. 

Han et al. [17] implemented an energy-aware and trust-based routing protocol for WSNs utilizing an adaptive 

genetic algorithm (TAGA) to resist special trust and common routing attacks. This algorithm with a cluster 

heads (CH) selection threshold was applied to select the secure and high-energy nodes as CHs. As a result, 

the TAGA method effectively reduced the malicious nodes’ impact, and also improved energy utilization in 

the network by using a novel threshold function. But this method was limited in countering sophisticated 

attacks targeting genetic algorithm parameters, affecting the overall security of the routing protocol. Kumar and 

Srimanchari [18] developed a quantum behavior and gaussian mutation archimedes optimization algorithm 

(QGAOA) method for energy-efficient clustering and routing protocol for WSN. The developed method had 

three stages formation of cluster, CH, and optimum route selection. Primarily, clusters were developed by 

utilizing the voronoi-included K-means clustering algorithm. Next, CHs and optimum routing were chosen 

by the QGAOA method. But the CH selection was majorly dependent on node distance, trust, and energy. 

Bangotra et al. [19] implemented a trust based secure intelligent opportunistic routing protocol (TBSIOP) 

method used to provide trust WSN security. This implemented method used three distinct WSN attributes to 

compute the node’s likelihood of being malicious. This method used a trust-based relay selection algorithm 

to enhance the network’s lifetime through low energy consumption, also highly securing black-hole and gray 

attacks. However, this implemented method analyzed only a small number of nodes. Pathak et al. [20] 

implemented a node trust optimization model-based detection algorithm (NTOMA-DA) to resist wormhole 

attacks and increase the performance of the network. This implemented NTOMA-DA was a localized 

detection algorithm, combining node trust and path hops for detected attach. As a result, this method 

effectively assured reliable and safe WSN operation and attained superior wormhole attack detection. 

Nonetheless, the implemented method consumed more energy. 

Teng et al. [21] implemented a lightweight secure routing (LSR) algorithm which was used for 

managing WSNs that directly addressed the multi-objective WSN optimization issue. An adaptive quality of 

service (QoS) method was utilized in this method to enhance QoS and network energy efficiency by 

increasing the source node selection. This implemented algorithm assisted low node-density networks to 

overcome the energy-hole challenge and to increase network security by incorporating a trust model. 

However, this method was limited in indirect trust value to 1-hop neighbors due to energy consumption, and 

hence required to be extended to multi-hop scenarios for increasing indirect trust value. Sajan et al. [22] 

implemented a three-level weighted trust evaluation-based GWO (3LWT-GWO) method used for an energy-

aware secure routing in a wireless ad hoc sensor network. To alert military commanders, this method 

gathered data from targets of interest in dangerous situations and sent it to ground surveillance systems.  

The 3LWT-GWO method performed an effective detection of misbehaving nodes and attained optimal 

secure routes through nodes for delivering the data securely to the destination. Due to less data aggregation, 

this method required methods like watermarking and digital signatures to secure data integrity and improve 
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the process of data aggregation. There are several constraints associated with the aforementioned existing 

methods, which have been proven to be challenging due to limited processing time and high energy 

consumption. These limitations have adversely affected the security of overall routing protocols, particularly 

in their vulnerability to sophisticated attacks targeting the parameters of genetic algorithms. Factors such as 

node energy, trust, and distance are pivotal in the selection of CH. In order to overcome these issues, the  

M-TAIGWO method is implemented to select secure CH and routes for obtaining secure communication 

through the network. Current methods have limitations of limited processing time, energy consumption, and 

difficulty in countering sophisticated attacks. The M-TAIGWO method is implemented to select secure CH 

and routes for secure network communication. Security and energy consumption are two important problems 

because of limited energy resources and open resources. For the security of WSN, trust-based methods have 

are established which have high robustness against malicious attacks. In this research, IGWO is used over 

other metaheuristic algorithms because GWO imitates the collaborative hunting behavior of grey wolves, 

thereby improving energy efficiency and network coverage. The GWO algorithm causes simultaneous 

minimization of search space, while the decision variables are less, avoiding local optimum. The main 

contributions of this research are given as follows: 

 GWO algorithm is enhanced to multi objective-trust aware improved grey wolf optimization  

(M-TAIGWO) to mitigate various types of attacks in WSN. 

 Selecting SCHs effectively with M-TAIGWO improves security protection against malicious attacks like 

Hello flood attacks, sinkhole attacks, selective forwarding attacks, black hole attacks, and reduced energy 

consumption. 

 Secure route path selection is performed by M-TAIGWO. The effectiveness of the implemented model is 

analyzed based on performance measures with less delay, energy consumption, high packet delivery ratio 

(PDR), and network lifetime. 

This paper is structured as follows: the proposed method is detailed in section 2. The process of  

M-TAIGWO method is explained in section 3. Results and discussion are given in section 4, and conclusion 

of this paper is described in section 5. 

 

 

2. PROPOSED METHOD 

2.1.  System model 

This approach aims to accelerate the discovery of novel concepts in various scenarios. Numerous 

routing protocols have been implemented to boost WSN security. To increase security in WSN,  

M-TAIGWO methods are implemented in this research. The proposed method consists of four main steps:  

i) network setup and energy model, ii) determining safe nodes, iii) clustering and CHs selection, and  

iv) clustering-based routing. 

 

2.2.  Network setup 

By grouping sensors into clusters, WSN clustering aims to reduce energy consumption. Sometimes, 

common nodes send sensory data to the CH and keep monitoring their surroundings. The CH node is always 

selected between the common nodes. The CH plays a crucial function in gathering data from every cluster 

node and sending it to the BS. Grouping helps to prevent direct connection between sensors and receivers [23]. 

