Indonesian Journal of Electrical Engineering and Computer Science
Vol. 36, No. 2, November 2024, pp. 1052~1069
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v36.i2.pp1052-1069 a 1052

Bee-inspired knowledge transfer: synthesizing data for
enhanced deep learning explainability

Kritanat Chungnoy!, Tanatorn Tanantong!?, Pokpong Songmuang!»?
! Department of Computer Science, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
2Thammasat University Research Unit in Data Innovation and Artificial Intelligence, Thammasat University, Pathum Thani, Thailand

Article Info ABSTRACT
Article history: This paper presents the generation method for an explainable model based on
Received Mar 13, 2024 the given information of a black box model using a concept of knowledge trans-

fer to synthesize a dataset. The proposed method applies with GAN and Bee
algorithm (BA) for data synthesis technique to synthesize a dataset by consid-
ering loss value in a knowledge transferring process to inherit the significance
of features. The synthesized dataset is used to train for a proxy model as an ex-
Keywords: plainable model. The result of the experiment indicates that knowledge transfer
from Bee algo better than generative adversarial network (GAN) in terms of the
coefficient of determination R2. In addition, explainable models from the syn-
thesized data of the Bee-based method obtains F1 score superior to those from

Revised Jul 3, 2024
Accepted Jul 14, 2024

Bee algorithm
Deep learning

Expla%nability the GAN-based method in all datasets and settings. The dataset synthesized
Explainable Al from the Bee-based method produces the explainable prediction model that has
Synthesize data similar top-10 features according to similarity score of 0.6718 using shapley ad-

ditive explanations (SHAP) feature importance which is higher than those from
GAN-based method for 0.4218 in average. Additionally, experimental result to
evaluate accuracy shows that F1 score from explainable models from the Bee-
based method are closed to F1 score from a model generated from the original
dataset.

This is an open access article under the CC BY-SA license.

E00]
Tanatorn Tanantong

Thammasat University Research Unit in Data Innovation and Artificial Intelligence, Thammasat University
Pathum Thani, Thailand
Email: tanatorn@sci.tu.ac.th

Corresponding Author:

1. INTRODUCTION

Artificial intelligence (Al) has been developed and used in many tasks and domains [1]]. Among
many approaches, deep learning approach has gained significant popularity and widespread adoption due to
scalability, versatility, and state-of-the-art performance [2]-[12]. However, models from deep learning are
a black box model with deep, computationally expensive layers and have been recently found vulnerable to
spoofing with well-designed input samples in many safety-critical applications [[13]. The black box model
refers to the lack of transparency and interpretability from containing a large number of complex parameters,
making it challenging to understand why the model chooses particular predictions. Unfortunately, transparency
and accountability are ones of crucial factors towards ethics guidelines for trustworthy Al [[14] by European
Commission standard. Addressing the black box nature of deep learning models is an ongoing research area,
and one of the solutions is explanatory artificial intelligence (XAI) which is a technique to make these models
more interpretable without sharply sacrificing their performance.
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XAI refers to techniques and approaches that aim to make Al systems, particularly deep learning
models, more transparent and understandable [[15]. The goal of XAl is to provide insights into why Al systems
make specific decisions or predictions, enhancing their interpretability and enabling users to trust and verify
their outputs. XAI thus plays a role in bridging the gap between the technical complexity of AI models and
the need for human understanding, accountability, and trust. As the use of deep learning models continues to
integrate into critical applications, the demand for XAl techniques grows accordingly and has become one of
focused task in Al development [[16]. There are several XAl methods such as rule-based explanations, attention
mechanism, and feature importance. However, most of the existing method requires an original dataset to iden-
tify which input features or variables have the most significant impact on a model’s predictions. Techniques
such as feature importance scores, permutation importance, and SHAP (shapley additive explanations) values
can help to quantify the contribution of each feature to the model’s output for explanation. Some existing re-
search focus on explaining individual predictions using local interpretable model-agnostic explanations (LIME)
to approximate the model’s behavior for a specific input by generating a simpler and interpretable model (such
as linear regression and decision tree (DT)) around that input to explain its prediction. Unfortunately, most of
the practical Al models may not share their training data due to copy right or trade secret. Thus, it becomes
difficult to generate an XAl model without the training dataset.

In this paper, we propose a method to generate XAI model based on the concept of knowledge transfer
inspired by knowledge distillation (KD) architecture. The method does not require the training dataset of
the black box model, but the complex model itself as a teacher model. The method involves transferring
knowledge directly from a teacher model (large machine learning model) to generate a synthesized dataset that
ensembles the characteristics of a teacher model for training for a simpler and interpretable prediction model as
an explainable model towards the original complex model. The obtained explainable model hence can be used
to explain the prediction and trace for bias in decision-making of deep learning-based Al. The core hypothesis
of this method is that knowledge within a complex model contains can be transferred to its synthesized data, and
the knowledgeable synthesized data can be used to generate a prediction model that resembles to the original
complex model in terms of similarity of feature importance and capability to predict similar to the original
model. The chosen data synthesis method in this work includes the frequently used generative adversarial
network (GAN) and Bee algorithm (BA). The scope of data types in this work limits to tabular and numerical
data.

