
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 37, No. 3, March 2025, pp. 1772∼1784
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v37.i3.pp1772-1784 ❒ 1772

Tomato leaf disease detection using Taguchi-based Pareto
optimized lightweight CNN

Bappaditya Das, C. S. Raghuvanshi
Department of Computer Science and Engineering, Faculty of Engineering and Technology, Rama University,

Kanpur, India

Article Info

Article history:

Received Mar 12, 2024
Revised Sep 30, 2024
Accepted Oct 7, 2024

Keywords:

Deep learning
Hyperparameters tuning
Leaf disease detection
Multiobjective
Taguchi method

ABSTRACT

The prospect of food security becoming a global danger by 2050 due to the
exponential growth of the world population. An increase in production is indis-
pensable to satisfy the escalating demand for food. Considering the scarcity of
arable land, safeguarding crops against disease is the best alternative to maxi-
mize agricultural output. The conventional method of visually detecting agri-
cultural diseases by skilled farmers is time-consuming and vulnerable to inac-
curacies. Technology-driven agriculture is an integral strategy for effectively
addressing this matter. However, orthodox lightweight convolutional neural
network (CNN) models for early crop disease detection require fine-tuning to
enhance the precision and robustness of the models. Discovering the optimal
combination of several hyperparameters might be an exhaustive process. Most
researchers use trial and error to set hyperparameters in deep learning (DL) net-
works. This study introduces a new systematic approach for developing a less
sensitive CNN for crop leaf disease detection by hyperparameter tuning in DL
networks. Hyperparameter tuning using a Taguchi-based orthogonal array (OA)
emphasizes the S/N ratio as a performance metric primarily dependent on the
model’s accuracy. The multi-objective Pareto optimization technique accom-
plished the selection of a robust model. The experimental results demonstrated
that the suggested approach achieved a high level of accuracy of 99.846% for
tomato leaf disease detection. This approach can generate a set of optimal CNN
models’ configurations to classify leaf disease with limited resources accurately.

This is an open access article under the CC BY-SA license.

Corresponding Author:

C. S. Raghuvanshi
Department of Computer Science and Engineering, Faculty of Engineering and Technology
Rama University
Kanpur, 209217 Uttar Pradesh, India
Email: drcsraghuvanshi.fet@ramauniversity.ac.in

1. INTRODUCTION
Plants are essential for human civilization as they generate food and provide protection against harmful

radiation. Tomato is a popular, nutrient-dense vegetable with pharmacological properties [1]. The extensive use
of tomatoes escalates demand, resulting in an annual consumption of about 160 million tons [2]. Tomatoes are a
highly profitable crop for agricultural households and can have a significant impact on reducing poverty [3]. As
per FAO, plant diseases alone accounted for 14% of agricultural production losses, leading to an annual trade
deficit of $200 billion [2]. Timely identification of plant diseases can minimize the use of pesticides, thereby
safeguarding consumer health and the environment. Traditional visual diagnosis of pests and pathogens is more

Journal homepage: http://ijeecs.iaescore.com

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1773

time-consuming and complex. Farmers face the formidable challenge of frequently monitoring their plants to
prevent the spread of disease. Therefore, developing an automated, rapid, and accurate leaf disease detection
system is imperative for the early identification of diseases and holds immense importance.

Convolutional neural networks (CNNs) have emerged as a powerful tool for automated leaf disease
detection [4]. Their success in accurately detecting diseases has fuelled a surge in research, focusing on devel-
oping novel CNN architectures or applying existing models to various crops [4]–[9]. The extensive cultivation
of tomatoes and the availability of large, publicly accessible datasets containing diverse disease categories have
made tomato leaf disease detection a popular area of deep learning (DL) research [10]. Both the restructured
deep residual dense network (RRDN) model [11] and improved faster region convolutional neural network
(Faster RCNN) [12] employed deep residual networks for feature extraction. Researchers have developed sev-
eral efficient, lightweight CNN models using DL to classify tomato leaf diseases. ToLeD [13], a CNN with
a small parameter count of 0.2 M, achieved a maximum testing accuracy of 91%, where validation accuracy
was improved by adjusting through hyperparameter tuning of the epoch, batch size, learning rate, dropout
rate, number of convolution layers, and pooling layers. The INAR-SSD model [14], [15], combining rain-
bow concatenation with the SSD algorithm and the Inception module, achieved 98.49% and 78.80% accuracy
for classifying five common leaf diseases of tomato and apple, respectively. Bhujel et al. [16], developed
a 20-layered lightweight CNN model (lw resnet20 cbam) by incorporating the convolutional block attention
module (CBAM), spatial attention (SA), squeeze and excitation (SE), and dual attention (DA) modules into the
ResNet-20 architecture to classify tomato leaf diseases. The model attained a Top-1 accuracy of 99.51% with
a validation loss of 0.0155. A customized CNN was developed using DenseNet201 as the base architecture,
followed by adding three convolutional layers and a flattening layer [17].