Figure 1 shows the WSN system model. 

 

 

 
 

Figure 1. The WSN system model 
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2.3.  Energy model 

The architecture of the system comprises various SN connected to a single BS [24]. Two distinct 

channel models are used in a radio energy model of an SN, called the multipath propagation fading (𝑑4) 
model for multi-hop path communication and free space path loss (𝑑2) model for single-hop communication. 

As a result, the energy required to transport an n-bit packet over distance 𝑑 is calculated in (1). 

 

𝐸𝑇𝑋(𝑛, 𝑑) = {
𝑛 × 𝐸𝑒𝑙𝑒𝑐 + 𝑛 × 𝑒𝑓𝑠 𝑑

2   ,        𝑑 < 𝑑0

𝑛 × 𝐸𝑒𝑙𝑒𝑐 + 𝑛 × 𝑒𝑚𝑝 𝑑
4  ,       𝑑 ≥ 𝑑0

 (1) 

 

Where, 𝐸𝑇𝑋 is the expected transmission count, 𝑛 is the packet length, 𝑑 is the distance between receiving 

and sender nodes, and 𝐸𝑒𝑙𝑒𝑐  is the energy required to receive/ transmit 1-bit data. The distance threshold is 

denoted as 𝑑0, that is expressed in (2). In (3), the quantity of energy used to receive an n-bit packet size at 𝑅𝑥 

is determined. 

 

𝑑0=√
𝑒𝑓𝑠

𝑒𝑚𝑝
 (2) 

 

𝐸𝑅𝑋(𝑛) = 𝑛 × 𝐸𝑒𝑙𝑒𝑐  (3) 

 

 

3. MULTI-OBJECTIVE-TRUST AWARE IMPROVED GREY WOLF OPTIMIZATION 

Normal, malicious, and sink nodes are the three kinds of nodes that form the network topology.  

Data from the environment is sensed by normal nodes and transmitted to the sink. Denial of service (DoS) 

attack is another kind of DoS attack on malicious nodes normal nodes. In brief, the M-TAIGWO is 

developed by the study’s leadership behavior, encircling behavior, and hunting behavior, also summarising 

the algorithm’s stages. Figure 2 shows the implemented M-TAIGWO method’s block diagram. The proposed 

M-TAIGWO method has four stages of sensor initialization, M-TAIGWO-based SCH selection stage, 

clustering, and route discovery stage using M-TAIGWO. The secure CH and route path selection are utilized 

to avoid malicious attacks like Hello flood attacks, selective forwarding attacks, black hole attacks and 

sinkhole attacks when transmitting the data packets. So, unnecessary data packets and energy consumption 

are decreased by employing the proposed M-TAIGWO method. These malicious attacks are: 

 Sinkhole attack: in this type of attack, a compromised node disrupts the neighboring traffic by 

establishing a sinkhole at the center, present as the attacking relay within the local area. 

 Selective forwarding attack: a selective forwarding attack is a security threat in WSN where malicious 

nodes forward data packets while dropping others, compromising network integrity and availability.  

 Black hole attacks: these attacks selectively drop control and data packets, causing partial or total data 

loss for any packet routed through an intermediate malicious node. 

 Hello flood attack: this attack is a network layer attack where a high-powered node broadcasts a Hello 

packet, causing many nodes to choose it as the parent node, even from far away. 

 

3.1.  Sensor initialization 

Initially, sensors are randomly placed in the WSN’s interested area. The previous section contains 

the network and energy models utilized in this study. M-TAGWO is used to find SCHs and routes via SCHs 

to BS, which are discussed in the following sections. 

 

3.2.  M-TAIGWO based SCH selection stage 

In this stage, optimum SCHs from the normal sensors are identified by utilizing the M-TAIGWO. 

Optimization is crucial for SCH selection in WSN to improve efficiency and strength. The process involves 

trade-offs between performance, energy consumption, and security. This helps mitigate vulnerabilities, resist 

attacks and adapt to changing conditions, ensuring a robust and secure basis for WSN operations. In WSN, 

IGWO provides a better CH selection process than GWO, optimizing the process of choosing the best nodes 

to act as CH. Better network performance and energy efficiency are ensured as a result. Through energy 

consumption optimization and network lifetime extension, IGWO improves the effectiveness of CH selection 

in WSN. In short, the study’s inspiration for the M-TAIGWO is hunting behavior, encircling,  

and leadership behaviour. In this section, GWO is transformed into M-TAIGWO to discover the set of  

optimum SCHs. 
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Figure 2. Implemented M-TAIGWO method’s block diagram 

 

 

3.3.  Grey wolf optimization 

3.3.1. Leadership behaviour 

GWO is a metaheuristic search method with natural inspiration that makes it possible to identify the 

best solution in the problem area [25]. The process is similar to the way grey wolves hunt in terms of social 

behavior and technique to pinpoint the precise location. There are four subspecies of grey wolves: alpha (α), 

delta (δ) beta (β), and omega (ω) [26]. Usually, one or two of the team’s alpha wolves are the most dominant. 

They are responsible for deciding what to hunt and how to pursue it. The alpha wolf’s decision and other 

duties are supported by the beta wolves. Beta wolves are more common than alpha wolves, but less common 

than delta and omega wolves. Alpha and Beta are the two wolves on the teams with the most experience. 

While they rule omega, delta wolves protect alpha and beta wolves. Omega wolves, the least prominent type, 

primarily serve as babysitters. The most suitable candidate for describing the social behavior of grey wolves 

statistically is alpha (𝛼), followed by the second and third most suitable candidates, beta (𝛽), and delta (𝛿). 