The contributions of this paper includes:

— We propose a novel method to generate an XAl model from a complex black box model bases on KD-based
data synthesis call “knowledge-transferred data synthesis for explainable AI” (KT-XAI).

— We demonstrate on how to apply GAN and BA for knowledge-transferred data synthesis, called KT-GAN
and KT-Bee, respectively.

— We demonstrate that the proposed KT-Bee contributes to synthesize a dataset that inherits knowledge from
a teacher model superior to KT-GAN.

— We demonstrate that synthesized datasets from KT-Bee are systematically similar to the model generated
from the original dataset by sharing top-k important features and can be used as an explainable model to
the black box model.

— We observe the knowledge transfer parameters including data distribution, transfer accuracy and sharing of
top-k important features and found that the size of synthesized dataset does not affect the performance of
knowledge-transferred data synthesis.

2.  BACKGROUND
2.1. Explainable artificial intelligent

XAl is an approach to Al that aims to make machine learning models and their decisions more under-
standable and interpretable by humans since many Al models, particularly deep learning models, are difficult
to understand how they arrive at their conclusions. XAl thus helps to identify and mitigate bias in Al models
by revealing which features or data points are influencing decisions to improve transparency and allows for
the identification and rectification of unfair or discriminatory outcomes [[17]. DTs is another approach often
used as a proxy model. There are several works mentioned on decomposing neural network models into DT
models. Deep rule extraction from DTs (DeepRED) [18] demonstrates the extending of the comprehensible
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rule extraction from DTs (CRED) [19] algorithm which is designed for shallow networks to arbitrarily many
hidden layers. DeepRED aims to simplify using RXREN [20]] to reduce unnecessary input and applies algo-
rithm C4.5 [21] to create a DT. DeepRED is able to construct complete trees closely faithful to the original
neural network model, but the generated trees are large and requires time and memory; thus, it is difficult in
terms of scalability.

Artificial neural network-decision tree (ANN-DT) [22] is another DT-based proxy model. The ANN-
DT extracts binary DT from a trained neural network and generate outputs for samples interpolated from the
training dataset. The criterion of an attribute selection is based on a significance analysis of the variables
on the neural-network output. The ANN-DT is able to extract rules from feedforward neural networks with
continuous outputs. These extracted rules are from the neural network without making assumptions about the
internal structure of the neural network or the features of the data.

2.2. Knowledge distillation

KD [23] is a technique in machine learning to compress a large machine learning model as teacher
model to a smaller and more understandable model as student model but able to maintain the behavior of the
original model. KD is specifically used in scenarios where processing power, memory, and storage are limited.
The goal of KD is to transfer the knowledge and insights learned by the teacher model to the student model,
resulting in a more compact and efficient model. The teacher model is typically a large complex model that has
been trained on a large dataset using a deep learning and achieves acceptable accuracy but is computationally
expensive and memory-intensive. The student model is a smaller and simpler model that is designed to mimic
the behavior of the teacher model with fewer parameters to be more lightweight and suitable for deployment
on resource-restricted devices. During the training, the loss function is used for training the student model
aiming to compare the soft targets produced by the teacher model with the student model’s predictions. The
distillation loss encourages the student model to align its predictions with those of the teacher model. Through
the training process, the student model learns from the teacher model’s decision boundaries, pattern recognition,
and generalization capabilities. This allows the student model to capture the underlying knowledge of the
teacher model. With the ability to transfer knowledge from a complex model to a more compact model of KD,
we are interested to apply the method to synthesize a dataset from a complex model as a teacher model. The
synthesized data with knowledge from the teacher model thus can be a representative as an explainable model
of the black box model.

2.3. Generative adversarial network

A GAN is a machine learning technique well-known for the generation of new data instances that
resemble a given dataset as synthesized data [24]. GAN consists of two neural networks as generator and
discriminator. The former is responsible for generating new data instances that mimic the data by considering
random noise and include it into data samples. The latter then observes both original data samples and gen-
erated data samples and attempts to distinguish between them whether which samples are real, and which are
generated. Upon checking the discriminating results, loss value is calculated to improve generator criteria until
the generator becomes proficient at creating data that is difficult for the discriminator to distinguish. In prac-
tical, Addepalli er al. [25] applied GAN to generate data enriching dataset and solve imbalanced data issues
for training data for deep learning. For its ability to reliably generate resembled data, conditional tabular-GAN
(CT-GAN) algorithm [26]] is thus selected to apply for knowledge transferred data synthesis for this work.

