
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 36, No. 2, November 2024, pp. 1242~1252 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v36.i2.pp1242-1252      1242 

 

Journal homepage: http://ijeecs.iaescore.com 

Network routing and scheduling architecture in a fully 

distributed cloud computing environment 
 

 

Vijaya Kumar S1, Muthusamy Periyasamy1, R. Radhakrishnan2, Tamilarasi Karuppiah3,  
Thenmozhi Elumalai3 

1Department of Computer Science and Engineering, Shri Venkateshwara University, Uttar Pradesh, India 
2School of Computer Science and Engineering, Galgotias University, Delhi NCR, India 

3Department of Information Technology, Panimalar Engineering College, Chennai, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Mar 11, 2024 

Revised Jul 30, 2024 

Accepted Aug 5, 2024 

 

 Distributed computing has turned into an indispensable application 

administration because of the colossal development and fame of the internet. 

However, determining the allocation of various tasks to suitable service 

nodes is crucial. For the reasons expressed over, an effective booking 

strategy is expected to work on the framework’s exhibition. As a result, 

three-layer cloud dispatching (TLCD) design is introduced to further 

develop mission planning execution. The assignments should be arranged 

into various sorts in the primary layer in radiance of about their personalities 

clustering selection algorithm is composed of then recommended in second 

layer towards dispatch the undertakings to significant help bunches. 

Likewise, to further develop booking effectiveness, another planning 

technique for third stage proposes dispatching that job here to system 

thinking in a central server. As a rule, the proposed TLCD design yields the 

quickest work finishing time. Moreover, in cloud computing network 

architecture, load balancing and stability can be achieved. 

Keywords: 

Central server 

Clustering selection algorithm 

Distributed computing  

Network routing 

Three-layer cloud dispatching 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Muthusamy Periyasamy 

Department of Computer Science Engineering, Shri Venkateshwara University 

244236 Uttar Pradesh, India 

Email: muthu.namakkal@gmail.com 

 

 

1. INTRODUCTION 

Distributed computing has turned into a fundamental and profoundly sought-after application 

administration in light of the fast turn of events and ubiquity of the internet [1]. A colossal number of 

heterogeneous servers, stockpiling, and supporting hardware will be required in a distributed computing 

climate to address the developing stockpiling requests of big data. Programming-as-a-service, platform-as-a-

service (PaaS), and infrastructure-as-a-service (IaaS) are instances of distributed computing server types [2]. 

The greater part of the ordinarily utilized programming and instruments, like Gmail and Maps, are presented 

as SaaS [3]. One kind of PaaS stage is the Google APP Engine, which gives a stage to clients to run programs 

[4]. Ultimately, IaaS permits clients to lease the equipment assets expected to make their own structure, for 

example, cloud-based service [5], [6]. Regardless of such cloud’s administration utilized, there was indeed 

common trademark: each cloud server has an interesting arrangement of computational capacities. A 

productive planning technique is required in light of the reasons framed above, and this is a critical trouble in 

contemporary distributed computing settings. 

As per the normal cloud bunching design, the framework possibly considers heterogeneity while 

executing booking processes and disregards the heterogeneity of errands that come from various stages and 

its classifications are not conspicuous by hubs in the group [7]. Accordingly, run of the mill cloud structures 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Network routing and scheduling architecture in a fully distributed cloud … (Vijaya Kumar S) 

1243 

presently contain difficult issues brought about by heterogeneous positions. Cloud administration types, then 

again, are incredibly changed. Along these lines, distributed computing is more challenging to oversee and 

has more terrible dependability. Along these lines, booking cloud conditions in the future is more 

troublesome. 

Consequently, the three-layer cloud dispatching (TLCD) engineering is introduced while diverse 

hubs and missions coexist inside the cloud framework, it is necessary to address the scheduling problems.  

In the base is quite a clustering for allocating classes (CAC) [8], [9] has been founded primarily characterize 

heterogeneous exercises to decrease mission idleness and over-burden. In the CAC layer, errands can be 

partitioned into three classes in light of the IaaS, SaaS, and PaaS classifications [10]. A while later, the 

homogenous undertakings can be shipped off the suitable help classification bunches in the accompanying 

layer. 

The cluster scheduling algorithm (CSA) can allocate homogenous responsibilities to suitable 

bunches [11] in the subsequent layer, which is alluded to as the cluster selection (CS) layer, to work on the 

framework’s unwavering quality. Also, this layer can bring down the expense and culmination season of 

errand booking. The third layer, client source node sampling (SNS), is liable for dispatching responsibilities 

to support hubs. Advanced clustering suffrage scheduler (ACSS) at a high level is presented here to further 

develop asset utilization and accomplish load adjusting. 
 

 

2. LITERATURE REVIEW 

For different application conditions, numerous booking strategies have been introduced.  

Shojafar et al. [12], for instance, proposes an energy-effective versatile asset scheduler design for offering 

continuous cloud administrations to vehicular clients. The proposed convention’s key commitment is to 

amplify by and large correspondence in addition to processing energy productivity while likewise meeting 

application-actuated rigid quality of services (QoS) demands minimum transfer rates, maximum delay, 

including delay butterflies [13]. Shojafar et al. [13] present a joint processing in addition to correspondence 

streamlining system that utilizes virtualization innovations to give clients QoS, boost energy reserve funds, 

and meet green distributed computing objectives in a totally dispersed way. As a general rule, these proposed 

calculations and designs can help with the exhaustive reconsidering of booking calculation plan. 