This model achieved the highest validation accuracy of 98.26% in diagnosing tomato leaf diseases on
the PlantVillage dataset. Hyperparameter tuning was utilized for EfficientNet-based transfer learning to achieve
89% accuracy and 0.235 loss in identifying five classes of cassava leaf diseases [18]. An experimental approach
optimized hyperparameters, such as batch size, epochs, learning rate, optimizer, and loss function. Integrating
channel, spatial, and pixel attention using ResNet50, multi-feature fusion network (MFFN), and the adaptive
attention mechanism achieved 99.8% validation accuracy for tomato leaf disease classification [19]. Trials were
conducted for 100 epochs using various combinations of channel attention module (CAM), position attention
module (PAM), and cross-position attention module (CPAM) with a batch size of 4 and a fixed learning rate of
0.0003. Optimal batch size and learning rate values can significantly decrease the training time of the model
[20], whereas adjusting the ratios of the dataset for training, testing, and validation improves the model’s ac-
curacy. Since ResNet50 outperforms visual geometry group (VGG)16 and VGG19 in detecting leaf diseases,
an online application [21] for recommending initial treatment by utilizing ResNet50 achieved the highest ac-
curacy of 98.98%. Datasets of varying sizes were used to assess the validation accuracy and loss of the model.
The principal component analysis (PCA) technique using VGG16 [22] and the two-stage transfer learning ap-
proach employing VGGNet [23] achieve high accuracy in detecting tomato leaf diseases. This research uses
semantic segmentation to distinguish precisely between disease-affected and healthy regions. Cutting-edge ap-
proaches, such as the proposed U-Net design with skip connections and dilated convolutions, ensure accurate
separation. Researchers employed the Taguchi methodology to optimize hyperparameters within a CNN model
for accurate breast histopathology image classification [24]. A similar approach was applied to determine the
optimal architectural configuration for a DL network for malware detection [25]. Six of the nine control vari-
ables were assigned two levels, while the number of filters per convolutional operation was assigned three
levels. The authors utilized ANOVA to evaluate model performance and identify significant parameters based
on larger-is-better criteria. A generalized Taguchi method was proposed for optimizing hyperparameters in
multi-objective CNN models [26]. The method involved defining a performance functional vector, employing
extended orthogonal arrays(OAs), and computing a performance index to identify optimal parameter settings.

Optimizing hyperparameters is crucial yet challenging in developing DL models. The traditional trial-
and-error method for determining optimal hyperparameter configurations for CNNs is exhaustive and time-
consuming. Despite their established impact on DL model performance, optimizing CNN hyperparameters for
detecting tomato leaf diseases requires further exploration. This paper proposes a framework that integrates
Taguchi-based hyperparameter fine-tuning and multi-objective Pareto optimization to develop a lightweight
CNN model for accurately detecting tomato leaf disease. The significant contribution of this research is as:

i) To preprocess the image, we perform various augmentations, such as rotation, scaling, flipping, brightness
adjustment, normalization, color enhancement, and noise reduction.

Tomato leaf disease detection using Taguchi-based Pareto optimized ... (Bappaditya Das)

1774 ❒ ISSN: 2502-4752

ii) We designed a lightweight CNN model with less than three million parameters, achieving superior accu-
racy in tomato leaf disease detection compared to previous classical CNN models. This model’s memory
efficiency makes it suitable for deployment in resource-constrained environments, such as mobile or em-
bedded devices.

iii) We employed a systematic approach to optimize hyperparameters rather than relying on trial and error. In
our performance review, we consider validation accuracy and loss factors rather than depending exclusively
on the standard S/N ratio based solely on accuracy. We expand the population to a fixed size by adjusting
the developed model’s hyperparameters.

iv) We developed the most robust and least vulnerable model by making a trade-off between multi-objectives
using Pareto front optimization.

The rest of the paper is structured as follows: section 2 outlines the proposed methodology. Section 3
provides detailed explanations and discussions of the research findings. Finally, section 4 concludes with
different application areas of our research.

2. METHOD
This comprehensive approach ensures accurate crop disease identification through a streamlined

process, as depicted in Figure 1.

Figure 1. Process flow diagram of proposed model

2.1. Datatset preparation
A total of 18,160 tomato leaf images with laboratory backgrounds were used from 10 classes col-

lected from the publicly available Kaggle dataset. These images were divided into training (13,083), validation
(3,265), and testing (1,812) sets. Representative images from each class are shown in Figure 2. To ensure
compatibility with our proposed model, all images were resized to 224×224 pixels.

2.2. Data preprocessing
2.2.1. Data augmentation

In preprocessing, data augmentation is a valuable machine learning (ML) technique that combats over-
fitting by generating diverse modified versions of existing data. This process often applied to images, involves
flipping, cropping, rotation, resizing, and more transformations. Random rotation is a common approach that
repositions objects in the frame by applying arbitrary clockwise or anticlockwise rotations. Scaling refers to
resizing a digital image while maintaining its aspect ratio to ensure it does not appear distorted. Flipping or
mirroring pixels horizontally or vertically creates a mirror effect and can increase dataset diversity. Enhancing
image brightness through pixel intensity adjustments during preprocessing diversifies data.

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1772–1784

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1775

Figure 2. Representative tomato leaf image from each class

2.2.2. Normalization
Normalization in preprocessing adjusts pixel intensity ranges, which is beneficial for improving glare-

damaged images by contrast or histogram stretching. It enhances ML algorithm efficiency and accuracy. The
normalization process can be mathematically represented as:

xnorm =
x− xmin

xmax − xmin
(1)

where x is the original pixel value, xmin and xmax are the minimum and maximum pixel values in the image,
respectively, and xnormis the normalized pixel value.

2.2.3. Color enhancement
Color enhancement reduces illumination and camera-related variations by enhancing color consis-

tency. The specialized algorithms correct color discrepancies to improve data quality, aiding in accurate disease
detection on agricultural crop images.