2.4. Bee algorithm

BA is a population-based optimization technique inspired by the foraging behavior of bees to find
optimal solutions for optimization problems [27], [28]. It is famous for an ability to explore the search space
efficiently and handle complex problems successfully. As the concept of food foraging behavior, the parameters
in the algorithm include the number of scout bees (n), elite bees (e), number of food areas for foraging (m),
number of target food areas, and number of bees for foraging [27]]. The steps of BA are as follows.

The algorithm starts by generating random bee population and environment based on setting parame-
ters. Then, scout bees are sent out to scout for solutions, and the solutions are evaluated using fitness function.
Elite bees select the solution based on fitness scores where the higher the score, the more probability the solu-
tion is selected. The neighborhood of the selected solution is searched for expanding the possible solutions for
scout bees to forage, and they are also evaluated using fitness function. Then the solution among all solutions
is selected as representative solution.
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In 2019, Chungnoy et al. [29] adapted BA to solve missing data by imputing the data systematically.
The BA-based data imputation showed the ability to generate missing data effectively. The imputed dataset was
evaluated to yield the highest accuracy and superior to other techniques for 23% in average. It signifies that BA
has capability to generate a data value with high accuracy and impact to a machine learning model. Hence, we
select BA to be used as one of the techniques for knowledge transferred data synthesis for this work.

3. MATERIALS AND METHODS

This paper presents a method for developing XAI for a black box model based on KD concepts and
data synthesis. The synthesized data that are transferred from a black box model are used to train for Al can
become a model that can explain the reason why the Al chooses the output. Thus, the method consists of two
main parts as knowledge transfer and explainable model generation as shown in Figure[T]
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(Generator) f Generated Data (Black Box)

&
No
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f epoch = iy« Calculate Loss
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Finally Data Train Explainable END
Model

Fart Il : Explainable Model

h 4

Figure 1. An overview of the process

3.1. Knowledge transfer

For the knowledge transfer part, we generate synthesis data from the teacher model which is a black
box model developed from a deep learning classification. The synthesized data as a student model are used for
prediction along with a prediction from the teacher model. Loss function calculates for loss value and uses it
to adjust the student model for better prediction performance. The method is repeated until the assigned epoch
iteration is met. The result of this part is the final synthesized dataset to be used for developing an XAI model.

In this paper, two techniques of data synthesis with knowledge transfer from a teach model are pre-
sented. First, we present knowledge transfer based on GAN (KT-GAN), which applies model generator from
CT-GAN [26]. This technique synthesizes tabular data. Second, we propose a knowledge transfer based on
Bee algorithm (KT-Bee) in data synthesis.

3.1.1. Knowledge transfer based on generative adversarial network
KT-GAN applies the method of a model generator from CT-GAN [26]]. With the method, the tabular
data are synthesized as a student model. Instances in synthesized dataset are used in prediction and they are
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compared to a prediction from the teacher model to find difference. Loss then is calculated using binary cross
entropy loss (T)).

N
Loss = —% Zyi log(p(y:)) + (1 —y;) - log(1 — p(ys)) (D

i=1

Where y is the label (whereas 1 refers to matching label between predictions of a teacher model and a student
model and 0 for not-matching label) and p(y) is a probability of label being 1. In step-wise, KT-GAN processes
are given in Figure[2] The pseudo code of all steps is as follows.

i) Initial step
— Assign classes
— Assign ¢ number of instances and f number of features for synthesis for all assigned classes
— Create class label for all instances (in this work, we create class labels as balance class type)

— Generate data for each feature at random within known boundary (min-max) for all ¢ instances and f
features

i)  Use the generated dataset to test for prediction result using the teacher model and collect class labels for
all instances

iii)  Compare the result of predictions from teacher model and class label from the generated data whether
they are matched or not

iv)  Assign matching label if they are matched as 1 and unmatched as 0

v)  Apply matching label to calculation with loss function in and use loss result to calculate for adjust
weight for generator model.

vi)  Use generator model to synthesize generated dataset
vii) Repeat 2 - 6 for assigned epoch

viii) END
Initial Step

l

her Marde Add New Label as
Generator Model Genegrated Data T?gl‘:fg g:j”l | Matching : 1
! ! Un-matching - 0

Calculate Loss

Fy

Figure 2. Processes of KT-GAN

3.1.2. Knowledge transfer based on Bee algorithm

KT-Bee exploits BE to synthesize data according to given information in the teacher model. The core
process is to let bees to find the best solution of having the lowest loss value. There are two types of bees
including scout bee and follower bee. The scout bees are tasked to randomly generate a data value based on
a specified data type as a solution. The follower bees are to choose a solution by considering fitness function
of a scout bee based on probability. The higher score from fitness function represents the higher quality of a
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solution and has more probability to be chosen, and vice versa. Once a follower bee chooses a solution, the
data value as the chosen solution is adjusted. After all solutions are adjusted, fitness function will be updated
to reflect the change. A new set of scout bees then begin another round of foraging to generate a solution from
the updated dataset until the assigned iteration is met. The objective function of this process is to minimize the
loss value from binary cross entropy loss using (2).

