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 To determine the extent of pavement damage and forms of pavement 

distress, road pavement conditions must be precisely assessed. As a result, 

monitoring systems are regarded as an important stage in the maintenance 
procedure. In recent times, numerous investigations have been carried out to 

track the condition of pavement and monitor road surfaces. In the undertaken 

study, we have proposed a novel artificial intelligent (AI) and computer 

vision-enabled PavementCarevision 4.0 approach to detect and classify 
pavement health conditions i.e., defects. In this study, a customized 

pavement-2000 dataset has been designed which contains more than 2,000 

images of a variety of pavement defects. In the initial phase, we pre-

processed and enhanced pavement images using the customized adjustable 
linear contrast enhancement methodology. The enhanced pavement image 

samples were fed to the proposed customized YOLOV8 enabled 

PavementHealth 4.0 framework for pavement condition detection of a 

variety of pavement defects such as longitudinal cracks, alligator cracks, 
transverse cracks, and potholes. The proposed customized YOLOV8 enabled 

PavementHealth 4.0 framework has achieved an accuracy of 99.20 percent; 

an receiver operating characteristic (ROC) value of 0.98 and outperformed 

existing AI-based state-of-the-art methodologies such as pose NET, 
YOLOv7, YOLOv5, long short-term memory network (LSTM), Mask  

region-based convolutional neural network (R-CNN), and decision tree. 
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1. INTRODUCTION 

Highways have undergone significant expansion over the course of more than a century, becoming 

prominent worldwide transportation routes [1]. Given the rapid population expansion and economic 

development, maintenance issues are of utmost importance, as they contribute to a rise in the number of 

vehicles and traffic accidents [2]. Pavement maintenance refers to the efforts made to preserve or prolong the 

lifespan of pavement until significant restoration or total reconstruction is carried out [3]. An initial 

assessment of the pavement condition is crucial in the planning of pavement maintenance [4]. Assessing the 

state of the road pavement and figuring out how well it performs in terms of offering road users a safe and 

comfortable experience begins with pavement condition monitoring which is a part of pavement maintenance [5]. 

Preventive maintenance is a useful technique to extend the functional life of a pavement [6]. Monitoring and 

detecting defects in pavement surfaces are crucial measures in maintaining the road infrastructure [7]. 

Conventionally, manual pavement monitoring has been carried out by trained professionals, which is an 

https://creativecommons.org/licenses/by-sa/4.0/
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approach that is susceptible to errors, hazards and inefficiencies [8], [9]. Numerous investigations have been 

carried out to track the condition of pavement and monitor road surfaces. Manual detection, sensor-based, 

smartphone-based, and remote sensing technologies can identify pavement distress. Each approach has 

drawbacks, though [10]. Smartphone and sensor-based methodologies, as previously indicated, have 

constraints in precisely identifying various types of defects. Remote sensing technologies, while very 

accurate, are accompanied by several constraints, including higher costs for data collection and less 

adaptability [11]. To help choose the best maintenance procedures, a variety of monitoring systems have 

been employed to assess both paved and unpaved road surfaces and identify the kind and degree of pavement 

degradation [5]. Depending on the type of equipment and measuring technique utilized, there are two ways to 

monitor the status of the pavement: i) static monitoring and ii) dynamic monitoring. Static monitoring 

requires fixed detecting equipment [12]. In dynamic monitoring, equipment can be installed on or inside a 

vehicle to gather data when the vehicle is moving through selected road segments in specific spots for a 

predetermined amount of time [10]. Dynamic monitoring shows the condition of the pavement at several road 

sites. The asphalt pavement surface deteriorates and the asset value decreases as a result of improper and 

delayed maintenance. Therefore, it is necessary to schedule precise and consistent pavement condition 

monitoring, in part based on pavement distress evaluations, to maintain the quality of the current asphalt 

pavement surface. Since the middle of the 20th century, pavement health monitoring which is crucial to 

pavement management systems has been a focus of transportation research [13]. The majority of pavement 

distresses must be repaired as soon as possible because they usually start out as cracks in the road surface and 

could endanger traffic safety. Repetitive environmental or human influences will cause faults in this damaged 

pavement to worsen if it is not corrected in a timely way [14]. The most crucial elements to take into account 

when assessing the condition of asphalt pavements are the kind, severity, and degree of cracks in the 

pavement surface [15], [16]. Figure 1 represents a classification of variety of cracks such as pipe crack, 

bridge crack, pavement crack, road crack, and tunnel crack. 