 

3.3.2. Encircling behavior 

The process of encircle behavior is mathematically expressed in following formula in (4) and (5). 

Where, t denotes the iteration number of current, �⃗⃗� , �⃗⃗�  denote the coefficient vectors, 𝑋𝑝
⃗⃗ ⃗⃗  denotes the prey 

position, and 𝑋  denotes the position of the grey wolf. �⃗⃗�  and  𝐾⃗⃗  ⃗ vectors are denoted in (6) and (7). 

 

�⃗� =  |�⃗⃗� . 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)| (4) 

 

𝑋 (𝑡 + 1) =  𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − �⃗⃗� . �⃗�  (5) 

 

�⃗⃗� = 2. ℎ⃗ . 𝑟1⃗⃗⃗  − ℎ⃗  (6) 

 

�⃗⃗� = 2. 𝑟2⃗⃗⃗   (7) 
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Where, 𝑟1⃗⃗⃗   and 𝑟2⃗⃗⃗   are uniformly random numbers in interval [0, 1]. ℎ⃗  is linearly decremented from 2 to 0 with 

a number of iterations and represented in (8), where the maximum iteration number is denoted as 𝑀𝑎𝑥𝑖𝑡𝑒𝑟. 

 

ℎ⃗ = 2 − 2 (
𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
) (8) 

 

3.2.3. Hunting behavior 
It is believed that gamma, alpha, and beta candidates have a better grasp of prey regions and guide 

the process of the whole search towards the best option. Every iteration updates the applicants’ positions 

according to their top three places. If the values are outside of solution space or if the window size is changed 

to a negative integer, the values are updated using the evolution approach, and the formula for updating 

wolves’ positions is given in (9)-(15). 

 

𝐿𝛼
⃗⃗ ⃗⃗ =  |𝐾1

⃗⃗⃗⃗ . 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 | (9) 

 

𝐿𝛽
⃗⃗⃗⃗ =  |𝐾2

⃗⃗ ⃗⃗ . 𝑋𝛽
⃗⃗ ⃗⃗ − 𝑋 | (10) 

 

𝐿𝛿
⃗⃗⃗⃗ =  |𝐾3

⃗⃗ ⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋 | (11) 

 

𝑋1
⃗⃗⃗⃗ =  𝑋𝛼

⃗⃗ ⃗⃗  −  𝐻1
⃗⃗ ⃗⃗ . (𝐿𝛼

⃗⃗ ⃗⃗ ) (12) 

 

𝑋2
⃗⃗⃗⃗ =  𝑋𝛽

⃗⃗ ⃗⃗ −  𝐻2
⃗⃗ ⃗⃗  . (𝐿𝛽

⃗⃗⃗⃗ ) (13) 

 

𝑋3
⃗⃗⃗⃗ =  𝑋𝛿

⃗⃗ ⃗⃗  −  𝐻3
⃗⃗ ⃗⃗  . (𝐿𝛿

⃗⃗⃗⃗ ) (14) 

 

𝑋 (𝑡 + 1) =  
𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
 (15) 

 

For the values of 𝑟1, 𝑎𝑛𝑑 𝑟2, random selections are taken within the range (0.1). Because of this, the 

wolves can approach the prey from any angle. Values for H come from the interval [-h, h] and values for h 

are chosen from [0,2]. When |𝐻| <1, the wolves make use of the space solution, allowing them to approach 

the prey more closely. When |𝐻| >1, it indicates that they move their prey and explore search space as 

wolves are capable of studying the space of solution. Leaving wolves at their local minimum or maximum is 

likewise permitted by K and H. Ultimately after the final iteration, the best answer for the most suitable 

candidate is given back. 

 

3.4.  Improved GWO 

In GWO, 𝛼, 𝛽, and 𝛿 guide 𝜔 wolves to search space areas that are probably related to the best 

solution. This strategy leads to enlargement in a locally optimal solution. Another drawback is that a decrease 

in population diversity causes GWO closer to local optimum. The implemented IGWO deals with these 

issues. This model is improved by the use of a novel search method that combines a phase for selection and 

upgrading. In addition, IGWO contains two steps as mentioned below. 

 

3.5.  Movement phase 

A different mobility strategy included in the implemented IGWO is called as dimension learning-

based hunting (DLH) technique. Using this approach, every wolf is instructed by its neighbors to be a distinct 

candidate for novel position, 𝑋𝑖(𝑡). Euclidean distance among current position 𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1) is utilized for 

evaluating a radius 𝑅𝑖(𝑡), as represented in (16). The neighbors of 𝑋𝑖(𝑡) indicated by 𝑁𝑖(𝑡) are then built 

using (17) to the radius 𝑅𝑖(𝑡), where Euclidean distance among 𝑋𝑖(𝑡) and 𝑋𝑗(𝑡) is represented 𝐷𝑖. 

 

𝑅𝑖(𝑡) = ||𝑋𝑖(t) − 𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1)|| (16) 

 

𝑁𝑖(𝑡) = {𝑋𝑗(𝑡)|𝐷𝑖(𝑋𝑖(𝑡), 𝑋𝑗(𝑡)) ≤ 𝑅𝑖(𝑡), 𝑋𝑗(𝑡) ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛} (17) 

 

Once the neighborhood 𝑋𝑖(𝑡) has been built, multi-neighbour express in (18), where  

𝑋𝑖−𝐷𝐿𝐻,𝑑(𝑡 + 1) is 𝑑-th dimension is evaluated utilizing the 𝑑-th dimension of a random wolf 𝑋𝑟,𝑑(𝑡) from 

the position, and a random neighbour 𝑋𝑛,𝑑(𝑡) chosen from 𝑁𝑖(𝑡). After this movement phase, the selecting 
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and updating phase is performed for selecting a shorter route based on these factors, M-TAIGWO aims to 

improve security and save energy. 