N
1
Losspee(j) =~ Zyz ~log(m;) + (1 — y;) - log(1 — m;) 2)
i=1

Where y is the label (the y value is always 1, where 1 means matching), and m is a label is assigned to if
predictions of a teacher model and a student model are matched (1) and for not-matching (0) label.

In step-wise (Figure [3), KT-Bee processes are given in Figure [3[a). It can be split into 2 phases as
process of scout bees in Figure [3(b) and process of follower bees in Figure [3(c). The pseudo code of all steps
is as follows.

1) Initial step
(a) Assign classes
(b) Assign i number of Instances and f number of features for synthesis for all assigned classes
(c) Create class label for all instances (in this work, we create class labels as balance class type)
2) Scout bee step (Figure 3[b))

(a) Generate data for each feature at random within known boundary (Min-Max) for all 7 instances and f
features of b number of scout bees

(b) Use the generated dataset to test for prediction result using the teacher model and collect class labels
for all instances

(c) Compare the result of predictions from teacher model and class label from the generated data whether
they are matched or not

(d) Assign matching label if they are matched as 1 and unmatched as 0

(e) Apply matching label to calculation with loss function in (2)) and use Loss result to calculate for fitness
function of each scout bee using (3). The higher fitness value of a solution from a scout bee, the more
probability it is chosen by follower bees.

3) Following bee step (Figure c))

(a) m number of follower bee chooses a solution regarding fitness value based on probability calculated
from (4) where p(bee;) represents probability of choosing by each follower bee.

(b) Each follower bee randomly selects a feature to change based on probability calculated given in (7)
where p(featurey,) is a probability of feature k, and k refers to k' feature while m represents a
number of all features. In the first iteration, weight of all features is set as 1, and the chosen solution
for data change is limited to the instances that are under the matching label of 0 (not matching).

(c) Find top k similarity instance between unmatching group and matching group with results from
where p is a considered vector, and g is a target vector to find similarity. r represents 7" feature, and
s is a number of all features.
(d) Use the top K instances (from 3(c)) to train for regression model to find prediction values to change
data for the selected feature (from 3(b))
(e) Repeat step 3(c) and 3(d) for all instances with matching label of 0
(f) Use the changed solution to predict class label using the teacher model and assign the new matching
label. Then re-calculate for loss and fitness function and update the weight of each feature using (6).
If the new weight is less than 0, the weight is set as 0.
4) Repeat 2 and 3 according to the assigned iteration and if iteration is greater than n, the following bee has
a probability to randomly copy solution from the previous iteration.
5) Repeat 2, 3, and 4 until all designated classes are processed
6) END
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3.2. Training for explainable model

To obtain an explainable model that represents the complex Al model, the synthesized dataset is
trained for classification to resemble the original model. To keep an explainable model simple and inherently
interpretable, DT technique is chosen as the model generated by DT representing decisions and decision-
making processes in a human-readable tree-like structure, with each node representing a decision based on a
feature, and each branch representing the outcome of that decision. Furthermore, the transparency of DT model
makes it easy to follow the logic behind a model’s predictions. Thus, it will help user to visually trace the path
from the root node to a leaf node to understand how the model arrived at a particular decision. However, we
are aware that DT might be too simplistic to capture intricate patterns in the data and may not offer the same
predictive accuracy as more complex models like deep neural networks.

4. EXPERIMENT SETTING

In this work, an experiment is separated into 5 parts as shown in Figure 4| including: i) data prepa-
ration, ii) training teacher model, ii) knowledge transfer to synthesis dataset using KT-GAN or KT-Bee, iv)
develop an explainable model from synthesized data, v) evaluation of the explainable model, and vi) evaluation
comparison.

START

<

Step1:Data
Preparation

testing set

training set
lg Completeness of

Knowledge Transfers

Step2:Training
Teacher Model

tep5:Evaluate Model

l l Completeness of

Explainable
Step3:Knowledge . Step4:Train ) i
Transfer Transfered Data Explainable Model StePg;;EEp“re
KT-GAN Decision Tree J /—l—\
END

KT-Bee N~

Figure 4. Experiment overview

4.1. Data preparation

In this experiment, we selected 6 datasets including Higgs dataset (HI) [20], Jannis dataset (JA) [21]],
HLS4ML LHC Jet dataset (HLS) [30[], [31], MagicTelescope (MT) [32], MiniBooNE (MB) [33] and numerai
(NU) [34]. The data were prepared by discarding a class with less than 15% of the total data. We also removed
instances with a missing value(s) and processed the dataset to become a balance dataset as a training set for a
teacher model. Statistics of prepared datasets are shown in Table [I| For the testing set, 20% of datasets are
separated for model evaluation.