2.2.4. Noise reduction
Noise reduction, a typical digital image processing task, removes unwanted pixel value fluctuations,

enhancing clarity and aiding visual analysis, often using filters and Gaussian blur. A Gaussian blur, achieved
through a Gaussian function, is a standard graphics effect that reduces visual noise and detail. It differs signifi-
cantly from bokeh or shadows, creating a smooth, translucent screen-like appearance. A Gaussian blur applies
a weight to nearby pixels based on the two-dimensional Gaussian function given by (2).

g(X,Y) =
1√
2πσ

e−
X2+Y 2

2σ2 (2)

Where X represents the horizontal axis, Y the vertical axis, and σ the standard deviation in a Gaussian distri-
bution. The Gaussian function peaks at (0,0), and its magnitude diminishes with increasing X or Y.

2.3. Proposed lightweight CNN
Our proposed lightweight CNN architecture leverages efficient building blocks to achieve accurate

tomato leaf disease classification. The architecture incorporates five distinct block types: ConvBlock, Incep-
tionBlock, FireBlock, GhostBlock, and AttentionBlock as shown in Figure 3. A ConvBlock is a fundamental
block consisting of three stacked ConvModules. Each ConvModule utilizes a two-dimensional (2D) convolu-
tional layer followed by a 2D max-pooling layer. The convolutional layer extracts features by applying trainable
filters to the input image, generating unique feature maps for different image locations. The subsequent max-
pooling layer downsamples the feature maps while retaining the most significant information by selecting the
maximum value within non-overlapping regions. This downsampling reduces model parameters, improves
translation invariance, and promotes spatial regularization to mitigate overfitting.

Tomato leaf disease detection using Taguchi-based Pareto optimized ... (Bappaditya Das)

1776 ❒ ISSN: 2502-4752

Figure 3. Proposed lightweight CNN architecture detailing inception, fire, and ghost modules

The InceptionBlock receives the output from the ConvBlock and comprises two consecutive inception
modules. While structurally similar to the modules used in GoogLeNet, our implementation utilizes varying
kernel sizes and filter quantities in the first inception module to enable feature learning across multiple scales.
This approach enhances model accuracy by mitigating the vanishing gradient problem, a common issue in deep
neural networks. Additionally, a 1×1 convolutional filter within the inception module allows the network to
learn patterns across the entire image depth, reducing feature map dimensionality.

The FireBlock comprises three fire modules in series, receiving an output from the InceptionBlock
as input. FireBlock expands the channel depth by 12 on input. Each of the initial two fire modules stretches
the input channel depth by 4 of their input, while the third one by 3. The fire module primarily focuses on
optimizing computation and extracting features in an efficient way. The fire module increases the number of
channels of input feature maps while preserving height and width. The first fire module in our architecture
transforms feature maps from (27, 27, 32) to (27, 27, 128). MaxPooling2D of ConvModule reduces feature
map dimensions by downscaling and preserving essential features while reducing the computation and mem-
ory requirements. The Convolution2D operation in ConvModule generates multiple feature maps that capture
different patterns without altering the spatial dimensions. As a result, the ConvModule reduces the dimensions
of the input feature maps from (27, 27, 128) to (14, 14, 96). The input of the next fire module will be feature
maps with dimensions (14, 14, 96). Thus, a ConvModule acts as a bridge between two sequentially connected
fire modules. Our modified approach has allowed us to reduce the input dimension by 50%, leading to remark-
able efficiency in learning high- and low-level input features. The GhostBlock, composed of two sequentially
connected ghost modules [27], efficiently generates additional feature maps through linear operations. Each
ghost module first employs standard convolutions followed by linear transformations to produce additional
feature maps.

Attention module enables the network to focus on the most critical features and generates a feature
map. Global average pooling is a process that reduces the spatial dimension of the feature map generated by
the AttentionBlock and converts it into a fixed-length feature vector. Each element of the vector is assigned a
channel wise singular value. A dense layer with the rectified linear unit (ReLU) activation function is added
following the global average pooling operation. The ReLU activation function helps to speed up the training
process by reducing the likelihood of vanishing gradients. The dropout layer follows the dense layer. The
dropout layer randomly drops neurons after each iteration to prevent over-reliance on specific features.

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1772–1784

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1777

2.4. Hyperparameters optimization
2.4.1. Control factors and level selection

This study examined the influence of six key hyperparameters on a CNN model’s performance:
epochs, learning rate, batch size, optimizer, number of neurons in the final dense layer, and dropout rate.
We assigned a discrete set of levels to each hyperparameter to enable a systematic evaluation. All hyperparam-
eters, except dropout rate, were assigned equal levels to ensure a balanced exploration of the hyperparameter
space. Utilizing the data presented in Table 1 and the formulas in section 2.4.2, we constructed an effective
OA, as shown in Table 2. This array allows us to assess every possible combination of hyperparameter values
systematically.

Table 1. Level of hyperparameters and corresponding values

Level
Hyperparameters

Neurons at dense layer Epoch Optimizer Learning rate Dropout rate Batch size
Level 1 90 10 RMSprop 0.0001 0.10 16
Level 2 120 25 AdamW 0.0002 0.20 32
Level 3 50 Nadam 0.0003 0.30 64
Level 4 75 Adam 0.0005 0.40 128

2.4.2. Design of orthogonal array
The minimum number of experiments for N number of control factors in the Taguchi method is defined

as [18],

(DOE)min =

N∑
j=1

(DOF)j + 1 (3)

and DOF of a control factor with L level is defined as,

(DOF)L = L− 1 (4)

In this study, we investigated six variables, comprising five control variables, each with four levels
and one binary variable. This experimental setup resulted in a total of 16 degrees of freedom. An L16(4

5)
Taguchi OA was employed to explore the design space for the initial five variables efficiently. Subsequently, to
accommodate the binary variable and expand the experimental scope, we extended the array to 32 experimental
runs. This expansion was achieved by incorporating the two levels of the sixth variable while ensuring a
uniform distribution of levels across all parameters. This approach not only satisfied but exceeded the minimum
requirements for experimental size, thereby enhancing the statistical robustness of the analysis.

