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 In today’s world, encryption is crucial for protecting sensitive data. Neural 

networks can provide security against adversarial attacks, but meticulous 

training and vulnerability analysis are required to ensure their effectiveness. 

Hence, this research explores hybrid encryption based on a generative 

adversarial network (GAN) for improved message encryption. A neural 

network was trained using the GAN method to defend against adversarial 

attacks. Various GAN training parameters were tested to identify the best 

model system, and various models were evaluated concerning their accuracy 

against different configurations. Neural network models were developed for 

Alice, Bob, and Eve using random datasets and encryption. The models were 

trained adversarially using the GAN to find optimal parameters, and their 

performance was analyzed by studying Bob’s and Eve’s accuracy and bits 

error. The parameters of 8,000 epochs, a batch size of 4,096, and a learning 

rate of 0.0008 resulted in 100% accuracy for Bob and 52.14% accuracy for 

Eve. This implies that Alice and Bob’s neural network effectively secured 

the messages from Eve’s neural network. The findings highlight the 

advantages of employing neural network-based encryption methods, 

providing valuable insights for advancing the field of secure communication 

and data protection. 
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1. INTRODUCTION 

Cryptography has been a significant tool for information security for millennia. By limiting unwanted 

access, cryptography guarantees the confidentiality, integrity, and validity of sensitive data [1]. One of the 

trickiest things about cryptography is keeping the encryption keys safe. Secret encryption keys are required for 

encrypting and decrypting messages [2]. The security of a message may be compromised if an attacker were to 

obtain the key, deduce the encryption algorithm, and then read or alter the message. As a result, cryptographers 

have been trying to develop more robust and secure encryption methods that are resilient to attacks from 

hackers and other criminals [3]. 

An encryption algorithm can also be made more secure by utilizing a neural network to strengthen the 

key generated by the encryption process [4]. The network comprises interconnected nodes or “neurons” 

arranged in layers designed for processing and analyzing complex data [5]. It uses a process called 

backpropagation to modify internal parameters and achieve the desired outcome. During this process, the 

network compares its expected output to the actual output and adjusts its parameters as needed. Training a 

neural network involves feeding it a collection of input data and allowing it to adjust its internal parameters to 

https://creativecommons.org/licenses/by-sa/4.0/
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produce the desired output [6]. Once trained, a neural network can accurately classify data or make predictions 

even if the input is noisy or incomplete [7].  

A generative adversarial network (GAN) is a machine learning model consisting of a generator and a 

discriminator neural network [8]. The generator creates new examples, while the discriminator evaluates them. 

The goal of the generator is to produce data that mimics real data, and the goal of the discriminator is to 

differentiate between real and generated data. Together, these two networks are trained in a zero-sum game in 

which one agent’s success equals the other’s failure. The generator tries to fool the discriminator, and the 

discriminator tries to correctly classify the data as real or generated [9]. GANs are used for unsupervised 

learning, a type of machine learning by which a model learns to identify patterns in a dataset without labeled 

responses [10].  

Recent developments in the field of encryption have seen the application of neural networks to 

improve the security and efficiency of encryption systems [11]–[13]. One of the most exciting applications is 

the generation of encryption keys [14]. Neural networks can be trained to generate secure and unpredictable 

encryption keys that are less likely to be guessed by attackers [15]. In addition, neural networks can help 

identify patterns in encrypted data that attackers can exploit and detect anomalies that may indicate a security 

breach. Neural networks are also being used to enhance the security of encryption techniques for secure 

communication by encrypting models and their parameters. Techniques like adversarial training encryption can 

process encrypted data without revealing sensitive data or the model itself [16]. 

Many research papers on cryptography use neural networks instead of fixed encryption algorithms 

[16]–[18] to enable self-learning and increase the flexibility of encryption methods. However, this also poses 

challenges for clarity and explanation. One notable exception is the research in [17] that proposed a hybrid 

encryption model, combining the strength of the Advanced Encryption Standard with an adversarial network. 

This achieves a balance between traditional encryption methods and innovation.  

The researchers in [19] introduced a method for protecting multi-party communication using 

adversarial training with neural networks. The GAN model was trained for 200 epochs using a batch size of 256 

and a learning rate of 0.0008 with the Adam optimizer. However, training many neural networks is 

computationally expensive, and the best parameter values for this method are still under study. A GAN was 

used for secure communication [16]. Three neural networks—Alice, Bob, and Eve—competed in an adversarial 

training in which Alice encrypted messages to Bob while Eve tried to decode them. The network trained for 

15,000 epochs with a batch size of 128 and a learning rate of 0.0002. The researchers acknowledged the high 

computational cost of training large neural networks for real-time communication.  