Ranyal et al. [17] have developed an attention-based approach to monitor pavement health, detect 

cracks, and measure them. However, they did not explore any concepts related to artificial intelligent (AI)-

enabled pavement monitoring, crack detection, and classification. A machine learning-based approach for the 

development of distress and sustainability monitoring has been proposed by Jung et al. [18]. However, they 

did not discuss anything related to pavement health monitoring based on the classification. Ranieri et al. [19] 

have proposed an AI-based approach for the road surface monitoring. However, they did not discuss any 

ideas related to AI-enabled pavement monitoring, crack detection and classification. Mishra et al. [20] have 

proposed an internet of things (IoT)-based approach for structural road monitoring. However, they did not 

explore any concepts related to AI-based pavement monitoring and classification. Obaidat et al. [21] 

proposed a geographic information system (GIS) based approach to map road conditions. However, they did 

not propose any ideas related to pavement health monitoring, crack detection and measurement. Xu et al. [22] 

have discussed various methods related to dynamic pavement health and service quality. However, they did 

not propose or discuss any ideas related to pavement health monitoring, crack detection and classification. 

Kargah-Ostadi et al. [23] have proposed an IoT-based approach to monitor pavement conditions using the 

concept of connected vehicles. They did not discuss any ideas related to AI-enabled pavement monitoring, 

crack detection and classification. Safaei et al. [24] have proposed a pixel-based approach for pavement 

crack detection. However, they have not discussed any ideas related to AI-based pavement crack detection 

and classification. Bao et al. [25] have proposed a computer vision and AI-based approach to perform 

structural monitoring of roads. However, they did not discuss any ideas related to pavement crack 

classification and detection. They did not propose a complete framework to monitor pavement health and 

classify a variety of cracks such as alligator cracks, longitudinal, transverse cracks, and potholes. Kypris and 

Markham [26] have proposed a magnetic field-based approach to perform structural monitoring of 

pavements. However, they did not discuss any ideas related to AI-enabled pavement monitoring, crack 

detection and classification. Spencer et al. [27] have proposed an advanced computer vision-based 

methodology to perform inspection and monitoring of pavements. However, the proposed methodology was 

a very basic computer vision approach which did not discuss any ideas related to AI-enabled pavement health 

monitoring, crack detection and classification. Mondal and Jahanshahi [28] have proposed a vision-based 

approach for road structure monitoring and condition assessment. However, they did not discuss anything 

related to pavement health monitoring, crack detection and classification. In one of the researches conducted 

by [29] mentioned the cross-validation of machine learning algorithms with consideration of feature ranking 

techniques. Wang et al. [30] discussed a YOLOv8-based approach for pavement health monitoring and 

condition assessment during the transport research board meeting. However, they did not propose a complete 

framework to monitor pavement health and classify a variety of cracks such as longitudinal cracks, transverse 

cracks, alligator cracks and potholes. 
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In recent times, fellow researchers have made a few attempts to design a complete AI and computer 

vision-based framework to detect and classify a variety of pavement defects. Still, designing a complete AI 

and computer vision-enabled framework has remained an open research problem. This study offers 

significant contributions to the field of pavement health monitoring and classification, laying the groundwork 

for further advancements in infrastructure maintenance. In the proposed study, we have proposed a novel AI 

and computer vision-enabled PavementHealth 4.0 approach to detect and classify pavement defects which 

surpasses existing methodologies in accuracy and efficiency. The key contributions of this work include the 

creation of a customized dataset, Pavement2000, comprising over 2,000 images of various pavement health 