2.4.3. Taguchi method
The Taguchi method, a robust optimization framework developed by Genichi Taguchi, has signifi-

cantly enhanced product and process quality across various industries [28]. Unlike the exhaustive full factorial
approach, Taguchi’s methodology reduces the experimental burden while effectively identifying optimal pa-
rameter combinations. Validation accuracy and loss are critical metrics for assessing DL model performance.
Hyperparameters, such as epoch, learning rate, optimizer, batch size, and dropout, substantially impact these
metrics. Traditionally, researchers have relied on time-consuming trial-and-error methods to optimize these
hyperparameters. The Taguchi method offers a more efficient alternative using OA to explore the design space
systematically. OAs enable the investigation of multiple factors and their interactions with a minimal number
of experiments. Although the selection of OAs is influenced by the number of control parameters and their
levels [29], researchers can customize the array size to meet specific experimental requirements [30]. The
Taguchi method is notably more efficient than the full factorial approach, requiring significantly fewer experi-
ments (L × (P − 1) compared to LP), where L represents the number of levels, and P denotes the number of
parameters. This efficiency is particularly advantageous when computational resources or time constraints are
limiting factors. The Taguchi method uses the signal-to-noise ratio (S/N) as an optimization criterion, which is
defined by (5).

S/N =
Desired signal strength
Unwanted noise power

(5)

Tomato leaf disease detection using Taguchi-based Pareto optimized ... (Bappaditya Das)

1778 ❒ ISSN: 2502-4752

The S/N value is determined based on the problem type and evaluated using one of three performance
criteria: larger-is-better, smaller-is-better, or nominal-is-better. For the larger-is-better criterion, the S/N ratio
is given by:

ηl = (S/N)l = −10 log

(
1

n

n∑
i=1

1

y2i

)
(6)

for the smaller-is-better criterion, the S/N ratio is:

ηs = (S/N)s = −10 log

(
1

n

n∑
i=1

y2i

)
(7)

for the nominal-is-better criterion, the S/N ratio is:

ηa = (S/N)a = 10 log

(
y2

s2y

)
(8)

here, yi represents the outcome of the i-th run of a collection of n observations, y2 denotes the mean squared
response, and s2y is the variance.

2.4.4. Pareto optimization
Pareto optimization, also known as Pareto front optimization, is a technique for multi-objective op-

timization in various fields, including engineering and mathematics. Pareto dominance is the key concept in
Pareto front optimization. The domination between two solutions is defined as [31], [32]: A solution P1 is
considered to dominate another solution P2 if and only if both of the following conditions are satisfied:

a) The solution P1 is superior or equal to P2 in all objectives.
b) The solution P1 is superior to P2 in at least one objective. The non-dominant points are represented as a

non-domination front.
In Figure 4, the curve passing through P3, P5, and P6 labeled as ”Non-dominated front” of the graph with two
conflicting objectives - f1 and f2 respectively.

Figure 4. A set of points along with the first non-dominated front

2.4.5. Proposed Taguchi-based Pareto front optimization algorithm
The flowchart of our proposed algorithm is shown in the Figure 5. In our Algorithm 1, the size of the

OA(R) depends solely on the number of control factors (P) and the levels for each control factor (levelFactor).
The proposed Taguchi-based Pareto front optimization (TPFO) takes a parameter named totalTrials equal to R.

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1772–1784

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1779

The value of R is derived using the formula and technique explained in section 2.4.2, levelFactor = [ℓjk |
j ∈ {1, . . . , P}, k ∈ {1, . . . , Li}] be a set of arrays where ℓjk refers to the k-th level of the j-th factor. The
function CREATE OA generates an OA of size R (LR) with P number of control factors and levelFactor.
The literature review established the function arguments. A vector with P components represents each input
for P hyperparameters and is mathematically represented as,

H = [ℓh1(τ), ℓh2(τ), . . . , ℓhP (τ)]

where ℓhi(τ) represents the level of the i-th hyperparameter at the τ -th trial. Each SETFACTOR operation uses
a unique combination of parameter levels from the Taguchi table. CONDUCT EXP runs the experiment using
that setting as input and records the outcomes in T. T is a 2D table with R (total number of trials/runs) rows
and two columns for storing validation accuracy and loss values. For instance, T[τ][1] and T[τ][2] contain
the validation loss and accuracy for the τ -th trial. The SORT and FILTER functions arrange T’s validation
accuracy records in descending order and discard those records below a user-defined threshold.

Create a scatter plot of filtered records where each point Pτ represents a feasible solution in the objec-
tive space defined by objective 1 and objective 2 for the τ -th entry of the OA. FIND SOLUTIONS compares
each solution with every other solution to determine whether any other solution dominates. Add the solution to
the Best Response set only if no other solutions dominate it. H∗ is a set of combinations of hyperparam-
eters considered the best possible settings for achieving optimal results, i.e., H∗ ⊆ H . Highlight the Pareto
front by sketching non-dominated solutions.