Table 1. Dataset details

Dataset Number instances ~ Number Features ~ Number class
Higgs dataset 92,446 28 2
Jannis dataset 44,202 54 3
HLS4ML LHC Jet dataset 805,330 16 5
MiniBooNE 72,998 50 2
Numerai 95,324 21 2
MagicTelescope 13,376 10 2
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4.2. Training teacher models

To obtain teacher models, we train each dataset with general deep learning for classification. The
obtained models are considered as a teacher model that represents a high quality classification model in terms
of accuracy in a form of complex and large black box model. Parameter setting for training the teacher models
is as follows: i) layer: 5 layer (32,16,8,4,2); ii) activation function: rectified linear unit (ReLU); iii) weight op-
timization: Adam; iv) learning rate: constant; and v) epoch: 10,000 epoch. The teacher models were evaluated
for performance using 10 fold-cross-validation and yielded the accuracy result as shown in Table [2]

Table 2. Accuracy performance of teacher models trained with 10-fold cross-validation
Dataset Higgs Jannis  HLS4ML LHCJet MiniBooNE Numerai  MagicTelescope
General deep  0.7054  0.6231 0.6748 0.8695 0.5090 0.7397

4.3. Knowledge transfer
To obtain the synthesized data with knowledge-transferred from the teacher model, we applied either
KT-GAN or KT-Bee separately to compare their performances. The parameter setting for data synthesis and
knowledge transferring is as follows.
i) KT-GAN
— Using “ctgan” library in python version 0.7.3 [26]] as data generator with all default parameter settings
and epoch is set to 100
ii) KT-Bee
— Number of scout bee: 20
— Number of follower bee: 100
— Top k similarity: 10
— Iteration: 100
The knowledge-transferred synthesized data are generated into 3 sizes regarding number of instances as i) same
instance number to the original dataset (original size); ii) 50% less instances than the original dataset (50% less
size); and iii) 50% more instances than the original dataset (50% more size). The sizes are to study whether the
size of synthesized data have the effect on classification performance or not.

4.4. Training explainable model

The synthesized datasets are generated to train for an explainable model to enhance interpretability of
prediction decision of a black box model. In this experiment, we chose the DT classification approach based
on scikit-learn version 1.3.0 [35] to represent the classification model as the model from DT is easy to interpret
and follow. The DT classification has the parameter setting shown in Table [3] We then evaluated performance
of the generated explainable models using 10 fold-cross-validation as showed in Table [

Table 3. Parameter setting for explainable model

Parameter Values
Criterion Gini
Splitter Best
Maximum depth None
Minimum samples split 2
Minimum samples leaf 1
Minimum weight fraction leaf 0.0
Maximum features None
Random state None
Maximum leaf nodes None
Minimum impurity decrease 0.0
Class weight None

Cost-complexity pruning alpha 0.0
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Table 4. Performance of explainable models with knowledge-transferred synthesized data

Dataset KT-Bee KT-GAN
HI 50% less size 0.8184 1.000
Original size 0.8268 1.000
50% more size 0.8364 1.000
JA 50% less size 0.7363 0.9932

Original size 0.7651 0.9966

50% more size 0.7733 0.9979

HLS 50% less size 0.8975 0.9997
Original size 0.8897 0.9999

50% more size  0.9999 0.9999

MT 50% less size 0.8686 0.9983
Original size 0.8766 0.9991

50% more size 0.8728 0.9994

MB 50% less size 0.8466 1.000
Original size 0.8677 1.000

50% more size 0.8536 1.000

NU 50% less size 0.7689 1.000
Original size 0.7742 1.000

50% more size 0.7652 1.000

4.5. Evaluation and comparison

To evaluate and compare the explainable models from the two presented methods, two aspects are con-
sidered including completeness of knowledge transferring and completeness the models as shown in Figure [3
The knowledge transfer method presented in this work draws inspiration from KD, a technique for transferring
knowledge from a large deep learning model (teacher model) to a smaller deep learning model (student model).
The goal is to enable the student model to achieve performance close to that of the teacher model, allowing
it to make predictions similar to the teacher model and thus be suitable for deployment on mobile devices.
To evaluate the effectiveness of the proposed knowledge transfer method, we developed performance metrics
tailored to assess the successful transfer of knowledge from a black-box model (teacher model) to synthetic
dataset believed to represent the dataset used to train the black-box model.

Evaluation

—

Completeness of Completeness of
Knowledge Transfers Explainable Model
(R

oy

Knowledge Transfer Jaccard Similarity of
Accuracy Feature Importance

e

Distribution

Figure 5. Evaluation overview

The aspect of completeness of knowledge transferring considers distribution of the data of each feature
and performance of the knowledge transferring (KTP). For distribution of data, we assume that the distribution
of data of transferred data should be similar or close to the original data, and we evaluated by comparing
the distribution of the original dataset and the synthesized dataset. KTP: this metric involves using the dataset
obtained through the knowledge transfer process to train a prediction model and then evaluating its performance
on testset. The prediction results should ideally match those of the teacher model. A higher KTP value indicates
that the synthetic dataset captures the knowledge of the teacher model more accurately. This aligns with the
hypothesis that if knowledge transfer is successful, the model trained using synthetic dataset should produce
prediction results similar to those of the teacher model. For performance of the knowledge transferring, KTP
can be calculated using (9).
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" (e —s) X 1
kTP — 2=t Nys) x 100 ©)

Where ¢, refers to number of instances that a prediction of teacher model and student model is matched, while
s i1s a number of unmatched predictions. IV is a number of all instances.