The continuous kind and the clump type are the two kinds of planning calculations that can be 

provided in light of the booking time. Fundamentally, continuous errands are doled out to cloud server hubs 

when they are gotten. In the bunch mode, then again, got errands are collected for a while prior to being 

conveyed to cloud server hubs. A cluster planning calculation can give improved results than a constant 

booking approach. This is on the grounds that a bunch-based planning calculation can consider the Mission 

consequences of all positions [13], [14]. 

To send the project to internet servers’ hub inside the distributed software cloud organization, 

various booking calculations [15], [16] have been created, including the minimum, maximum-minimum, 

suffrage, and maximum suffrage calculations [15], [17], [18]. Notwithstanding, such estimates primarily take 

into account the factor of estimated consumption time (ECT) and disregard the server hub’s heap state. 

Accordingly, the exhibition misses the mark concerning assumptions, and the insignificant fruition time can’t 

be met. The assignment has the lowest ECT between all unallocated duties. T, for example, is referred to as 

minimum ECT in the min calculation. Following that, the occupation with the least ECT can be picked and 

dispatched to the suitable waiter hub. The recently paired work is then removed out of a designated T, and 

practice continues till all the undertakings have been sent. In this present circumstance, the responsibility is 

probably going to end up being unequal since there are such a large number of undertakings that should be 

planned. The ECT is likewise used for work dispatching in the maximum-minimum calculation. In the 

maximum-minimum calculation, the occupation with the most noteworthy complete ECT is constantly 

relegated, bringing about an extensive ascent in generally ECT [10], [17]. Besides, each of the previously 

mentioned methods could without much of a stretch outcome in higher-limit server hubs being doled out 

additional positions than lower-limit server hubs. Cloud server hub responsibilities are lopsided and wasteful. 

Thus, the Sufferage calculation [15], [17] was proposed as an improvement technique for decreasing the jobs 

of cloud server hubs. To assign labor, overall suffrage value (SV) is subtracted from the primary ECT to get 

an anticipated value. The occupation with the most elevated SV worth can then be picked and despatched to 

the cloud server hub with the least ECT. At the point when the quantity of delaying assignments is extremely 

perfect, be that as it may, the Sufferage calculation can’t accomplish proficient execution. 

Accordingly, to resolve the above issue, the MaxSufferage technique [3], [18], [19], which is an 

enhancement for the Sufferage calculation, incorporates three stages. In the SVi computation stage, all 

assignments’ SV values should not set in stone. In the MSVi calculation step, the ECT from phase I that has 

the second-highest SV value will be chosen as the MaxSufferance value (MSV) esteem. In the final phase, 

called the mission dispatch phase, if the ECTij of server’s hub j is not precisely MSVi, the highest-SV job I 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 1242-1252 

1244 

might be sent to the contrasting server hub j. Mission I with the most noteworthy ECTij esteem, then again, 

can be shipped off server hub j. Huge undertakings, then again, are essentially shipped off low-ability server 

hubs in heterogeneous settings utilizing this methodology. 

The advanced MaxSufferance (AMS) computation [19] is presented to accommodate the issue 

above by further developing the MaxSufferage calculation’s inadequacy. Notwithstanding, autonomous of 

the bunch or sort of administration, the AMS just considers mission booking of administration hubs. 

Accordingly, a steady methodology is proposed for at the same time tackling the booking of administration 

types, bunches, and administration hubs. Moreover, regardless of whether the server hubs are in a different 

climate, all positions can be conveyed to the fitting server hubs in the distributed computing organization. 

 

 

3. RESEARCH METHOD 

An ordinary bunch design delivery calculation doesn’t dispatch errands in light of group limit, 

which might bring about Mission idleness, low dependability, and a long makes container. Subsequently, as 

delineated in Figure 1, a TLCD design as well as comparing booking calculations will be introduced for use 

in cluster storage configurations. All documentation and their clarifications as utilized in the calculation are 

coordinated in Table 1 preceding giving the subtleties of the proposed convention. 
 

 

 
 

Figure 1. TLCD topology 
 

 

Table 1. Transcription explanations in the clustered selecting phase 
Phonetic symbols Summary 

N Overall number of obligations 
L Maximum amount of clusters 

K Clusters 

𝑛𝑘 The sum of all operations in the k-cluster 
𝑇𝑟 The threshold of reliability 
𝑇𝑐 The cutoff point of the total price 
𝐴𝑖 Work order: i 
𝑅𝑘 Weighing the cluster's dependability k 
𝑀𝑘 Dimensions of the cluster's lifetime k 

 

 

Working on the exactness of cloud administration search in the distributed computing climate is 

troublesome [14]. Accordingly, the initial phase in the recommended convention is to characterize cloud 

administration classifications to improve by and large execution. As indicated by Shojafar et al. [13], the 

framework will pick a cloud administration mission as the main bunch’s center work indiscriminately. The 

likenesses between this haphazardly picked cloud administration mission and other cloud administration 

undertakings will be determined after that. All cloud administration occupations with likeness scores more 

noteworthy than or equivalent to the edges have specified will be incorporated into the main set. After that, 

the list of cloud locations containing these coordinates would be removed. administration mission 

competitors. As of now, the framework will construct a subsequent cloud group by haphazardly choosing 

another center occupation from the excess cloud administration undertakings. To add comparative cloud 

administration exercises to this group, the framework will utilize a comparable choice cycle. The 

determination method will go on until all cloud administration occupations have been assembled together.  