Figure 5. Flowchart of Taguchi-based pareto optimized CNN

Tomato leaf disease detection using Taguchi-based Pareto optimized ... (Bappaditya Das)

1780 ❒ ISSN: 2502-4752

Algorithm 1. TPFO for hyperparameters tuning
1: Procedure TPFO(totalTrials)
2: Declare τ , T[1..R, 1..2], P , LP , Threshold
3: Input: H = {[ℓh1(τ), ℓh2(τ), . . . , ℓhP (τ)], 1 ≤ ℓhi(τ) ≤ Li and 1 ≤ τ ≤ R, following Taguchi orthogonal array}
4: Initialize totalTrials← R, τ ← 0, H∗ ← ∅, Best Response← {[−∞,+∞]}
5: Set numFactors← P , levelFactor ← [L1, L2, L3, . . . , LP]
6: // Create a Taguchi orthogonal array with R number of rows //
7: LR← CREATE OA(P, levelFactor)
8: // Perform the experiments for each trial //
9: while τ < R do

10: SET FACTORS(Hτ)
11: [V alAccuracy, V alLoss]← CONDUCT EXP (τ)

12: T[τ, 1]← V alAccuracy

13: T[τ, 2]← V alLoss
14: τ ← τ + 1

15: end while
16: SORT DESCEND(T.V alAccuracy) {Sort the table by ValAccuracy in descending order}
17: FILTER(T) based on (T.V alAccuracy ≥ Threshold)
18: PLOT((Filtered(T)))
19: Best Response← Best Response ∪ {FIND SOL(Filtered(T))}
20: H∗ ← H∗ ∪ {H associated with Best Response}
21: Draw Pareto front.

3. RESULTS AND DISCUSSION
We performed our investigations on a laptop equipped with an AMD Ryzen 5 5600H processor, an

NVIDIA GeForce GTX 1650 GPU, and a 64-bit Windows 11 operating system. TensorFlow with Keras in
Python 3.9.12 was the DL framework, utilizing CUDA 11.6 for GPU acceleration. Additionally, we benefited
from the high-performance GPU P100 setup offered by Kaggle accelerators for computationally intensive tasks.

An experimental design based on a Taguchi OA was employed to investigate the influence of hyperpa-
rameters on model performance. The results, presented in Table 2, stem from multiple trials using two distinct
models with varying hyperparameters. Each trial involved different settings for the number of neurons in the
dense layer, epochs, optimizer, learning rate, dropout rate, and batch size. The primary objective of these trials
was to identify the most effective combinations of these hyperparameters. We conducted paired and unpaired t-
tests to assess the impact of the number of neurons on model performance. The results, summarized in Table 3,
indicate no statistically significant differences between model 1 and model 2 regarding validation accuracy
and loss. We have used the Pearson correlation coefficient to analyze the linear relationship between numeric
hyperparameters and model performance. The optimizer, being a categorical variable, was excluded from
this analysis.

The results, visualized in Figure 6, revealed a strong positive correlation between epochs and learning
rate with validation accuracy (r = 0.7476 and r = 0.7370, respectively). These r values indicate that increases
in these hyperparameters are associated with improved model performance. Conversely, epochs and learning
rate exhibited the strongest negative correlation with validation loss (r = -0.7334 and r = -0.7289, respectively),
suggesting that increasing these hyperparameters leads to a decline in model error. Both hyperparameters
exhibited statistically significant (p-value<0.05) positive correlations with validation accuracy and negative
correlations with validation loss. Dropout showed negligible correlations with validation accuracy (r = -0.2518,
p = 0.1795) and validation loss (r = 0.2748, p = 0.1416), suggesting that dropout may not have been a critical
factor in improving model performance within the explored parameter space. Similarly, batch size had minimal
impact on validation accuracy (r = -0.2161, p = 0.2514) and validation loss (r = 0.2118, p = 0.2612), indicating
that the range of batch sizes tested had a negligible effect on model generalization. The results indicate that
epochs and learning rate are the most critical hyperparameters influencing model performance. Careful tuning
of these parameters can lead to significant improvements in validation accuracy and reductions in validation
loss. Dropout and batch size, within the ranges explored, have minimal impact on the model’s performance.

We accomplished a comparative analysis of four optimizers (Adam, Nadam, AdamW, and RMSprop)
to evaluate their impact on model performance. Adam demonstrated superior performance across all metrics,
achieving the highest validation accuracy (99.794%) with the lowest validation loss (0.00653). Nevertheless, it
displayed a broader range of performance, indicating a possible sensitivity to hyperparameter settings or dataset

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1772–1784

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1781

characteristics. Nadam exhibited exceptional performance, achieving the highest accuracy of 99.846% and the
lowest loss of 0.00703. While its performance was consistent, it did not consistently surpass Adam. AdamW
and RMSprop generally underperformed compared to Adam and Nadam. The performance of RMSprop was
characterized by the broadest range of outcomes, suggesting potential instability. Table 2 illustrates that over
93% of the trials achieved an accuracy exceeding 90%, with 30% of cases surpassing 99% accuracy. We have
selectively presented data points with validation accuracy greater than 99% to visualize top-performing models.
Trials 15 and 32 demonstrated exceptional performance, achieving validation accuracies of 99.846% and
99.794%, respectively, with corresponding losses of 0.00703 and 0.00653. Both trials belong to the first non-
dominated Pareto front as shown in Figure 7, providing options for selecting optimal models. The choice of
optimizer significantly impacts model performance, with Adam demonstrating superior overall results. How-
ever, its sensitivity suggests that it may only be universally optimal for some scenarios. Nadam emerged as
a reliable alternative, balancing performance and stability. RMSprop and AdamW generally underperformed
compared to Adam and Nadam. Future research should focus on expanding the dataset and exploring a broader
range of hyperparameter values. Additionally, investigating adaptive optimization techniques that integrate the
strengths of various optimizers could be a promising direction for future work.