 

𝑋𝑖−𝐷𝐿𝐻,𝑑(𝑡 + 1) = 𝑋𝑖,𝑑(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑋𝑛,𝑑(𝑡) − 𝑋𝑟,𝑑(𝑡)) (18) 

 

3.6.  Selecting and updating phase: 

To choose the ideal candidate at this step, the fitness ratings of two candidates, 𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1) and 

𝑋𝑖−𝐷𝐿𝐻(𝑡 + 1) are compared in (19). Next, to the update position of 𝑋𝑖(𝑡 + 1), if their fitness is lower than 

𝑋𝑖(𝑡), then the selected candidate updates 𝑋𝑖(𝑡). If not, 𝑋𝑖(𝑡) stays the same. Following the process,  

the number of iterations is improved by 1, and the search is continued again until the target number of epochs 

is reached. 

 

𝑋𝑖(𝑡 + 1) = {
𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1)  , 𝑖𝑓 𝑓𝑋𝑖−𝐺𝑊𝑂 < 𝑓𝑋𝑖−𝐷𝐿𝐻

𝑋𝑖−𝐷𝐿𝐻(𝑡 + 1)                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (19) 

 

Every software’s fitness is determined using a multi-objective function. These goals consist of the 

following: (i) decreasing the cluster numbers, (ii) higher intra-cluster density, (iii) energy balance of clusters, 

(iv) node balancing inside clusters, and (v) a smaller distance between candidate nodes and sink. Safety 

nodes that are within range of every member in their cluster are referred to as candidate nodes. In actuality, a 

single hop can be used to send data among candidate nodes and other members. The selection of nodes as CH 

is hence done effectively. The node with the highest safety level among the candidates is chosen as the CH 

for each cluster. These CH assignments are updated regularly at every 𝜃𝐶𝐻 routing round. In (20) is utilized 

to calculate the fitness function by utilizing the specified objectives. 

 

𝑚𝑖𝑛 𝑤1. 𝐾 + 𝑤2. 𝐷𝑣 + 𝑤3. 𝜎𝑒 + 𝑤4. 𝜎𝑐 + 𝑤5. 𝐷𝐶 (20) 

 

Where, intra-cluster distance’s sum denotes 𝐷𝑣, which is taken as the average across all clusters. The total 

number of 𝑖th software’s clusters shows 𝐾, while the average distance between each candidate node and the 

sink is known 𝐷𝐶 . Standard deviation of total number of candidate nodes across all clusters is represented as 

𝜎𝑐, and minimizing it aids in the best possible selection of CH. 𝜎𝑒 denotes standard deviation of clusters’ 

energy and reducing it causes a high energy balance among clusters. The influence of each object is applied 

using the total weight technique as the intended objectives differ. In the fitness function, where 𝑤1 + 𝑤2 +
𝑤3 + 𝑤4 + 𝑤5 = 1, 𝑤 denotes the weight coefficient of each object. 

By selecting a shorter route based on these factors, M-TAIGWO aims to improve security and save 

energy. Therefore, only secure nodes and an energy-aware trust mechanism are used by the M-TAIGWO 

routing algorithm. In (21) is used to build the fitness function and choose the route. Every route has this 

function calculated and routing is based on the route with the highest value. 

 

𝑚𝑎𝑥 𝜉1. 𝐸𝑟 + 𝜉2. 𝑇𝑟 − 𝜉3. 𝐻𝐶𝑟 − 𝜉4. 𝐷𝑟 (21) 

 

Where, the sum of distance, energies, and trust scores of nodes incorporated in route 𝑟 is represented by 𝐷𝑟, 

𝐸𝑟, and 𝑇𝑟. In this route, the hop count is denoted by 𝐻𝐶𝑟. 𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 = 1, where 𝜉 is the weight 

coefficient to demonstrate each parameter’s effect, and this algorithm runs until the 100 iterations. 

 

3.7.  Fitness for SCH selection 

The following explains multi-objective functions utilized in cluster routing path selection 

optimization technique; the energy, connection, and trust score characteristics in the implemented method are 

used to identify the safe nodes, and the routing operation is executed accordingly. The neighbors and routing 

tables provide connectivity and energy respectively, while each node’s distribution of the trust score 

determines the total trust score. Specific timeslots (for instance, every 𝜃𝑆𝑁 routing round) are 

updated/detected in safe nodes, and node 𝑗’s safety level is denoted as 𝑆𝑉𝑗. In the first round, all nodes are 

safe because all node’s trust scores are initially set to 1. However, after examining nodes’ behavior, the 

nodes’ energy and change of trust score, a threshold needs to be used to identify the safe nodes. The approach 

that is adopted divides safe and malicious nodes by 𝜃𝑀𝑁 applying the threshold. Consequently, the routing 

table’s “safe” field is determined using (22). 

 

𝑆𝑎𝑓𝑒𝑗 = {0 𝑆𝑉𝑗 < 𝜃𝑀𝑁 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (22) 
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Where, the trust score, energy, and connectivity parameters are calculated using 𝑆𝑉𝑗, as represented 

in (23). Because of the variations in parameter types, all parameters’ scales are normalized with values 

between 0 and 1. Furthermore, the node only determines its neighboring nodes’ safety level, and it is not 

allowed for any node to assess its safety level. Where the connectivity, energy rate, and trust score of 𝑠𝑗 are 

respectively denoted as 𝐶𝑗, 𝐸𝑗, and 𝑇𝑗, as described below. 