In the wake of distinguishing and classifying the undertakings, the proposed TLCD engineering will 

continually execute every ordered assignment. Coming up next are the particulars of TLCD. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Network routing and scheduling architecture in a fully distributed cloud … (Vijaya Kumar S) 

1245 

3.1.  Clustering for allocating class layer 

Conventional bunch engineering utilizes cloud asset chiefs to gather and appropriate responsibilities 

to the group. In any case, group heterogeneity might change the portion cycle, making the assignment 

unessential regarding planning. This is because of cloud assets the executives apportion the jobs to an 

inactive group. Thus, the booking result is not great. The distributed computing framework will turn out to be 

more modern subsequently. Besides that, the assortment of obligations adds to the handling time delay. The 

heterogeneous errand can be ordered into various classes in light of interest characterized in the CAC layer 

[7], [8] to diminish the deferral and intricacy of planning. There are essentially three different ways to 

categorize groupings of clouds: IaaS, SaaS, and PaaS. The intricacy of booking heterogeneous positions and 

planning deferrals can be diminished by utilizing these three characterization gatherings. 

 

3.2.  Cluster selection layer 

The arranged undertakings can be dispatched to the comparing classification group after the 

classification mission bunch layer has been ordered. Following that, making use of dependability’s (Di) core 

components, price (Pi), and MarketSpan (Mi), a cluster selection algorithm (CSA) is created towards relegate 

responsibilities as suitable bunches (3). The timeframe it takes to follow through with a job is called Mi.  

As a general rule, when the Mi esteem expands, the framework will call for greater investment to work.  

The figuring power will develop as the reliability expands because of the comparability of group adaptation 

to internal failure. Thus, we should focus on the computational ability of bunches [20]. At last, the expense 

factor is characterized as the expense of sending and answering a mission. Undertakings can be relegated to 

proper groups and framework proficiency can be improved when these three models are thought of. 

Moreover, clients and specialist co-ops can fit those three elements to their particular necessities. With the 

guidance of the following models, they Di and Pi and allot the positions to the suitable bunches in light of the 

above portrayal. Mission I’s trustworthiness and cost are shown by (1)-(3). 

 

Di =
∑ CRknkk=1

N
 (1) 

 

Pi = ∑ Cknkk=1  (2) 

 

Mi =
∑ CMknkk=1

N
 (3) 

 

From that point forward, we’ll give a guide to exhibit Algorithm 1. We coordinate the blend of 

occupations in all bunches in line (4) of Algorithm 1. The bunch will choose a reasonable errand mix and 

help the hub with mission changes. Lines (5) to (8) are likewise proposed for checking whether the Di and Pi 

of every mission I concur with Di Tr and Pi Tc. After that comes the mission involving the youngest Mi is 

reserved out of every one of them. In the event that multiple gatherings are accessible, we look at Di, Mi, and 

pick Ai as the most dependable group in the shortest amount of time. 

Clients can change the nature of administrations in CSA in view of boundaries like dependability, 

evaluating, and Mi. Subsequently, calculations can take care of the requirements of a wide scope of 

customers while likewise expanding the proficiency of work planning. The CSA calculation is then made 

sense of with a model, and the connected presumptions are recorded.  

 

Algorithm 1. Selection of clustering algorithm 
1: for number of amount N 

2: for number of cluster L 

3: give 𝑅𝑘, 𝑀𝑘, and 𝐶𝑘 of each cluster k 
4: Cluster all jobs, and give each one a number of 𝐴𝑖 

5: for finding up 𝑅𝑖, 𝐶𝑖, and 𝑀𝑖 concerning the mission 𝐴𝑖 
6:  if    𝑅𝑖 ≥ 𝑇𝑟    and 𝐶𝑖 < 𝑇𝑐   in mission 𝐴𝑖     then 𝐴𝑖 is member mission 
7: End 

8: select the youngest 𝑀𝑖 in member mission 𝐴𝑖 
9: End 

10: End 

11. End 

 

For this example, let’s say we have 10 jobs that need to be distributed among three different cloud 

service providers; 

1. The values for Tr and Tc may be modified by the user. Here, we see that Tr as well as Tc are equal to 22 

and 260, accordingly.  



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 1242-1252 

1246 

2. Find the Ri, Ci, and Mi for each possible allocation. In accordance with the breakdown shown in Table 2, 

five jobs are placed in cluster 1, two in cluster 2, and three in cluster 3. Here, we averaged Ri, Ci, and Mi 

with the help of (1)-(3). The same method is used for all of the assignments. 

3. In this case, we choose schedules A1, A2, and A6 since they satisfy the constraints Ri 22 and Ci 260. 

4. Considering the criteria of step 3, they choose among A1 because to its high degree of dependability and 

low Mi. Because assignment A1 yields a superior outcome, it has been chosen as the active combination 

for this case. 

5. The aforementioned method is ideal whenever the Mi is really the driving force. 

6. Mi and cost becomes disguising considerations when reliability is the major concern, revealing the best-

reliability schedule. After the cloud service abstraction (CSA) layer is finished, the jobs could be 

transferred to the model’s clusters clustering layer. Next, on the underlying layer, the appropriate server 

nodes must be selected to carry out the mission. 