conditions i.e., longitudinal cracks, transverse cracks, alligator cracks and potholes; and the development of a 

customized adjustable linear contrast enhancement methodology to pre-process and enhance pavement 

images. Furthermore, the proposed YOLOv8-enabled PavementHealth 4.0 framework demonstrates 

remarkable performance in detecting and classifying pavement defects, achieving an accuracy of 99.20 

percent and a receiver operating characteristic (ROC) value of 0.98. The subsequent sections of this paper 

will delve into the necessity of the proposed PavementHealth 4.0 framework, its architecture and 

methodology, the results obtained, and concluding remarks, providing a comprehensive overview of our 

research findings and their relevance in advancing pavement health monitoring practices.  
 

 

 
 

Figure 1. Classification of crack conditions 
 

 

2. THE PROPOSED METHOD: PAVEMENTHEALTH 4.0 FRAMEWORK 

The contributions that this study makes are: creation of a customized dataset termed 

”Pavement2000” [1], which contains more than 2,000 images of a variety of pavement health conditions 

(defects) such as longitudinal cracks, transverse cracks, alligator cracks and potholes, design of a customized 

adjustable linear contrast pavement enhancement methodology [2], design and development of the proposed 

YOLOv8-enabled PavementHealth 4.0 framework for detection and classification of a variety of pavement 

defect conditions such as longitudinal cracks, transverse cracks, alligator cracks and potholes [3], testing of a 

proposed YOLOv8-enabled PavementHealth 4.0 framework as shown in Figure 2 [4]; for detection and 

classification of a variety of pavement defect conditions such as longitudinal cracks, transverse cracks, 

alligator cracks and potholes. 
 

 

 
 

Figure 2. The architecture design of the proposed PavementHealth 4.0 framework 
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3. METHOD 

The research was conducted in a sequential manner as shown in Figure 3, following a series of 

stages; i) data collection, ii) data pre-processing, iii) design of customized pavement enhancement 

framework, and v) testing of proposed YOLOv8 model. 

 

 

 
 

Figure 3. Stages for adopted research methodology 

 

 

3.1.  The architecture design of a proposed PavementHealth 4.0 framework 

Data collection: in the undertaken study, we have proposed a novel AI and computer vision-enabled 

PavementCarevision 4.0 approach to detect and classify pavement health conditions and cracks. In this study, 

a customized pavement-2000 dataset has been designed which contains more than 2,000 images of a variety 

of pavement health conditions such as alligator cracks, longitudinal cracks, transverse cracks and potholes. 

The dataset contains 511 samples for alligator cracks, 510 samples for longitudinal cracks, 512 samples for 

transverse cracks and 520 samples for potholes defects. Table 1 describes SUT-Crack and PavementHealth-

2,000 pavement samples. 

 

 

Table 1. Pavement dataset (SUT-Crack and PavementHealth-2000) 
Pavement defect classification No. of samples 

Alligator cracks 511 

Longitudinal cracks 510 

Transverse cracks 512 

Potholes 520 

Total 2,053 

 

 

3.2.  A customized linear contrast enhancement methodology 

In the initial process, the pavement defect samples are converted into grey-scale images for pre-

processing and image enhancement process. Figure 2 represents the architecture design of the proposed 

PavementHealth 4.0 Framework. As shown in Figure 2, the SUT-Crack and PavementHealth-2000 samples 

are given as input to the customized linear contrast enhancement methodology. Algorithm 1 represents a 

customized adjustable linear contrast pavement enhancement methodology. 

 

3.3.  A customized YOLOv8 enabled PavementHealth 4.0 framework 

Deep learning models perform exceptionally well in a variety of tasks, but they are sometimes 

viewed as “black-box” models since it is difficult to understand how they make decisions and reason. For 

critical applications such as pavement detection, financial prediction, autonomous driving, and medical 

diagnostics, an understanding of the interpretability of deep learning models is essential. Investigating deep 

learning models’ interpretability in-depth is crucial for gaining a sense of intuition about their performance. 