Table 2. Performance evaluation of hyperparameter combinations using OA with multiple objectives
Trials Model Hyperparameters Objectives

Neurons at
dense layer

Epoch Optimizer
Learning

rate
Dropout

Batch
size

Validation
accuracy

Validation
loss

1 Model 1 1 1 1 1 1 1 94.425% 0.18000
2 1 1 2 2 2 2 93.016% 0.19360
3 1 1 3 3 3 3 93.690% 0.19640
4 1 1 4 4 4 4 88.730% 0.32100
5 1 2 1 2 3 4 96.202% 0.11780
6 1 2 2 1 4 3 95.160% 0.13580
7 1 2 3 4 1 2 96.018% 0.11360
8 1 2 4 3 2 1 97.672% 0.07540
9 1 3 1 3 4 2 97.978% 0.06000

10 1 3 2 4 3 1 93.720% 0.18100
11 1 3 3 1 2 4 98.890% 0.03845
12 1 3 4 2 3 1 99.264% 0.02160
13 1 4 1 4 2 3 98.500% 0.04890
14 1 4 2 3 1 4 99.660% 0.01350
15 1 4 3 2 4 1 99.846% 0.00703
16 1 4 4 1 3 2 99.755% 0.00700
17 Model 2 2 1 1 1 1 1 93.660% 0.17460
18 2 1 2 2 2 2 95.069% 0.14500
19 2 1 3 3 3 3 95.038% 0.13590
20 2 1 4 4 4 4 87.351% 0.34750
21 2 2 1 2 3 4 92.890% 0.19380
22 2 2 2 1 4 3 97.703% 0.06658
23 2 2 3 4 1 2 96.477% 0.09570
24 2 2 4 3 2 1 97.152% 0.07570
25 2 3 1 3 4 2 97.700% 0.07362
26 2 3 2 4 3 1 95.957% 0.17560
27 2 3 3 1 2 4 99.173% 0.02460
28 2 3 4 2 1 3 99.387% 0.01880
29 2 4 1 4 2 3 98.652% 0.04483
30 2 4 2 3 1 4 99.690% 0.01010
31 2 4 3 2 4 1 99.720% 0.01160
32 2 4 4 1 3 2 99.794% 0.00653

Table 4 presents a comparative analysis of various CNN models for tomato leaf disease classification
based on the number of trainable parameters and achieved accuracy. The proposed TPFO CNN outperforms all
other models with a validation accuracy of 99.84% while maintaining a reduced number of trainable parameters
(<3 M). Integrating an attention mechanism effectively captures relevant features, contributing to enhanced
performance. In contrast, LMBRNet [9] achieves a high accuracy of 99.70% but with a larger parameter count.

Tomato leaf disease detection using Taguchi-based Pareto optimized ... (Bappaditya Das)

1782 ❒ ISSN: 2502-4752

Models like DenseNet121 [5] and SECNN [7] demonstrate strong performance but require significantly more
parameters. The trade-off between accuracy and efficiency is evident, with models like LeNet offering minimal
parameters but compromising accuracy. Future research should explore strategies to reduce the parameter
count of high-performing models further while preserving accuracy. This compact CNN model will improve
the practical applicability of CNN models in resource-constrained environments.

Table 3. T-test results: performance comparison of model 1 and model 2
Validation accuracy Validation loss

Model 1 Model 2 Model 1 Model 2
96.41% ± 3.13 96.59 % ± 3.31 0.107 ± 0.089 0.100 ± 0.092

SEM 0.783 0.827 0.022 0.023
Sample size (N) 16 16 16 16
Statistical tests Unpaired t-test Paired t-test Unpaired t-test Paired t-test

t-statistic (t) 0.1585 0.5010 0.2153 0.8134
Degrees of freedom (df) 30 15 30 15

Standard error of difference 1.139 0.360 0.032 0.009
95% confidence interval [- 2.506, 2.145] [- 0.948, 0.587] [- 0.058, 0.0725] [- 0.011, 0.025]

Two-tailed p value 0.8751 0.6237 0.8310 0.4287

Figure 6. Impact of hyperparameters on model performance

Figure 7. Validation accuracy distribution with threshold (99%)

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1772–1784

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1783

Table 4. Comparison of trainable parameters and accuracy with existing models

Reference Technique
Trainable

parameters
Accuracy

(%)
[5] DenseNet121 29 M 97.11
[6] DLMC-Net 6.4 M 96.56
[7] SECNN 5.4 M 97.90

[8]

AlexNet
ResNet50 + SeNet

LeNet
DenseNet121 Xception

TomConv

60 M
27.7 M
0.06 M
29.2 M

3 M

95.65
96.81
94.85
97.10
98.19

[9] LMBRNet 4.1 M 99.70
Proposed model TPFO CNN <3 M 99.84

4. CONCLUSION
This research introduces TPFO, a hyperparameter optimization technique, in conjunction with a light-

weight CNN architecture to address the challenge of tomato leaf disease classification. The proposed method
effectively optimizes model performance by employing a dual-metric approach that considers both validation
accuracy and loss, surpassing the limitations of single-metric optimization strategies. Integrating Taguchi’s
OAs significantly accelerates the hyperparameter search process, enabling efficient exploration of the hyper-
parameter space. The resulting TPFO CNN model exhibits exceptional performance, achieving a remarkable
validation accuracy of 99.84% while maintaining a compact architecture with fewer than 3 million trainable
parameters. Comparative analyses demonstrate the superiority of TPFO CNN over unoptimized CNNs and
traditional optimization methods in terms of accuracy and computational efficiency. These findings highlight
the potential of TPFO CNN as a promising solution for practical applications demanding high performance and
resource constraints. Future research will focus on expanding the TPFO framework to accommodate multiple
performance metrics and exploring its applicability to diverse DL architectures to broaden its impact on various
domains.