 

𝑆𝑉𝑗 =
1

3
[𝐸𝑗 + 𝐶𝑗 + 𝑇𝑗] (23) 

 

 Energy rate: a malicious node appears as a node with large resources (energy, memory, etc.) in the 

majority of attacks including Sinkhole, Black-hole, Hello flood, selective forwarding, and Sink-hole. 

Consequently, energy must be considered when identifying safe nodes. The energy rate parameter can be 

computed as the difference between node with highest energy and node with leftover energy. Given that 

malicious nodes are thought to declare their resources in large quantities, a node with a modest energy 

differential is probably malicious. This considers the energy rate depending on the initial energy to 

compute it more accurately. Therefore, 𝐸𝑗 is computed in (24). Where, the node with maximum energy is 

represented as 𝑒𝑚𝑎𝑥, the 𝑗-th node energy is shown as 𝑒𝑗, and the initial energy of nodes is denoted as 𝐸0. 

 

𝐸𝑗 = 𝐸0 − [𝑒𝑚𝑎𝑥 − 𝑒𝑗] (24) 

 

 Connectivity: safe data flow is ensured by a network that is fully connected. Every node must have at 

least one route sink, which is available for connecting with a WSN. In general, the nodes’ positions have 

a big impact on connection. In this situation, nodes with bi-directional links ensure a fully connected 

network which is used to calculate connectivity parameter. 𝐶𝑗 is represented in (25), whereas the 

network’s total number of connections is shown as 𝐿, and 𝑗-th node’s number of links denoted 𝑛𝑐𝑗. 

 

𝐶𝑗 =
𝑛𝑐𝑗

𝐿
 (25) 

 

 Trust score: as demonstrated in (26), this metric is defined as the total of direct and indirect trust. 𝑇𝑗 is 

trust score of 𝑗th node and utilized to infuse neighboring table’s ‘Trust’ field. Here, the impact coefficient 

for trust score is represented as 𝛼, and indirect and direct trust applied to 𝑗th node is denoted 𝐼𝑇𝑗 and 𝐷𝑇𝑗. 

 

𝑇𝑗 = 𝛼.𝐷𝑇𝑗 + (1 − 𝛼). 𝐼𝑇𝑗 (26) 

 

 Direct trust: the interactions between the two nodes determine the direct trust score. Every node in the 

network additionally calculates the trustworthiness of its neighbors. Therefore, 𝐷𝑇𝑗 is computed using 

(27). 

 

𝐷𝑇𝑗 = 𝛽
𝑎𝑟𝑗

𝑛𝑟𝑗
+ (1 − 𝛽).

𝑎𝑡𝑗

𝑛𝑡𝑗
 (27) 

 

Where, the received total number of packets is represented 𝑛𝑟𝑗, and the received acknowledgment packet 

number by 𝑗th node is denoted as 𝑎𝑟𝑗. Likewise, packets sent from the 𝑗th node show 𝑎𝑡𝑗 and 𝑛𝑡𝑗. 

Additionally, the direct trust score is measured by the 𝛽 effect coefficient among received and sent 

packets. 

 Indirect trust: the neighboring table’s data is used to measure indirect trust, based on the node’s behavior 

towards its neighbours. Therefore, 𝐼𝑇𝑗 is calculated by (28). Where, the neighboring nodes are set and 

their number denotes 𝑛𝑛𝑗 and |𝑛𝑛𝑗|. In addition, the trust score of 𝑠𝑘 is represented as 𝑇𝑘, and the 

recommended trust to 𝑠𝑗 by 𝑠𝑘 denotes 𝑇𝑘
𝑗
. 

 

𝐼𝑇𝑗 =
∑ [𝑇𝑘+𝑇𝑘

𝑗
]𝑘∈𝑛𝑛𝑗

|𝑛𝑛𝑗|
 (28) 

 

3.8.  Clustering 

This section divides the network into several clusters according to the member nodes’ time division 

multiple access (TDMA) schedules. It consists of 𝑟 rounds with the steady-state phase and set-up phase being 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Multi-objective-trust aware improved grey wolf optimization … (Venkatesh Prasad Bannikuppe Srinivasiah) 

383 

two phases of each round. CH selection occurs in the first phase or setup phase, and is determined by two 

criteria. Percentage 𝑝 of nodes in network is the first factor, and the total number of nodes that have 

functioned as CH is the second phase. Based on a random number selected between 0 and 1, each node 𝑛 

determines a threshold value 𝑇(𝑛), which is shown in (29). Based on a random number chosen between 0 

and 1, each node 𝑛 determines a threshold value 𝑇(𝑛). 
 

𝑇(𝑛) = {

𝑝

1−𝑝[𝑟 𝑚𝑜𝑑(
1

𝑝
)]

           𝑖𝑓 𝑛 ∈ 𝐺

0,                                       𝑒𝑙𝑠𝑒
 (29) 

 

At each round, a node receives CH if the random number generated is lesser than the threshold 

value. A similar probability 
1

𝑝
 is assigned to each SN to become a CH in a given round. SN use the TDMA 

slot they have been assigned to transmit the data they have gathered to the CH during the second phase, also 

known as the steady state phase. The BS receives the combined data that the CH has collected. 

 

3.9.  Route discovery stage using M-TAIGWO 

The distance, energy, and trust parameters are used in the M-TAIGWO based secure multi-hop 

discovery process. An M-TAIGWO technique increases the overall effectiveness, and security of WSNs by 

combining path optimization and CH selection within a unified optimization method. The M-TAIGWO 

method is used to optimize CH selection and routing paths in WSN, aiming to minimize energy consumption 

and enhance security, resulting in a more robust and efficient WSN. The following are the steps for route 

discovery using M-TAIGWO: 

 Grey wolf solutions frequently utilize paths with dimensions equal to the number of relays SCHs, 

connecting the transmitter SCHs to the BS. 