 

3.3.  Layer for selecting server nodes 

Homogeneous positions can be allotted to homogeneous cloud bunches after the initial two levels 

are finished. Notwithstanding, when countless positions fall flat attributable to mistaken mission, the cloud 

responsibility can become lopsided. In view of the previous, this work recommended the advanced cluster 

suffrage scheduling (ACSS), an original methodology that tends to the downsides of the maximum Sufferage 

calculation [12], [13], particularly in a location with a lot of different types of weather. To restrict the effect 

of mistaken mission, each undertaking in ACSS can indeed be assigned to the appropriate nodes in the data 

center by Sj, not entirely settled from the typical ECT of the server hub. Table 4 and Algorithm 2 show the 

terminology and points of interest of the ACSS calculation. 

Typically, there are three sections to the ACSS algorithm. The SVj calculation stage, the EECTi 

(earliest anticipated timing of completion) and SEECTi predicted arrival time after the soonest possible 

arrival time, but before the Sj are first determined sections (8) and (9) of the ACSS technique provide a full 

explanation of how to determine the SV value. In the second phase, known as the MSVi calculation phase, 

whenever work I has the greatest SV value across all missions, the MSV number would be adjusted in 

mission I, to the very first ECT value that comes after. 

Assignment since EECTi is superior to MSVi and ECTij, and superior to AECTj of Sj, in the final 

step, job sending, I will be transferred to Sj. In cases when ECTi is close to AECTj and ECTi should be 

bigger than AECTj, allocation I may be passed to client node j, where its ECTi is smaller than AECTj. As a 

result, the fundamental idea is distinct from earlier methods; the specifics of the technique are presented in 

sections 11 and 12 of Algorithm 2. 

 

Algorithm 2. Scheduling for cluster suffrage with advanced technology 
1: for all unallocated duties i 

2: for all network elements 𝑺𝒋 
3: 𝑻𝑪𝑻𝒊𝒋 = 𝑬𝑪𝑻𝒊𝒋 + 𝒓𝒋 
4: do schedule every Mission.  

5:  make every network node unallocated;  

6:  for every Mission i in 𝑺𝒋; 
7: locate host nodes 𝑺𝒋 this results in the quickest delivery time;  
8: determine out the Suited to the Mission Index. ( 𝑺𝑽 = 𝑬𝑬𝑪𝑻𝒊 − 𝑺𝑬𝑬𝑪𝑻𝒊 ); 

9: If the highest priority of 𝑺𝑽𝒊 pick the Mission if there are several or more that 
are the same 𝑺𝑬𝑬𝑪𝑻𝒊 to 𝑴𝑺𝑽 with greatest; 
Else, the Mission will have the most 𝑺𝑬𝑪𝑻𝒊 is comparable to certain other 𝑬𝑬𝑪𝑻𝒊 ; 

10: end if; 

11: If (𝑴𝑺𝑽𝒊 < 𝑬𝑪𝑻𝒊𝒋 𝒐𝒇 𝑺𝒋) therefore, the job i with greatest ECT able to communicate 

with host node 𝑺𝒋;  
12: else if (𝑴𝑺𝑽𝒊 > 𝑬𝑪𝑻𝒊𝒋 ) && (𝑬𝑬𝑪𝑻𝒊 > 𝑨𝑬𝑪𝑻𝒋 𝒐𝒇 𝑺𝒋 ) therefore, the job i able to 

communicate with host node 𝑺𝒋 ;  

13: else if (𝑴𝑺𝑽𝒊 > 𝑬𝑪𝑻𝒊𝒋 ) && (𝑬𝑬𝑪𝑻𝒊 < 𝑨𝑬𝑪𝑻𝒋 𝒐𝒇 𝑺𝒋 ) subsequent Mission allocation i > 
𝑨𝑬𝑪𝑻𝒋_𝑨𝑽𝑮 𝒐𝒇 𝑺𝒋 && 𝒕𝒂𝒔𝒌 𝒊 ≈ 𝑨𝑬𝑪𝑻𝒋 𝒐𝒇 𝑺𝒋 able to be sent to host node 𝑺𝒋 ; 

14: end if; 

15: end for 

16: end do 

17: end for 

18: 𝒓𝒋 = 𝒓𝒋 + 𝑬𝑪𝑻𝒊𝒋 

19: 𝐮𝐩𝐝𝐚𝐭𝐞 𝑻𝑪𝑻𝒊𝒋  = 𝑬𝑪𝑻𝒊𝒋 + 𝒓𝒋 
20: end for 

21: End 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Network routing and scheduling architecture in a fully distributed cloud … (Vijaya Kumar S) 

1247 

The errand culmination time and load adjusting can be effectively brought down among the diverse 

networking for cloud applications utilizing the methodology portrayed previously. The asymmetric 

cryptographic method approach may be used to alleviate the security concern [21], [22]. It is related to a 

crucial session to ensure that perhaps the message is delivered veritable and has not been altered. Following 

that, a model is given to help the perception out of host hubs identification gradient ACSS computation. 
 

 

4. RESULTS AND DISCUSSION 

In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Hub for highly diverse servers (HiHi), low-latency ring (LoLo), high-latency ring 

(HiHi), and LoLo [18], [23] are four heterogeneous conditions that can be concentrated on around here. HiHi 

is, by a long shot, the most convoluted of the multitude of territories. Accordingly, in the HiHi heterogeneous 

climate, an illustration of undertaking mission with four server hubs and twelve errands is talked about. First, 

the SVj estimate generation and the MSVi calculation stage may resolve both SV renown and MSV worth 

independently. Following that, during the undertaking dispatching stage, the AECTj of not set in stone. 
 