The customized YOLOv8 Pavement model is chosen as the models for verification in the undertaken study. 

Mosaic augmentation is one of the novel training approaches used by YOLOv8 to improve model 

performance. To encourage the model to learn item contexts in various settings and against varied backdrops, 

YOLOv8 blends four pavement samples during the training phase. However, to avoid any potential 

performance loss, this augmentation is turned off for the last ten training epochs. A deep neural network is 

the foundation of the YOLOv8 architecture. The input pavement image is divided into a grid, and for each 

grid cell’s items, bounding boxes and class probabilities are predicted. Typically, the network design consists 

of detection, down sampling, and convolutional layers. A backbone network is utilised by YOLOv8 to extract 

hierarchical information from the SUT-Crack and PavementHealth-2000 image samples. Backbone networks 

with a good balance between speed and accuracy, such as CSPDarknet53, are frequently utilised. Developed 

by Ultralytics, the creators of YOLOv5, YOLOv8 is a cutting-edge computer vision model. This new model 

offers built-in functionality for object recognition, classification, and segmentation tasks. It can be accessed 

through both a command line interface and a Python package. Using transfer learning, we trained a YOLOv8 

model on the SUT-Crack and PavementHealth-2000 datasets. First, we initialised the model with pre-trained 
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weights from the SUT-Crack dataset, and then we refined it into a customized PavementHeath-2000 dataset. 

The model was trained for 300 epochs with an initial learning rate of 0.01 using a batch size of 16. Using the 

GPU platform, the customized YOLOv8 Pavement model has been put into practice, trained, and validated 

on the Google Colab platform. As shown in Figure 2, The pavement image samples, collected from the 

SUTCrack and the customized PavementHealth-2000 dataset, will be input into the customized YOLOv8-

enabled PavementHealth 4.0 Framework as detailed in Algorithm 1. The extracted enhanced pavement 

samples will be sent to the proposed customized YOLOv8-enabled PavementHealth 4.0 Framework for 

pavement detection and classification. If a Pavement defect is detected, it will be sent to the corresponding 

customized YOLOv8-enabled PavementHealth 4.0 framework to classify: i) alligator cracks,  

ii) longitudinal cracks, iii) transverse cracks, and iv) potholes. Algorithm 2 describes in detail about the 

complete YOLOv8 enabled pavement defect classification process. 
 

3.3.1. Algorithm 1: the customized adjustable linear contrast enhancement methodology 
Step 1: in the initial process, the pavement samples are converted into grey-scale images for the pre-

processing and image enhancement process. Let a pavement sample can be represented by P= {P (a, b)}. 

Where, an input pavement image where p(a,b) denotes the level of intensity of pavements at (a, b).  

The number of pixels present in a pavement sample is N, and the grey pavement sample has M digitized 

levels. The digitised levels can be represented as {P0, P1, ..., PN−1} and therefore, ∀P (a, b) ∈ {P0, P1, ..., PN−1}. 

The frequency of pm is achieved by, 
 

𝑓(𝑃𝑚) =
𝑥𝑚

𝑇
, 𝑥 = 0,1, … , (𝑁 − 1) (1) 

 

where xm is the pavement total no. of pixels, and the level of intensity of Pm is the pavement image. Based on 

the frequencies, the relative cumulative frequency can be given by (2). 
 

𝑓(𝑃𝑚) = ∑ 𝑓(𝑃𝑥)𝑚
𝑥=0 , 𝑥 = 0,1, … , (𝑁 − 1) (2) 

 

The enhanced pavement image can be represented by P={p(a,b)} and Q={q(a,b)} to be the pavement 

enhanced image. The transformation from the initial pavement sample from input P to enhanced pavement 

image Q can be shown as, 
 

𝑄 = ℎ(𝑃) = {𝑓(𝑝(𝑎, 𝑏))|∀𝑝(𝑎, 𝑏) ∈ 𝑃} (3) 
 