 The position update for the potable paths initialized in grey wolf is comparable to the iterative approach 

outlined in the preceding section. The fitness considered in the M-TAIGWO for determining the route is 

specified in (30). 

 

𝑓 = 𝜇1 × (𝐷𝑇 + 𝐼𝑇 + 𝑅𝑇) + 𝜇2 × ∑ 𝐸𝐶𝐻𝑖
𝑑
𝑖=1 + 𝜇3 × ∑ 𝑑𝑖𝑠(𝑆𝐶𝐻𝑖 , 𝐵𝑆)𝑑

𝑖=1   (30) 

 

The fitness function that is previously mentioned determines the secure path that is used to avoid 

malicious attacks such as Hello flood attacks, selective forwarding attacks, and black hole attacks, sinkhole 

attacks during data transfer. Malicious node mitigation aids in preventing underside network energy usage 

and packet loss. IGWO can be seen in Algorithm 1. 

 

Algorithm 1. Improved grey wolf optimization (IGWO) 
Input: N, D, Maxiter 

Output: The global optimum 

Start 

Initialize (N wolves are distributed at random around the search area, and their fitness is 

determined) 

For iter = 2 to Maxiter 

      Find 𝑋𝛼
⃗⃗ ⃗⃗  , 𝑋𝛽

⃗⃗ ⃗⃗  , and 𝑋𝛿
⃗⃗ ⃗⃗ . 

      For i = 1 to N 

             Calculating 𝑋1
⃗⃗⃗⃗ , 𝑋2

⃗⃗⃗⃗ , 𝑋3
⃗⃗⃗⃗  by utilizing (12), (13), (14). // updating positions 

             Calculating 𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1) by utilizing (15). 

             Calculating 𝑅𝑖(𝑡) by (16). 

             Establishing neighborhood 𝑋𝑖(𝑡) with radius 𝑅𝑖 by (17). // exploration 

             For l = 1 to D 

                   𝑋𝑖−𝐷𝐿𝐻,𝑑(𝑡 + 1) = 𝑋𝑖,𝑑(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑋𝑛,𝑑(𝑡) − 𝑋𝑟,𝑑(𝑡)) // exploitation 
             End for 

             Choosing best (𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1),𝑋𝑖−𝐷𝐿𝐻(𝑡 + 1)). 
             Updating positing 

      End for 

End for 

Return the global optimum. 

End 

 

 

4. RESULTS AND DISCUSSION 

The results and evaluation studies of the M-TAIGWO approach are described in this section. 

MATLAB R2020b is utilized to implement and simulate the M-TAIGWO technique. The system 
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specifications include an i7 processor, 16 GB RAM, and Windows 10 OS. The estimation of the M-

TAIGWO algorithm is performed through varying numbers of nodes. The SCHs and secure route path 

selection are performed by M-TAIGWO to attain secure communication. Table 1 shows the simulation 

parameters considered to analyze the M-TAIGWO. Variable nodes are considered because node density is 

one of the primary characteristics for assessing the performance of WSN. 

 

 

Table 1. Simulation parameters 
Parameter Value 

Number of nodes 5, 10, 15, 20, 25, 30, 100, 200, 300, 400, and 500 

Network size 1500 × 1500𝑚 
Initial energy 1J 

Size of packet s 

 

 

4.1.  Quantitative and qualitative analysis 

In this section, quantitative and qualitative analyses of the implemented M-TAIGWO approach 

concerning energy consumption, delay, and network lifetime are presented in Tables 2 to 5. Table 2 shows 

performance analysis of the under-hello flood attacks with varying 5 nodes. The performances of the black 

widow (BW), particle swarm optimization (PSO), and artificial bee colony (ABC) are compared with that of 

the implemented M-TAIGWO approach. Figure 3 illustrates the graphical representation of under hello flood 

attacks with varying 5 nodes. Figure 3 shows how the quantity of packets that malicious nodes in the network 

discards increases corresponding to the number of malicious nodes initiating hello flood attacks. In a hello 

flood attack, a malicious node broadcasts hello packets with sufficient energy to confuse other distant nodes 

into believing it to be its immediate neighbor. This suggests that the malicious node rejects a large number of 

packets. The quantity of rejected packets in M-TAIGWO is significantly lesser than that of BW, ABC, and 

PSO as seen in Figure 4. When compared to the M-TAIGWO to BW, ADC, and PSO, the average number of 

lost packets is lower by 17.62%, and 30.97%, respectively. 

 

 

Table 2. Performance analysis of under hello flood attacks with varying 5 nodes 
Proportion of malicious nodes/% BW ABC PSO Proposed M-TAIGWO 

5 300 420 350 200 

10 360 500 420 280 

15 430 640 510 300 

20 550 760 680 420 

25 1,400 1,700 1,650 1,000 

30 1,700 1,800 1,780 1,200 

 

 

 
 

Figure 3. Graphical representation of under hello flood attacks with varying 5 nodes 

 

 

Table 3 represents the performance analysis of under sinkhole attacks with varying 5 nodes.  

Figure 4 represents a graphical representation of under sinkhole attacks with varying 5 nodes. Figure 4 shows 

how the quantity of packets that malicious nodes in network gradually improves correspondingly with 
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number of malicious nodes conducting sinkhole attacks. In a sinkhole attack, a malicious node forms a black 

hole around itself, attracting all other nodes in the area to transmit packets to it. In comparison to BW, ABC, 

and PSO, the average number of lost packets for M-TAIGWO decreases by 17.53% and 34.4%, respectively. 