For the completeness of the generated explainable model, we consider the similarity aspect of feature
importance between the black box model and its explainable model. The used similarity calculation in this
experiment is Jaccard similarity. We consider top-10 ranking of feature importance from both datasets using

(10).
ANB ANB
s - ANB_ 140
|AUB| |A|+|B|-]|AUB
Where A is a set of feature importance of the explainable model, and B refers to a set of feature importance of
the black box model. Furthermore, we consider SHAP [36]], [37] value calculated default settings to determine
feature importance and relationship between the explainable model and the black box model. Our hypothesis
is that the higher the similarity score, the better completeness of the explainable model.

(10)

4.6. Experiment tool
In this experiment, all experiments were run in a single computer in the same environment as follows.
i) Computer spec
— Processor: Intel(R) Core(TM) i5-3450 CPU @ 3.10GHz 3.10 GHz
— RAM DDR3: 32.0 GB
— Graphic Card: NVIDIA GeForce GTX 1060 6 GB
— Hard disk: 1 TB
— System type : Window 10 64-bit operating system
ii) Programing language
— Knowledge transfer
+* KT-Bee: Python (3.9.1)
* KT-GAN: Python (3.9.1) with “ctgan” library in python version 0.7.3
— Explainable model
* Decision tree: Python (3.9.1) library from scikit-learn version 1.3.0

5. RESULTS
5.1. Completeness of knowledge transferring of synthesized data

In this part, we provide an experiment result of completeness of knowledge transferring between
synthesized datasets from KT-GAN and KT-Bee technique. The two aspects in consideration are distribution
and accuracy of knowledge transferring.

5.1.1. Distribution comparison results

The measurement used to determine distribution between the synthesized dataset and the original
dataset is R2. The distribution result comparison is given in Table 5} Table [5] show the experimental re-
sults demonstrate that the KT-Bee method outperforms the KT-GAN method in synthesizing new datasets that
closely resemble the original dataset. This aligns with our hypothesis that knowledge transfer from a teacher
model to a dataset should result in a synthesized dataset that is highly similar to the original dataset.

Table 5. Result R2 to determine the distribution difference between the synthesized dataset and the original

dataset
Datasets KT-Bee KT-GAN
HI -1.5513 -2.8540
JA -0.9150 -1.6074
HLS -1.0365 -1.5139
MT -0.9810 -1.2929
MB -1.6717 -1.8484
NU -0.8599 -1.0091
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For accuracy of explainable model, we use F1-score of classification result between the synthesized
dataset and the original dataset. Comparison is also made using different sizes of synthesized datasets from
KT-GAN and KT-Bee. The Fl-score results are given in Table [6] The results indicate that synthesized data
from KT-Bee method has better performance than KT-GAN in all datasets although the R2 score is in negative.
Furthermore, the F1-scores of the explainable models from KT-Bee are closed to the F1-score from a classifi-
cation model of its corresponding original dataset. The results also signify that size difference do not have a
noticeably effect on accuracy performance on a classification task.

Table 6. Comparison results of F1 score from explainable model and classification model from original data
Dataset Data size KT-Bee KT-GAN  Original data
HI 50% less size 0.6119 0.5000 0.6257
Original size 0.6312 0.5057
50% more size  0.6184 0.5000

JA 50% less size 0.5009 0.5026 0.5863
Original size 0.4646 0.4667
50% more size ~ 0.4889 0.4697

HLS 50% less size 0.4110 0.3884 0.6591
Original size 0.3793 0.3420
50% more size ~ 0.4308 0.3270

MT 50% less size 0.6816 0.6288 0.7945
Original size 0.7155 0.6160
50% more size ~ 0.7300 0.6115

MB 50% less size 0.7837 0.6084 0.8801
Original size 0.7927 0.5705
50% more size  0.8163 0.6686

NU 50% less size 0.5114 0.4965 0.5019
Original size 0.5085 0.5019
50% more size ~ 0.5105 0.4927

5.1.2. Accuracy results of knowledge transferring

Accuracy results are an evaluation of how accurate knowledge is transferred from the teacher model
to an explainable model using KTP calculation (given in (9)). The KTP results are given in Table[7] Table
show the KT-Bee method effectively transfers knowledge from a teacher model to a synthesized dataset more
comprehensively compared to the KT-GAN method. This is evident from the consistently higher KTP values
achieved by the KT-Bee method across all data sizes for each dataset.