4.1.  The SVi calculation phase 

Stage 1: as demonstrated in Table 2, a list of all expected running time undertakings I on Sj. 

Stage 2: for each errand, ascertain the SV esteem. For example, Job a’s SV value is comparable to SEECTi 

less EECTi, which is 23526 - 22345 = 1181, similarly comparable periods are used to decide the SV 

values for undertakings b through l. The calculated outcomes are shown in Table 3. 
 

4.2.  Stage of MSVi computation 

Stage 1. meanwhile work I have most noteworthy SVi worth of all SV values, the MSV worth can 

be picked as the next-oldest ECT worth of errand I. Job g have the most elevated SVi esteem, as expressed in 

Table 3, since 44746 is the next earliest ECT in ECTaB, it is used as the MSV. 
 
 

Table 2. The problem of calculating the SV levels 
 Node A Node A SV 

Mission a 22345 23500 1181 
Mission b 16667 17901 1263 

Mission c 31083 31825 814 

Mission d 24712 25123 444 
Mission e 17018 18008 1051 

Mission f 12050 13218 1239 

Mission g 19035 21476 2451 
Mission h 13911 14678 691 

Mission i 80160 85490 520 

Mission j 13618 14517 978 
Mission k 27861 28149 295 

Mission l 40000 44746 1395 

 
 

Table 3. Establishing what the MSV levels should be requires some calculation 
 Node A Node B SV MSV 

Mission a 22345 23526 1181 - 

Mission b 16667 17930 1263 - 

Mission c 31083 31897 814 - 

Mission d 24712 25156 444 - 

Mission e 17018 18069 1051 - 
Mission f 12050 13289 1239 - 

Mission g 19035 21486 2451 - 

Mission h 13900 13502 8910 - 
Mission i 70162 95368 558 - 

Mission j 17818 18566 998 - 

Mission k 27181 27896 695 - 
Mission l 43226 44561 2095 - 

 

 

4.3.  Job distribution stage 

By and large, three circumstances in different heterogeneous settings should be analyzed, and thus 

the instances are described and presented in the following order. 
 

4.3.1. Case 1. EECTi > AECTj of Sj and MSVi > ECTij of Sj 

In the MSVi computation step, comparing the MSV value to the earliest anticipated finishing time of 

other jobs. While MSVi is running, Mission I may be sent to any established norms node j. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 1242-1252 

1248 

> EECTi > AECTi of S, and ECTij of Sj > EECTi. Since Node D has the highest MSVi and lowest ECTdD 

in Tables 4 and 5, respectively, 
 
 

Table 4. Activities’ MSV results are calculated 
 Node C Node D SV MSV 

Mission a 52978 25328 27650 - 
Mission b 47351 20187 27164 - 

Mission d 54429 26330 28099 54429 

Mission e 47319 20348 26971 - 
Mission f 43566 15918 27648 - 

Mission g 51026 24031 26995 - 

Mission h 44310 17678 26632 - 
Mission j 37603 9685 27918 - 

Mission l  43986 16558 27428 - 

Average - 19556 - - 

 

 

Table 5. Analysis of the node D jobs’ median ECT levels for instance 1 
 Node C Node D SV MSV 

Mission a 52978 25328 27650 - 
Mission b 47351 20187 27164 - 

Mission d 54429 26330 28099 54429 

Mission e 47319 20348 26971 - 
Mission f 43566 15918 27648 - 

Mission g 51026 24031 26995 - 

Mission h 44310 17678 26632 - 
Mission j 37603 9685 27918 - 

Mission l  43986 16558 27428 - 

Average - 19556 - - 

 

 

4.3.2. Case 2. MSVi > ECTij of Sj 

You may see how early other missions are likely to be finished by comparing the MSV value 

determined during the MSVi calculation step. If MSVi > ECTij, then mission I with the highest ECT may be 

sent to server node j. Since node A’s ECTlA is higher than that of the MSV value in Table 6  

(43336 > 21486), A is given the assignment of mission l. 
 

 

Table 6. Node A’s median ECT in case 2 
 Node A Node B SV MSV 

Mission a 22345 23526 1181 - 

Mission b 16667 17930 1263 - 
Mission c 31083 31897 814 - 

Mission d 24712 25156 444 - 

Mission e 17018 18069 1051 - 
Mission f 12050 13289 1239 - 

Mission g 19035 21486 2451 21486 

Mission h 13911 14602 691 - 
Mission i 8016 8536 520 - 

Mission j 13618 14596 978 - 

Mission k 27861 28156 295 - 
Mission l 43336 44731 1395 - 

 

 

4.3.3. Case 3. When comparing ECTij to MSVi, the latter is superior 

As part of the MSVi calculation, the MSV value is compared to the earliest estimated completion 

time of other tasks. For example, in Table 7, mission i is assigned to client node j if MSVi > ECTij and 

EECTi AECTj of Sj, assuming that ECTi is more than or equal to AECTj. Thus, we can reproduce the above 

situations in our trial. To adjust to the high-heterogeneity climate, the quantity of positions is first changed in 

accordance with 50 to 100, while the 5 online servers’ hubs’ combined processing power is limited to 500 to 

1,000 units. Besides that, the Sufferage, MaxSufferage, and ACSS calculations are thought about as far as 

MakeSpan and load adjusting multiple as shown in Figures 2 to 5, and the usual value of computation time is 

then taken. Figure 2 illustrates that the suggested procedure beats the others concerning MakeSpan, 

particularly while managing huge jobs. The rmin/rmax, where rmin is the briefest gotten done with job 

season rmax is the shortest completed work season of all missions, and of all missions. Maheswaran et al. 