Step 2: initialize pavement nodes (2N-1+1) on the spectrum pavement enhanced sample image. These 

pavement nodes initialize histogram reference nodes PQ = [𝑃0
𝑄, 𝑃1

𝑄, … , 𝑁𝑀
𝑌 ] that is placed on the pavement 

histogram spectrum of the pavement enhanced image as: 
 

𝑃𝑁
𝑄 = 𝑄𝑚𝑖𝑛 + 𝑛

𝑄𝑚𝑎𝑥−𝑄𝑚𝑖𝑛

2𝑁−1 , 𝑥 = 0, … , 2𝑑−1 (4) 

 

Step 3: The enhanced pavement sample image can be given by, 
 

𝑋𝑦
𝑋 = 𝑃𝑛 𝑖𝑓 𝑓(𝑃𝑛) ≥

𝑃

2𝑛−1 , 𝑋 = 0, … , 2𝑁−1 (5) 

 

Algorithm 2. The customized YOLOv8 enabled PavementHealth 4.0 framework 
Step 1: input: pavement sample images of SUT-Crack and PavementHealth-2000 dataset.  

Step 2: output: pavement sample detection (AlligatorCracks) or 

Pavement sample detection (LongitudinalCracks) or 

Pavement sample detection (TransverseCracks) or 

Pavement sample detection (Potholes) 

Function pavement classfication (PavementImages[SUT-Crack, PavementHealth-2000]) { 

Step 1. Capture the processed pavementimage samples 

Step 2. Build customized YOLOv8 enabled PavementHealth 4.0 model 

Step 3. Initiate YOLOv8 enabled PavementHealth 4.0 model training using pavement image 

samples for X = Pavement[Y ] 

Step 4. PavementDetection(X) = input pre-processed and enhanced pavement sample images 

Compile YOLOv8 enabled PavementHealth 4.0 model 

PavementDetectMetric ←= accuracy 

PavementModel ← optimizer = Adam 

TrainYOLOv8 – PavementHealth 4.0 model ← SUT-Crack and PavementHealth-2000 dataset 

PavementDetectResults = pavement sample detection (AlligatorCracks) or 

Pavement sample detection (LongitudinalCracks) or 

Pavement sample detection (TransverseCracks) or 

Pavement sample detection (Potholes) 

} 
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4. RESULTS AND DISCUSSION 

In this study, we have applied pavement sample images collected from SUT-Crack and the 

customized PavementHealth-2000 dataset. In the initial phase, we pre-processed and enhanced pavement 

images using the customized adjustable linear contrast enhancement methodology. The enhanced pavement 

image samples were fed to the proposed customized YOLOV8 enabled PavementHealth 4.0 framework for 

pavement condition detection of a variety of pavement health defect conditions such as alligator cracks, 

longitudinal cracks, transverse cracks and potholes as described in section above. The proposed customized 

YOLOV8 enabled PavementHealth 4.0 framework is compared with existing deep learning and machine 

learning approaches, such as PoseNET, YOLOv7, YOLOv5, long short-term memory network (LSTM), and 

Mask R-CNN, and decision tree which have received corresponding accuracy of 84, 83.79, 82, 76.82, 76.39, 

and 71. Table 2 describes the accuracy metric comparison of the proposed customized YOLOV8 Enabled 

PavementHealth 4.0 Framework with customized machine learning and deep learning methodologies such as 

Pose NET, YOLOv7, YOLOv5, Decision Tree, long short-term memory network (LSTM), and Mask region-

based convolutional neural network (R-CNN), and decision tree. 

 

 

Table 2. Pavement dataset (SUT-Crack and PavementHealth-2000) 
List of methodologies No. of samples 

The proposed customized YOLOV8 enabled PavementHealth 4.0 99.20 

POSE NET 84 

YOLOV7 83.79 

YOLOv5 82 

LSTM 76.82 

Mask R-CNN 76.39 

Decision tree 71 

 

 

The custom YOLOV8 enabled PavementHealth 4.0 framework has attained an impressive accuracy 

of 99.20 percent and a ROC value of 0.98, exceeding the performance of existing state-of-the-art AI-based 

methods. Figures 4 and 5 depict the accuracy and the loss comparison results of the proposed customized 

YOLOV8 enabled PavementHealth 4.0 framework. Figure 6 shows the ROC curve for the customized 

YOLOV8 enabled PavementHealth 4.0 framework, along with other customized machine learning and deep 

learning methods including Pose NET, YOLOv7, YOLOv5, decision tree, LSTM, Mask R-CNN, and 

decision tree. 