Table 7. Result of KTP score

Datasets Data size KT-Bee KT-GAN
HI 50% less size 99.9134 57.8292
Original size 99.8972 58.5747

50% more size ~ 99.3156 61.3638

JA 50% less size 100.0000  54.4455
Original size 99.9343 59.4973

50% more size 99.8914 58.1074

HLS 50% less size 99.7509 69.7378
Original size 98.7093 69.1699

50% more size ~ 98.8140 69.6694

MT 50% less size 100.0000  59.0909
Original size 100.0000  58.9937

50% more size  100.0000 58.1937

MB 50% less size 100.0000  79.9561
Original size 100.0000  82.8392

50% more size  100.0000 80.5983

NU 50% less size 94.0749 50.6462
Original size 93.8661 50.1573

50% more size 95.2456 51.6854
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Moreover, KTP from KT-Bee are 98.85 in average and higher than KT-GAN for 36.05 in average. The
one-way analysis of variance (ANOVA) was conducted to determine if the difference in KTP results from each
method was significant or not. With Alpha value of 0.05, there was p-value of 5.26 x 10~!5 which signified
that at least one pair among methods have KTP results with significant difference.

5.2. Completeness of explainable model

This part shows the results of similarity between the original blackbox model and the generated ex-
plainable models from KT-GAN and KT-Bee. Two aspects were investigated including similarity of important
features from SHAP values. In this work, we chose Jaccard similarity to calculate for similarity of feature
importance. In addition, SHAP values are calculated to explain contribution of the features to the classification
outcome. In similarity calculation, top-10 features based on feature importance score are selected to represent
highest significant features from the classification models. The similarity score is calculated using and the
similarity results are given in Table[8]

Table 8. Result of Jaccard similarity for comparison of top-10 important feature similarity
Datasets Data size KT-Bee  KT-GAN

HI 50% less size 0.6667 0.0526
Original size 0.5385 0.1111
50% more size  0.6667 0.1111
JA 50% less size 0.8182 0.3333
Original size 0.6667 0.1765
50% more size ~ 0.6667 0.1765
HLS 50% less size 0.5385 0.5385
Original size 0.5385 0.4286
50% more size ~ 0.6667 0.5385
MT 50% less size 0.6667 0.4286
Original size 0.6667 0.4286
50% more size  0.6667 0.1111
MB 50% less size 0.5385 0.000
Original size 0.8182 0.000
50% more size ~ 0.6667 0.000
NU 50% less size 0.6667 0.000
Original size 0.8182 0.0900
50% more size ~ 0.8182 0.3333

The results in Table [§| show that explainable models generated from data synthesis method of KT-Bee
are superior to those from KT-GAN in all datasets and settings. Furthermore, sizes of data inconsistently affect
the similarity score, and this can be concluded that sizes of training dataset do not involve in model similarity.
To analyze further, we selected a dataset as MB with SHAP value for comparison of top-10 features between
explainable models and the teacher model (the original blackbox model) in Figure[6] As we found that KT-Bee
had higher similarity, we thus show the mapping of same features with their SHAP value from explainable
model of KT-Bee based on synthesized dataset size in Figure [/| The KT-Bee method demonstrates superior
performance in transferring knowledge from a teacher model to a synthesized dataset compared to the KT-
GAN method. This is evident in the higher KTP values achieved by the KT-Bee method. Consequently, when
the synthesized dataset generated by the KT-Bee method is utilized to construct a proxy model for explaining
the teacher model, the resulting proxy model exhibits importance features that closely resemble those of the
teacher model. Figures[7(a) to[7[c), which depict the number of matching pairs among the top 10 importance
features between the proxy model and the teacher model for the MB dataset. Figures[7(a) to[7{c) reveal 7, 8,
and 9 matching pairs of importance features, respectively. The one-way analysis of variance (ANOVA) was
conducted to determine if the difference in Jaccard similarity results from each method was significant or not.
With Alpha value of 0.05, there was p-value of 1.68 x 10719 which signified that at least one pair among
methods have Jaccard similarity results with significant difference.
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6. DISCUSSION

This study demonstrates the effectiveness of a Bee-inspired algorithm (KT-Bee) and GAN-based ap-
proach (KT-GAN) for KD in generating explainable models. While the existing approaches including GAN-
based method can be applied to generate data to solve missing data or imbalanced data issues, they were not
studied for their usage as transferring knowledge inspired by the concept of KD for generating explainable
models from complex deep learning models. This work thus proposes to apply GAN-based approach and Bee-
inspired algorithm to synthesize a dataset from complex models and trains the obtained dataset as an explainable
model.

From the experiment, we investigate the knowledge transfer rate by examining distribution and ac-
curacy results between the synthesized dataset and original dataset. Compared to a GAN-based approach
(KT-GAN), KT-Bee achieved significantly higher knowledge transfer performance (98.85% vs. 62.8%). This
translates to explainable models with features more closely resembling the original black-box model, as evi-
denced by the higher similarity score achieved by KT-Bee. These findings suggest that the BE’s optimization
process is more suitable at capturing the underlying relationships within the black-box model compared to
GAN:Ss, which primarily focus on generating realistic data distributions.