[23], can likewise be utilized to decide the heap adjusting file. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Network routing and scheduling architecture in a fully distributed cloud … (Vijaya Kumar S) 

1249 

Table 7. Comparing average ECT values for node D across case 3 scenarios 
 Node A Node B SV MSV 

Mission b 60023 49827 10196 - 
Mission e 60374 49966 10408 - 

Mission f 55406 45186 10220 - 

Mission h 57267 46499 10768 - 
Mission i 51372 40433 10939 51372 

Mission j 56974 46493 10481  - 

Average - 46400 - - 

 

 

  
 

Figure 2. ACSS, Sufferage, and MaxSuffering in 

MakeSpan with n=4 and 100 missions 

 

Figure 3. Load balancing index of Sufferage for 

n=4 and 100 missions 

 

 

As a general rule, the heap adjusting file has a worth of 0 to 1, with 0 addressing the most 

unfortunate burden equilibrium and 1 addressing the best burden balance. The ACSS strategy can accomplish 

the best burden adjusting list (0.88) over Sufferage (0.87) and MaxSufferage (0.88), as outlined in Figures 3. 

The MakeSpan of every hub can yield tantamount outcomes in light of the fact that the ACSS calculation 

utilizes the scattering of the typical worth. Be that as it may, while MaxSufferage has a quicker finish time 

than Sufferage, the heap adjusting results are comparable. This is because of the way that while choosing 

position, MaxSufferage didn't consider the hub's heap condition. Proposed ACSS algorithm optimizes 

heterogeneous distributed computing network for efficient time and load balancing, yielding superior 

outcomes. 

Besides this, the formula 𝑅𝑈 = 𝑗=1 × test if the paper’s consumption of resources is ideal, the ratio 

of resourceNm is calculated as 100%. The TCj in factor RU represents the all-out expected consummation 

time on a computer simulation j, N for the total number of VMs, and m for such number of cores virtual 

machine’s last fulfillment time. Figure 4 portrays the asset use related proportion results. Figure 5 shows that 

ACCS might accomplish an asset use proportion of 89%, which is higher than different calculations.  

This is on the grounds that in the ACSS calculation, the typical worth is used to think about the assignment 

status of hubs. 

Next, we utilize the matching vicinity boundary [24] to evaluate the proximity of different booking 

procedures. In order to establish if the mission can be finished quickly, Figure 6 makes use of the minimum 

execution time (MET) as well as the expected computing time (ECT). Numerous Missions are sent to the 

most powerful computer because of the great value placed on the proximity between the two systems. 

The matching proportion of the three calculations is near one, as displayed in Figure 6. These three 

calculations are very great at coordinating. Table 8 looks at the presentation and intricacy of calculations.  

As far as assessment factors, for example, MakeSpan, load balance, asset utilization, and matching vicinity, 

the discoveries of the correlation table uncover that ACSS beats any remaining calculations. 

The Big O documentation is utilized to gauge the intricacy of different calculations in view of [25]. 

The intricacy of MaxSufferage and ACSS is accordingly O(n2rm), in light of the fact that boundary r shows 

that the elective condition is picked when (MSVi > ECTij) and (EECTi AECTij of Sj) are fulfilled. Thus, the 

ACC calculation’s intricacy is practically identical comparison to the suffering tally. 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 1242-1252 

1250 

  
 

Figure 4. Load distribution indexes in advanced 

HA cluster for n=4 and 100 missions 

 

Figure 5. ACSS resource utilization ratio for N=4 and 

100 missions 

 

 

 
 

Figure 6. Comparing all rescheduling methods based on their matching distance ratio 

 

 

Table 8. All algorithms’ performance and complexity are compared 
 SufferMax SufferMin ACSS 

Make span 8.57×104 7.97×104 8.96×104 

Balance of the loads 0.87 0.84 0.88 

Utilization of available resources 91% 95.5% 96% 
Like-within-close-range matching 0.98 0.97 0.96 

Ambiguity O(n2m) O(n2r) O (n2rm) 

 

 

5. CONCLUSION 

The TLCD design is proposed in this work to give secure and reliable booking as well as to resolve 

the issue of slow reaction in cloud frameworks. TLCD is comprised of three layers of techniques.  

The framework can dispatch heterogeneous positions into proper class bunches in the primary layer, known 

as the CAC layer, to decrease mission delay and over-burdening. The work is then dispatched to a suitable 

bunch utilizing a CSA calculation on the CS layer, which further develops dependability and decreases cost 

and finishing time. The framework can further develop load adjusting and decrease fruition length of time 

spent within the final layer, symbolically represented as such SNS layer, by utilizing components of MSV 

and the typical ECT of Sj. The recommended calculations beat any remaining calculations as far as 

MakeSpan, load adjusting, asset usage, and matching vicinity in different settings, as per reproduction 

information. Future directions include assessing TLCD scalability, exploring performance factors, extending 

TLCD applications, and evaluating scheduling algorithms to enhance TLCD’s effectiveness and applicability 

in diverse computing environments. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Network routing and scheduling architecture in a fully distributed cloud … (Vijaya Kumar S) 

1251 

REFERENCES 
[1] V. V Vegesna, “A critical investigation and analysis of strategic techniques before approving cloud computing service 

frameworks,” International Journal of Management, Technology, vol. XIII, no. Iv, pp. 132–144, 2023. 