REFERENCES
[1] P. Schreinemachers, E. B. Simmons, and M. C. S. Wopereis, “Tapping the economic and nutritional power of vegetables,” Global

Food Security, vol. 16, pp. 36–45, 2018, doi: 10.1016/j.gfs.2017.09.005.
[2] M. Stilwell, “The global tomato online news processing in 2018.” 2021.
[3] R. Wang, M. Lammers, Y. Tikunov, A. G. Bovy, G. C. Angenent, and R. A. de Maagd, “The rin, nor and Cnr sponta-

neous mutations inhibit tomato fruit ripening in additive and epistatic manners,” Plant Science, vol. 294, p. 110436, 2020, doi:
10.1016/j.plantsci.2020.110436.

[4] B. Tugrul, E. Elfatimi, and R. Eryigit, “Convolutional neural networks in detection of plant leaf diseases: a review,” Agriculture
(Switzerland), vol. 12, no. 8, p. 1192, 2022, doi: 10.3390/agriculture12081192.

[5] A. Abbas, S. Jain, M. Gour, and S. Vankudothu, “Tomato plant disease detection using transfer learning with C-GAN synthetic
images,” Computers and Electronics in Agriculture, vol. 187, p. 106279, 2021, doi: 10.1016/j.compag.2021.106279.

[6] V. Sharma, A. K. Tripathi, and H. Mittal, “DLMC-Net: deeper lightweight multi-class classification model for plant leaf disease
detection,” Ecological Informatics, vol. 75, p. 102025, 2023, doi: 10.1016/j.ecoinf.2023.102025.

[7] B. N. Naik, R. Malmathanraj, and P. Palanisamy, “Detection and classification of chilli leaf disease using a squeeze-and-excitation-
based CNN model,” Ecological Informatics, vol. 69, p. 101663, 2022, doi: 10.1016/j.ecoinf.2022.101663.

[8] P. Baser, J. R. Saini, and K. Kotecha, “TomConv: an improved CNN model for diagnosis of diseases in tomato plant leaves,”
Procedia Computer Science, vol. 218, pp. 1825–1833, 2023, doi: 10.1016/j.procs.2023.01.160.

[9] M. Li, G. Zhou, A. Chen, L. Li, and Y. Hu, “Identification of tomato leaf diseases based on LMBRNet,” Engineering Applications
of Artificial Intelligence, vol. 123, p. 106195, 2023, doi: 10.1016/j.engappai.2023.106195.

[10] W. Shafik, A. Tufail, A. Namoun, L. C. De Silva, and R. A. A. H. M. Apong, “A systematic literature review on plant disease
detection: motivations, classification techniques, datasets, challenges, and future trends,” IEEE Access, vol. 11, pp. 59174–59203,
2023, doi: 10.1109/ACCESS.2023.3284760.

[11] C. Zhou, S. Zhou, J. Xing, and J. Song, “Tomato leaf disease identification by restructured deep residual dense network,” IEEE
Access, vol. 9, pp. 28822–28831, 2021, doi: 10.1109/ACCESS.2021.3058947.

[12] Y. Zhang, C. Song, and D. Zhang, “Deep learning-based object detection improvement for tomato disease,” IEEE Access, vol. 8,
pp. 56607–56614, 2020, doi: 10.1109/ACCESS.2020.2982456.

[13] M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “ToLeD: tomato leaf disease detection using convolution neural network,”
Procedia Computer Science, vol. 167, pp. 293–301, 2020, doi: 10.1016/j.procs.2020.03.225.

[14] N. K. Trivedi et al., “Early detection and classification of tomato leaf disease using high-performance deep neural network,” Sensors,
vol. 21, no. 23, p. 7987, 2021, doi: 10.3390/s21237987.

[15] P. Jiang, Y. Chen, B. Liu, D. He, and C. Liang, “Real-time detection of apple leaf diseases using deep learning approach based on
improved convolutional neural networks,” IEEE Access, vol. 7, pp. 59069–59080, 2019, doi: 10.1109/ACCESS.2019.2914929.

Tomato leaf disease detection using Taguchi-based Pareto optimized ... (Bappaditya Das)

1784 ❒ ISSN: 2502-4752

[16] A. Bhujel, N. E. Kim, E. Arulmozhi, J. K. Basak, and H. T. Kim, “A Lightweight attention-based convolutional neural networks for
tomato leaf disease classification,” Agriculture (Switzerland), vol. 12, no. 2, p. 228, 2022, doi: 10.3390/agriculture12020228.

[17] D. Gerdan, K. Caner, and M. Vatandaş, “Diagnosis of tomato plant diseases using pre-trained architectures and a proposed convolu-
tional neural network model,” Journal of Agricultural Sciences, vol. 29, no. 2, pp. 618–629, 2023, doi: 10.15832/ankutbd.957265.

[18] G. Kalyani, K. S. Sudheer, B. Janakiramaiah, and B. N. K. Rao, “Hyperparameter optimization for transfer learning-based
disease detection in Cassava Plants,” Journal of Scientific and Industrial Research, vol. 82, no. 5, pp. 536–545, 2023, doi:
10.56042/jsir.v82i05.1089.

[19] C. Sunil, C. Jaidhar, and N. Patil, “Tomato plant disease classification using multilevel feature fusion with adaptive channel spatial
and pixel attention mechanism,” Expert Systems with Applications, vol. 228, p. 120381, 2023, doi: 10.1016/j.eswa.2023.120381.

[20] M. V. Shewale and R. D. Daruwala, “High performance deep learning architecture for early detection and classification of plant leaf
disease,” Journal of Agriculture and Food Research, vol. 14, no. 6, p. 100675, 2023, doi: 10.1016/j.jafr.2023.100675.