While KT-Bee demonstrates superior performance, limitations related to its knowledge transfer pro-
cess warrant further exploration. The method relies on regression to adjust feature values during data synthesis.
The regression approach can lead to problematic synthesis with features with a vast range of possible values,
as seen in the MiniBooNE dataset (Table E]) From the experiment, features like ”Particle ID 11" and “’Particle
ID 22” have a significant gap between minimum and maximum values (-6.401 to 537.262 and 0.0 to 1428.59,
respectively). Regression applied to such features might generate unrealistic values outside the expected range,
impacting the quality of the synthesized data. In addition, KT-Bee’s dependance solely on the teacher model’s
predictions for knowledge transfer introduces another limitation of the approach. If the teacher model strug-
gles with imbalanced data or prioritizes specific classes, the transferred knowledge might be biased and lead to
lower knowledge transfer performance. Since the proposed method does not have access to the original dataset
for statistical analysis (e.g., class ratios and data distribution), it relies solely on the teacher model’s knowledge,
potentially hindering explainability.

To address these limitations, further study should focus on incorporating additional statistics like mean
and standard deviation during feature value adjustment in KT-Bee in helping to tackle the issue of the vast range
of features. This could provide a better context for the regression process and lead to more realistic synthe-
sized data, especially for features with a wide value range. Furthermore, exploring alternative methods for
knowledge transfer that go beyond relying solely on the teacher model’s predictions could be a valuable area
for future research. This might involve incorporating techniques that can analyze the original data distribution
even when it’s not directly accessible. By addressing these limitations, we can enhance the robustness and gen-
eralizability of the KT-Bee method for generating explainable models from complex black-box systems. Future
research directions of this study also include investigating the impact of different BE variants on performance.
Additionally, exploring various explainable model types beyond DTs could provide broader insights. Testing
the method on real-world applications across diverse domains would further solidify its generalizability. By
addressing these areas, we can refine the KT-Bee method and expand its applicability for XAl development.

In conclusion, the findings highlight the potential of Bee-inspired algorithms for explainability in Al
for its ability to synthesize a dataset from a complex deep learning model. The synthesized dataset show great
resemblance in terms of data distribution and similarity of classification results which indicate that the classifier
model trained from synthesized dataset and the original model are similar. Thus, the comprehensible model
from synthesized dataset based on Bee-inspired algorithm can be used as explainable model to the original
complex model effectively.

Table 9. Example of statistical data for MiniBooNE dataset

Particle ID 11 Particle ID 22
Original data ~ Synthesized data ~ Original data ~ Synthesized data
Mean 162.777 189.395 104.180 134.921
Std 116.686 257.096 102.901 354.792
Min -6.401 -45.437 0.0 -181.183
Max 537.262 8340.629 1428.59 15119.142
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7. CONCLUSION

This paper presents the method to generate an explainable model based on the given information of
a well-preformed blackbox model. The proposed method is inspired by KD to transfer knowledge from a
complex and incomprehensible model to synthesize a dataset to train for an explainable model. The proposed
methods include the use of GAN and BE to synthesize a dataset by considering loss value in a knowledge trans-
ferring process to keep the significant features. The synthesized dataset then is used to train for an explainable
prediction model as a proxy model using DT classification. The experiment involves 6 public datasets to gen-
erate datasets with 3 different sizes as an original size, a 50% less size, and a 50% more size. The results of the
study signify that knowledge transfer from BE is better than GAN in terms of the coefficient of determination
R2, as the Bee-based knowledge transfer achieved the lowest R2 of -0.895, and the biggest gap between the
two methods is -0.692 in JA dataset. Moreover, explainable models from the synthesized data of the Bee-based
method show higher F1 score than those from the GAN-based method in all datasets and settings, while F1
score from explainable models from the Bee-based method are closed to F1 score from the original blackbox
model. The experimental results indicate that the size of the synthesized data does not affect the distribution of
data since the data distribution is similar to the original dataset regardless of the size of the generated dataset.
In terms of knowledge transfer performance, the Bee-based method achieves the higher score in average of
98.85% than the GAN-based method that yields an average of 62.8% accuracy score. The dataset synthesized
from the Bee-based method produces the explainable prediction model that has similar top-10 features accord-
ing to similarity score of 0.6718 using SHAP feature importance which is higher than those from GAN-based
method for 0.4218 in average. Thus, it is conclusive that an explainable model using Bee-based data synthesis
method is noticeably superior to the one from GAN-based data synthesis method. The proposed method is
also proved to be usable to generate a proxy model to explain decision-making for a complex blackbox model,
especially the case of inaccessibility of an original dataset but the blackbox model. Our findings highlight the
potential of Bee-inspired algorithms as a powerful tool for XAI development. The ability to generate explain-
able models even when the original dataset is unavailable represents a significant advancement. This capability
is particularly valuable in scenarios where data privacy concerns or limitations prevent access to the original
data.
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