[2] V. Yannibelli et al., “An in-depth benchmarking of evolutionary and swarm intelligence algorithms for autoscaling parameter 

sweep applications on public clouds,” Scientific Programming, vol. 2023, pp. 1–26, Feb. 2023, doi: 10.1155/2023/8345646. 
[3] N. Ghazy, A. Abdelkader, M. S. Zaki, and K. A. Eldahshan, “An ameliorated round robin algorithm in the cloud computing for 

task scheduling,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 12, no. 2, pp. 1103–1114, Apr. 2023,  

doi: 10.11591/eei.v12i2.4524. 
[4] K. Prabu and P. Sudhakar, “A hybrid deep learning approach for enhanced network intrusion detection,” Indonesian Journal of 

Electrical Engineering and Computer Science (IJEECS), vol. 33, no. 3, pp. 1915–1923, Mar. 2024,  

doi: 10.11591/ijeecs.v33.i3.pp1915-1923. 
[5] Harintaka and C. Wijaya, “Automatic point cloud segmentation using RANSAC and DBSCAN algorithm for indoor model,” 

Telkomnika (Telecommunication Computing Electronics and Control), vol. 21, no. 6, pp. 1317–1325, Dec. 2023,  

doi: 10.12928/TELKOMNIKA.V21I6.25299. 
[6] K. Prabu and P. Sudhakar, “An automated intrusion detection and prevention model for enhanced network security and threat 

assessment,” International Journal of Computer Networks and Applications, vol. 10, no. 4, pp. 621–636, Aug. 2023,  

doi: 10.22247/ijcna/2023/223316. 
[7] P. Neelakantan and N. S. Yadav, “An optimized load balancing strategy for an enhancement of cloud computing environment,” 

Wireless Personal Communications, vol. 131, no. 3, pp. 1745–1765, 2023, doi: 10.1007/s11277-023-10520-2. 

[8] S. I. Watson, A. Girling, and K. Hemming, “Optimal study designs for cluster randomised trials: an overview of methods and 
results,” Statistical Methods in Medical Research, vol. 32, no. 11, pp. 2135–2157, Nov. 2023, doi: 

10.1177/09622802231202379. 
[9] S. R. Bharamagoudar and S. V. Saboji, “Location-aware hybrid microscopic routing scheme for mobile opportunistic 

network,” IAES International Journal of Artificial Intelligence, vol. 12, no. 2, pp. 785–793, Jun. 2023, doi: 

10.11591/ijai.v12.i2.pp785-793. 
[10] S. Gangadharaiah and P. Shrinivasacharya, “Effective privacy preserving in cloud computing using position aware Merkle tree 

model,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 13, no. 2, pp. 1424–1432, Apr. 2024,  

doi: 10.11591/eei.v13i2.6636. 
[11] K. Senjab, S. Abbas, N. Ahmed, and A. ur R. Khan, “A survey of Kubernetes scheduling algorithms,” Journal of Cloud 

Computing, vol. 12, no. 1, p. 87, Jun. 2023, doi: 10.1186/s13677-023-00471-1. 

[12] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient adaptive resource management for real-time vehicular cloud 
services,” IEEE Transactions on Cloud Computing, vol. 7, no. 1, pp. 196–209, Jan. 2019, doi: 10.1109/TCC.2016.2551747. 

[13] M. Shojafar, C. Canali, R. Lancellotti, and J. Abawajy, “Adaptive computing-plus-communication optimization framework for 

multimedia processing in cloud systems,” IEEE Transactions on Cloud Computing, vol. 8, no. 4, pp. 1162–1175, Oct. 2020,  
doi: 10.1109/TCC.2016.2617367. 

[14] S. Shivle et al., “Static allocation of resources to communicating subtasks in a heterogeneous ad hoc grid environment,”  

Journal of Parallel and Distributed Computing, vol. 66, no. 4, pp. 600–611, Apr. 2006, doi: 10.1016/j.jpdc.2005.10.005. 
[15] K. Etminani and M. Naghibzadeh, “A min-min max-min selective algorithm for grid task scheduling,” 2007 3rd IEEE/IFIP 

International Conference in Central Asia on Internet, pp. 1–7, 2007, [Online]. Available: 

https://api.semanticscholar.org/CorpusID:17785038  
[16] T. D. Braun et al., “A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing 

systems,” in Proceedings. Eighth Heterogeneous Computing Workshop (HCW’99), 1999, pp. 15–29,  

doi: 10.1109/HCW.1999.765093. 
[17] N. M. Reda, A. Tawfik, M. A. Marzok, and S. M. Khamis, “Sort-Mid tasks scheduling algorithm in grid computing,” Journal of 

Advanced Research, vol. 6, no. 6, pp. 987–993, Nov. 2014, doi: 10.1016/j.jare.2014.11.010. 

[18] A. M. Abdulghani, “Task scheduling for multi-objective optimization in cloud computing: a review,” Available at SSRN 4610623, 
[Online]. Available: https://ssrn.com/abstract=4610623. 