[21] M. M. Islam et al., “DeepCrop: deep learning-based crop disease prediction with web application,” Journal of Agriculture and Food
Research, vol. 14, p. 100764, 2023, doi: 10.1016/j.jafr.2023.100764.

[22] P. Borugadda, R. Lakshmi, and S. Sahoo, “Transfer learning VGG16 model for classification of tomato plant leaf diseases: a novel
approach for multi-level dimensional reduction,” Pertanika Journal of Science and Technology, vol. 31, no. 2, pp. 813–841, 2023,
doi: 10.47836/pjst.31.2.09.

[23] T. Sanida, A. Sideris, M. V. Sanida, and M. Dasygenis, “Tomato leaf disease identification via two–stage transfer learning approach,”
Smart Agricultural Technology, vol. 5, p. 100275, 2023, doi: 10.1016/j.atech.2023.100275.

[24] C. J. Lin, S. Y. Jeng, and C. L. Lee, “Hyperparameter optimization of deep learning networks for classification of breast histopathol-
ogy images,” Sensors and Materials, vol. 33, no. 1, pp. 315–325, 2021, doi: 10.18494/SAM.2021.3015.

[25] C. J. Lin, X. Y. Lin, and J. Y. Jhang, “Malware classification using a Taguchi-based deep learning network,” Sensors and Materials,
vol. 34, no. 9, pp. 3569–3580, 2022, doi: 10.18494/SAM4044.

[26] S.-G. Wang and S. Jiang, “Optimal hyperparameters and structure setting of multi-objective robust CNN systems via generalized
Taguchi method and objective vector norm,” arXiv preprint arXiv:2202.04567, 2022, doi: 10.48550/arXiv.2202.04567.

[27] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: more features from cheap operations,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 1577–1586, doi:
10.1109/CVPR42600.2020.00165.

[28] S. R. Rao and G. Padmanabhan, “Application of Taguchi methods and ANOVA in optimization of process parameters for metal
removal rate in electrochemical machining of Al/5% SiC composites,” International Journal of Engineering Research and Applica-
tions (IJERA), vol. 2, no. 3, pp. 192–197, 2012.

[29] J. M. Cimbala, “Taguchi orthogonal arrays,” Pennsylvania State University, pp. 1–3, 2014.
[30] R. N. Kacker, E. S. Lagergren, and J. J. Filliben, “Taguchi’s orthogonal arrays are classical designs of experiments,” Journal of

Research of the National Institute of Standards and Technology, vol. 96, no. 5, pp. 577–591, 1991, doi: 10.6028/jres.096.034.
[31] K. Deb, “Multi-objective optimisation using evolutionary algorithms: an introduction,” in Multi-objective Evolutionary Optimisation

for Product Design and Manufacturing, Springer, 2011, pp. 3–34.
[32] K. Miettinen, Nonlinear multiobjective optimization, vol. 12. Springer Science & Business Media, 1999.

BIOGRAPHIES OF AUTHORS

Bappaditya Das is an assistant professor in the Computer Science and Engineering De-
partment at Dr. B.C. Roy Engineering College, Durgapur, West Bengal, India. He is pursuing his
Ph.D. in Computer Science and Engineering at Rama University, Kanpur, Uttar Pradesh, India. He
received his B.Tech. and M.Tech. degrees in Computer Science and Engineering from the Univer-
sity of Calcutta, West Bengal, India, in 2001 and 2007, respectively. He completed his B.Sc. in
Physics (Hons) from the University of Calcutta, West Bengal, India 1998. He received the National
Scholarship Scheme award from MHRD, Government of India, for his exceptional academic per-
formance. He has authored and co-authored more than 15 research articles in international journals
and conferences with more than 150 citations. His research interests include machine learning, com-
puter vision, deep learning, image processing, WSN, and applications. He can be contacted at email:
mail2bappadityadas@gmail.com.

C. S. Raghuvanshi is a Professor and Head of the Computer Science and Engineering
Department at Rama University, Uttar Pradesh, Kanpur, India. He achieved remarkable academic ac-
complishments, including a Ph.D. in Computer Science in 2014 and an M. Tech in Computer Science
in 2010. Recognized for his innovative mindset, he has been honored with the title of Innovation
Ambassador by the MoE’s Innovation Cell. Furthermore, he is a lifelong member of IETE, Bhopal,
and holds membership in IEEE. He has developed a concise course focusing on artificial intelligence,
machine learning, deep learning, and their practical applications. Furthermore, he has contributed
significantly to research by publishing 15 patents (national and international) and copyrights, pri-
marily in Computer Science and Engineering, intending to benefit the nation. He has authored and
co-authored over 45 papers in esteemed international journals recognized by SCI, SCOPUS, and
UGC Care and has presented his work at various international and national conferences. He can be
contacted at email: drcsraghuvanshi.fet@ramauniversity.ac.in.

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1772–1784

https://orcid.org/0000-0001-6731-3659
https://scholar.google.com/citations?user=DOOlLqAAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/AEQ-6818-2022
https://orcid.org/0009-0006-5781-0874
https://scholar.google.com/citations?user=nXQ7TCIAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=58674296100

	Introduction
	Method
	Datatset preparation
	Data preprocessing
	Data augmentation
	Normalization
	Color enhancement
	Noise reduction

	Proposed lightweight CNN
	Hyperparameters optimization
	Control factors and level selection
	Design of orthogonal array
	Taguchi method
	Pareto optimization
	Proposed Taguchi-based Pareto front optimization algorithm

	Results and Discussion
	Conclusion