 

 

Table 3. Performance analysis of under sinkhole attacks with varying 5 nodes 
Proportion of malicious nodes/% BW ABC PSO Proposed M-TAIGWO 

5 150 130 110 80 

10 280 200 250 110 

15 295 240 265 115 

20 320 255 280 135 

25 375 290 330 180 

30 400 350 370 200 

 

 

 
 

Figure 4. Graphical representation of under sinkhole attacks with varying 5 nodes 

 

 

Table 4 shows under-hello flood attacks performance analysis with varying 5 nodes. Figure 5 

illustrates the graphical representation of under hello flood attacks with varying 5 nodes. A malicious node 

performs a black hole attack by confusing another node in the network into establishing routing connections 

with it, resulting in malicious loss of packets intended for forwarding. All of the packets that are received are 

discarded by the malicious nodes. As a result, the malicious node’s trust value rapidly drops below the trust 

threshold as compared to BW, ABC, and PSO. It minimizes the quality of harmful dropped packets and 

speeds up the identification of malicious nodes. In comparison to BW, ABC, and PSO, the average number 

of packet losses for M-TAIGWO is decreased by 15.75% and 23.32%, respectively. 

Table 5 shows under-selective forwarding attacks with varying 5 nodes performance analysis. 

Figure 6 illustrates graphical representation of under-selective forwarding attacks with varying 5 nodes. 

Figure 6 shows how the quantity of packets discarded by malicious nodes in the network progressively 

improves the number of malicious nodes and increases selective forwarding attacks. Black hole attack arises 

when packets have a 100% probability, but selective forwarding attack occurs when a malicious node 

forwards or discards essential packets with a certain probability. This study has a 70% probability that the 

packets received are discarded by the malicious node. Drawing from Figures 5 and 6, it is seen that malicious 

nodes establishing selective forwarding attacks have a greater number of packets than malicious nodes 

initiating black hole attacks. The average number of lost packets for M-TAIGWO is lower than that of BW, 

ABC, and PSO by 9.21% and 9.62% as shown in Figure 6. 

 

 

Table 4. Performance analysis of under black hole attacks with varying 5 nodes 
Proportion of malicious nodes/% BW ABC PSO Proposed M-TAIGWO 

5 180 200 155 100 

10 240 265 210 190 

15 360 390 350 310 

20 430 475 480 400 

25 730 740 710 615 

30 815 850 875 730 
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Figure 5. Graphical representation of under black hole attacks with varying 5 nodes 

 

 

Table 5. Performance analysis of under selective forwarding attacks with varying 5 nodes 
Proportion of malicious nodes/% BW ABC PSO Proposed M-TAIGWO 

5 470 380 450 350 

10 500 530 580 440 

15 740 790 810 610 

20 1,000 1,090 1,075 980 

25 1,280 1,300 1,310 1,150 

30 1,490 1,500 1,465 1,300 

 

 

 
 

Figure 6. Graphical representation of under selective forwarding attacks with varying 5 nodes 

 

 

Table 6 represents energy consumption performance analysis in Joule (J) with varying 100 nodes. 

The performances of the BW, ABC, and PSO are compared with the M-TAIGWO approach. Figure 7 shows 

the graphical representation of energy consumption with varying 100 nodes. The obtained result shows that 

the implemented M-TAIGWO demands lesser energy consumption of 75 J in 100 nodes, 78 J in 200 nodes, 

and 79 J in 300 nodes, respectively. 

 

 

Table 6. Performance analysis of energy consumption (J) with varying 100 nodes 
Number of nodes BW ABC PSO Proposed M-TAIGWO 

100 75 89 87 64 

200 80 85 92 70 

300 83 90 95 73 
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Figure 7. Graphical representation of energy consumption (J) with varying 100 nodes 

 

 

Table 7 represents the performance analysis of delay in milli seconds (ms) with varying 100 nodes. 

The delay refers to the time taken for transmitting data packets from source to BS. The outcomes of the BW, 

ABC, and PSO are compared with the M-TAIGWO approach. Figure 8 shows the graphical representation of 

delay with varying 100 nodes. The obtained result shows that the implemented M-TAIGWO provides less 

delay of 15 ms in 100 nodes, 46 ms in 200 nodes, and 52 ms in 300 nodes, respectively. 

 

 

Table 7. Performance analysis of delay (ms) with varying 100 nodes 
Number of nodes BW ABC PSO Proposed M-TAIGWO 

100 40 56 47 15 

200 52 63 59 46 

300 65 70 68 52 

 

 

 
 

Figure 8. Graphical representation of delay (ms) with varying 100 nodes 
 

 

Table 8 represents the performance analysis of PDR in (%) with varying 100 nodes. The outcomes 

of the BW, ABC, and PSO are compared with the M-TAIGWO approach. Figure 9 shows the graphical 

representation of PDR with varying 100 nodes. The obtained result shows that the implemented M-TAIGWO 

provides a high PDR of 94% in 100 nodes, 97% in 200 nodes, 95% in 300 nodes, 96% in 400 nodes, 98% in 

500 nodes. 
 

 

Table 8. Performance analysis of PDR (%) 
Number of nodes BW ABC PSO Proposed M-TAIGWO 

100 75 89 90 94 

200 80 93 85 97 

300 92 87 89 95 

400 89 79 92 96 

500 82 90 93 98 
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Figure 9. Graphical representation of PDR (%) 

 

 

Table 9 displays the performance analysis of the network lifetime in rounds with varying 100 nodes. 