[19] M. L. Chiang, H. C. Hsieh, W. C. Tsai, and M. C. Ke, “An improved task scheduling and load balancing algorithm under the 

heterogeneous cloud computing network,” in Proceedings - 2017 IEEE 8th International Conference on Awareness Science and 
Technology, iCAST 2017, Nov. 2017, vol. 2018-January, pp. 290–295, doi: 10.1109/ICAwST.2017.8256465. 

[20] M. L. Chiang, Y. F. Huang, H. C. Hsieh, and W. C. Tsai, “Highly reliable and efficient three-layer cloud dispatching architecture 

in the heterogeneous cloud computing environment,” Applied Sciences (Switzerland), vol. 8, no. 8, p. 1385, Aug. 2018,  
doi: 10.3390/app8081385. 

[21] C. Huang, D. Liu, A. Yang, R. Lu, and X. Shen, “Multi-client secure and efficient DPF-based keyword search for cloud storage,” 

IEEE Transactions on Dependable and Secure Computing, vol. 21, no. 1, pp. 353–371, Jan. 2024,  
doi: 10.1109/TDSC.2023.3253786. 

[22] K. Prabu and P. Sudhakar, “Design and implementation of an automated control system for anomaly detection using an enhanced 

intrusion detection system,” in Proceedings of the 3rd International Conference on Smart Technologies in Computing, Electrical 
and Electronics, ICSTCEE 2022, Dec. 2022, pp. 1–7, doi: 10.1109/ICSTCEE56972.2022.10100003. 

[23] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic mapping of a class of independent tasks onto 

heterogeneous computing systems,” Journal of Parallel and Distributed Computing, vol. 59, no. 2, pp. 107–131, Nov. 1999,  
doi: 10.1006/jpdc.1999.1581. 

[24] P. Banerjee et al., “MTD-DHJS: makespan-optimized task scheduling algorithm for cloud computing with dynamic 

computational time prediction,” IEEE Access, vol. 11, pp. 105578–105618, 2023, doi: 10.1109/ACCESS.2023.3318553. 
[25] Z. Cui, T. Zhao, L. Wu, A. K. Qin, and J. Li, “Multi-objective cloud task scheduling optimization based on evolutionary multi-

factor algorithm,” IEEE Transactions on Cloud Computing, vol. 11, no. 4, pp. 3685–3699, Oct. 2023,  

doi: 10.1109/TCC.2023.3315014. 

 

 

 

 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 1242-1252 

1252 

BIOGRAPHIES OF AUTHORS 
 

 

Vijaya Kumar S     research scholar in Shri Venkateshwara University. His area of 

interests are cryptography and network security, cloud computing, big data, and machine 

learning. He is having a strong experience in SQL. He completed ME in Computer science 

from Anna University. He can be contacted at email: vksudev@gmail.com. 

  

 

Dr. Muthusamy Periyasamy     professor, Department of Computer Science and 

Engineering, Shri Venkateshwara University, has 20 years of teaching experience. he holds a 

Ph.D. from Anna University. He has published 17 patents, 8 book chapters, and 30 research 

papers published in reputable international journals and conferences. His expertise includes 

cloud computing, cyber security, artificial intelligence, and machine learning. He can be 

contacted at email: muthu.namakkal@gmail.com. 

 

 

R. Radhakrishnan     assistant professor in School of computer science and 

engineering at Galgotias University, holds 16 years of teaching experience With an MTech 

from Anna University, he has published 4 patents and 8 research papers, specializing in 

networks, cloud computing, and machine learning. He can be contacted at email: 

prof.rrk8@gmail.com. 

  

 

Dr. Tamilarasi Karuppiah     is an Associate professor in the Department of 

Information Technology, Panimalar Engineering College, accumulating 24 years of teaching 

experience. She earned his Ph.D. record with 8 patents, 9 book chapters, and 28 research 

papers published in esteemed international journals and conferences. Her expertise spans web 

services, cyber security, networks, cloud computing, and machine learning. She can be 

contacted at email: thamizhanna@gmail.com. 

 

 

Dr. Thenmozhi Elumalai     is an associate professor in the Department of 

Information Technology at Panimalar Engineering College. With 22 years of teaching 

experience, she holds a Ph.D. and has authored 7 patents, 8 book chapters, and 18 research 

papers in renowned international journals and conferences. Her areas of expertise include 

cyber security, networks, and machine learning. She can be contacted at email: 

ethenmozhi22.pec@gmail.com. 

 

mailto:vksudev@gmail.com
mailto:prof.rrk8@gmail.com
mailto:thamizhanna@gmail.com
mailto:ethenmozhi22.pec@gmail.com
https://orcid.org/0009-0005-4318-1854
https://scholar.google.com/citations?view_op=list_works&hl=en&authuser=3&user=lCIeBRcAAAAJ
https://orcid.org/0000-0002-0204-9567
https://scholar.google.co.in/citations?user=N8zLaa0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57221205407&origin=recordpage
https://orcid.org/0009-0000-0641-910X
https://scholar.google.co.in/citations?hl=en&user=cMo3I4sAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58927659600
https://www.webofscience.com/wos/author/record/KIJ-8319-2024
https://orcid.org/0000-0001-8195-2916
https://scholar.google.com/citations?user=ZRorOFAAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=57224334165
https://www.webofscience.com/wos/author/record/AID-3721-2022
https://orcid.org/0000-0002-2531-5506?lang=en
https://scholar.google.com/citations?user==ZRorOFAAAAAJ&hl=en&oi=sra
http://www.scopus.com/inward/authorDetails.url?authorID=57226543880&partnerID=MN8TOARS