 

 

 
 

Figure 4. Training accuracy representation of the proposed PavementHealth 4.0 framework 

 

 

 
 

Figure 5. Testing Accuracy representation of the proposed PavementHealth 4.0 framework 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Pavement health 4.0: a novel AI-enabled PavementVision approach … (Jaykumar Soni) 

1169 

 
 

Figure 6. ROC representation of the proposed PavementHealth 4.0 framework 
 

 

Figure 7 (Figures 7(a) to 7(c)) and Figure 8 (Figures 8(a) and 8(b)) represent the Pavement health 

condition detection and classification using the proposed customized YOLOV8 enabled PavementHealth 4.0 

framework. Comparing the present study with previous researches, our approach stands out for its 

comprehensive nature and superior performance. While prior methodologies showed promise, they often 

lacked the accuracy and performance required for real-world applications. However, it’s important to 

acknowledge the limitations of the current research, including reliance on a single dataset and the need for 

further validation in diverse real-world scenarios. Although, our framework surpassed expectations in terms 

of accuracy, indicating its potential for widespread adoption in pavement management systems 
 

 

   
(a) (b) (c) 

 

Figure 7. Classification representation of pavement health defect conditions such as: (a) longitudinal cracks, 

(b) longitudinal cracks, and (c) transverse cracks 
 

 

  
(a) (b) 

 

Figure 8. Classification representation of pavement health conditions such as (a) transverse cracks and  

(b) potholes using the proposed YOLOv8 enabled PavementHealth 4.0 framework 
 

 

5. CONCLUSION 

The timely and precise identification of pavement distress is essential for road safety, effective 

maintenance scheduling, and a thorough evaluation of pavement conditions. In conducted experiments,  

we have applied pavement sample images collected from SUT-Crack and the customized PavementHealth-

2000 dataset. In the initial phase, we pre-processed and enhanced pavement images using the customized 

adjustable linear contrast enhancement methodology. The enhanced pavement image samples were fed to the 

proposed customized YOLOV8 enabled PavementHealth 4.0 framework for pavement condition detection of 

a variety of pavement health conditions such as alligator cracks, longitudinal cracks, transverse cracks and 

potholes. The dataset contains 511 samples for alligator cracks, 510 samples for longitudinal cracks, 512 

samples for transverse cracks and 520 samples for potholes defect conditions. The extracted enhanced 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 1163-1171 

1170 

pavement samples will be sent to the proposed customized YOLOv8-enabled PavementHealth 4.0 framework 

for pavement detection and classification. If a pavement pose is detected, it will be sent to the  

corresponding customized YOLOv8-enabled PavementHealth 4.0 framework to classify: i) alligator cracks,  

ii) longitudinal cracks, iii) transverse cracks, and iv) potholes. The proposed customized YOLOV8 enabled 

PavementHealth 4.0 Framework is compared with existing deep learning and machine learning approaches, 

such as PoseNET, YOLOv7, YOLOv5, LSTM, and Mask R-CNN, and decision tree which have received 

corresponding accuracy of 84, 83.79, 82, 76.82, 76.39, and 71. The proposed customized YOLOV8 enabled 

PavementHealth 4.0 Framework has achieved an accuracy of 99.20 percent and a ROC value of 0.98 and 

outperformed existing AI-based state-of-the-art methodologies. In the future, the proposed customized 

YOLOV8 enabled PavementHealth 4.0 can be enhanced with explainable artificial intelligence (XAI)-based 

methodologies for achieving more accurate pavement health condition detection and classification. 
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