The results of the BW, ABC, and PSO are compared with the M-TAIGWO approach. Figure 10 shows the 

graphical representation of network lifetime with varying 100 nodes. The obtained result shows that the 

implemented M-TAIGWO provides a high network lifetime of 240 rounds in 100 nodes, 255 rounds in 200 

nodes, 260 rounds in 300 nodes, 255 rounds in 400 nodes, and 270 rounds in 500 nodes. 

Furthermore, by improved node load balancing, better CH selection and better clustering, the  

M-TAIGWO provides an improved network lifetime. Trust-based routing identifies malicious nodes like 

Hello flood attacks, sinkhole attacks, black hole attacks, and selective forwarding attacks, and sends out more 

packets as an outcome. Nodes’ energy consumption is decreased due to an increase in packet delivery ratio 

and enhanced identification of malicious nodes, which has improved network lifetime. 

 

 

Table 9. Performance analysis of network lifetime (rounds) 
Number of nodes BW ABC PSO Proposed M-TAIGWO 

100 210 200 190 240 

200 185 210 235 255 

300 220 245 250 260 

400 215 195 230 255 

500 200 230 245 270 

 

 

 
 

Figure 10. Graphical representation of network lifetime (rounds) 
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4.2.  Comparative analysis 

Table 10 represents simulation parameters considered to analyse M-TAIGWO. This section supplies 

a comparative analysis of implemented M-TAIGWO approach with evaluation metrics including energy 

consumption, delay, network lifetime, and PDR are shown in Tables 11 to 13. Table 11 shows the four types 

of attacks with varying 5 nodes compared with existing TAGA [17]. While the malicious nodes proportion 

increases, the number of malicious discarded packets also increases. Table 12 denoted the energy 

consumption (J) and delay (ms) varying 100 nodes compared with existing method of fuzzy and secured 

clustering algorithm. The number of nudes increases the energy consumption (J) and delay (ms) decreases. 

Table 13 illustrates the network lifetime (rounds), and PDR (%) varying 100 nodes compared with existing 

method of QGAOA. The network lifetime (rounds) and PDR (%) are increases when the number of nodes 

increases. The implemented M-TAIGWO method’s performance is compared with existing methods such as 

the fuzzy and secured clustering algorithm [16], QGAOA [18], and TAGA [17]. The implemented M-

TAIGWO algorithm is used to improve capacity against malicious attacks.  

 

 

Table 10. Simulation parameters 
Parameter Value 

Number of nodes 5, 10, 15, 20, 25, 30, 100, 200, 300, 400, and 500 

Network size 1500 × 1500𝑚 
Initial energy 1J 

Size of packet s 

 

 

Table 11. Comparison of four types of attacks with varying 5 nodes for malicious discarded packets 
Proportion of 

malicious nodes/% 

TAGA [17] Proposed M-TAIGWO 

Hello 

Flood 

Sinkhole Black 

hole 

Selective 

forwarding 

Hello 

Flood 

Sinkhole Black 

hole 

Selective 

forwarding 

5 210 95 200 380 200 80 100 350 

10 300 140 220 460 280 110 190 440 

15 330 145 350 650 300 115 310 610 

20 450 170 440 1,100 420 135 400 980 

25 1,300 200 650 1,250 1,000 180 615 1,150 

30 1,500 230 780 1,600 1,200 200 730 1,300 

 

 

Table 12. Comparison of energy consumption (J) and delay (ms) varying 100 nodes with existing methods 
Number of nodes Fuzzy and secured clustering algorithm [16] Proposed M-TAIGWO 

Energy consumption (J) Delay (ms) Energy consumption (J) Delay (ms) 

100 85 25 64 15 

200 86 58 70 46 

300 88 60 73 52 

 

 

Table 13. Comparison of network lifetime (rounds), and PDR (%) varying 100 nodes with existing methods 
Number of nodes QGAOA [18] Proposed M-TAIGWO 

Network lifetime (rounds) PDR (%) Network lifetime (rounds) PDR (%) 

100 230 93 240 94 

200 240 96 255 97 

300 250 93 260 95 

400 245 94 255 96 

500 255 97 270 98 

 

 

5. CONCLUSION 

In order to improve security against malicious attacks, M-TAIGWO implements the secure cluster-

based routing protocol in this research. To avoid malicious attacks like Hello flood attacks, sinkhole attacks, 

black hole attacks, and selective forwarding attacks during communication, SCHs from regular sensors and 

route paths through SCHs are selected by using M-TAIGWO. Additionally, M-TAIGWO clustering increases 

the WSN network lifetime by improving energy efficiency and performing safe communication. The shortest 

route obtained from M-TAIGWO is employed to secrease delay over WSN, and hence, data transmission of 

M-TAIGWO is improved in WSN. From the experimental results, it is evident that the implemented method 

achieves superior performance to the Fuzzy and secured clustering algorithm, QGAOA, and TAGA.  

The implemented method obtains a PDR of 98% for 500 nodes which is superior to the QGAOA, with a 

delay of 15 ms for 100 nodes which is lesser than the fuzzy and secured clustering algorithm. In contrast to 
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TAGA, this implemented method achieves defense, hello flood, selective forwarding, sinkhole, and black 

hole attacks effectively. The simulation results demonstrate the effective performance of the M-TAIGWO 

method in mitigating the impact of malicious nodes. It not only decreases the incidence of lost packets, but 

also significantly improves the network energy efficiency. In the future, advanced WSN attributes can be 

explored for trust factors computation for secure routing, and also a novel robust protocol can be developed 

to manage more WSN critical attacks. 
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