Encryption protects sensitive data from unauthorized access and manipulation. However, adversarial 

attacks (i.e., malicious inputs that can exploit vulnerabilities in an encryption model) can compromise 

encryption [20]. These attacks can pose a severe risk for encryption, as attackers may be able to decipher or alter 

encrypted messages without detection. Neural network capabilities in symmetric encryption can be utilized to 

avoid such risk. However, neural network models are also sensitive to the choice of hyperparameters during 

training, such as the learning rate, number of hidden layers, and activation functions [21]. These 

hyperparameters affect the performance and generalization ability of models, and finding the optimal values is 

challenging. If the hyperparameters are not tuned properly, a model may suffer from overfitting, underfitting, 

slow convergence, or instability [22]. If a neural network encryption method is to perform optimally, it must be 

tested appropriately for potential vulnerabilities. To address this challenge, researchers and developers must 

analyze the encryption to prevent attackers from stealing data [23]. By doing so, a robust encryption model that 

ensures the confidentiality and integrity of encrypted information can be developed, thus safeguarding the 

information against unauthorized access.  

The remainder of this paper is organized as follows: section 2 discusses the method used in this 

project, which involved developing a GAN model, assessing the performance of different parameters, and 

analyzing the system’s effectiveness in securing a message. Section 3 presents the results and discussion. 

Finally, Section 4 provides the conclusions and recommendations for future works. 

 

 

2. HYBRID ENCRYPTION METHOD 

This research project phase describes the construction of a hybrid encryption technique that 

combines exclusive or (XOR) encryption with a GAN model. The first step involves creating a dataset of 

messages and keys for encryption and developing a model structure. A training process is then created that 

utilizes GAN training. 

 

2.1.  Generating messages and keys 

The dataset generation process consists of creating a batch of random binary values, each with 16 

bits, for both messages and keys. Each binary value is converted into -1 or 1 using a representation common 
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in neural network applications. This conversion process is essential for the neural network’s operation. The 

messages and keys are the input data for training the neural network. This binary representation enables the 

network to learn and process the XOR operation’s encryption and decryption patterns, enhancing the 

symmetric cryptosystem’s overall training. 

 

2.2.  Developing XOR encryption and the GAN model 

The purpose of this research was to combine XOR encryption and a GAN model. The model 

consists of three neural network models: Alice, Bob, and Eve. The diagram of the XOR encryption and GAN 

model integration is shown in Figure 1, where P is the message, K is the key, C is the ciphertext, CXOR is the 

ciphertext after XOR encryption, PBOB is the message created by Bob, and PEVE is the message created by 

Eve. Messages and keys were encrypted with XOR to produce XOR ciphertext. Alice uses XOR ciphertext 

and a key to generate the ciphertext. Bob and Eve receive Alice’s ciphertext, but only Bob has the key to 

recover the original message, while Eve tries to recover the message without the key. A GAN-based training 

session is performed to improve the model by minimizing the loss for better message reconstruction. Eve’s 

loss is calculated by comparing the original and reconstructed messages. Bob’s loss is calculated by 

comparing the original and reconstructed messages and taking Eve’s loss as input to ensure that Eve’s error is 

at least 50%. 

Alice, Bob, and Eve consist of the convolutional neural network model shown in Figure 2.  

It comprises 32 input units, three hidden layers of two, four, and four channels with sigmoid activation, and 

one output layer of one channel with tanh activation. The output is the result of the convolutional neural 

network model. This model has three copies for Alice, Bob, and Eve. Alice uses the XOR output and keys to 

create ciphertext, Bob uses Alice’s ciphertext and keys to reconstruct the message, and Eve uses only Alice’s 

ciphertext to guess the message.  
 
 

 
 

Figure 1. The diagram of the integration of XOR encryption with a GAN model [17] 
 

 

 
 

Figure 2. Diagram of the convolution neural network [16] 
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2.3.  Training process using adversarial training 

The training process optimizes the parameters of the neural network models through iterations.  

The optimization process uses the Adam optimizer separately for Eve and the combined Alice-Bob models [15]. 

The loss functions used during training include Eve’s loss, which compares Eve’s predictions and the original 

messages, and Alice-Bob’s loss, which includes the reconstruction loss for Bob. The formula for the loss is 

shown at (1), where n is the number of batch sizes, X is the original message, and Y is the reconstructed 

message.  

 

𝐿1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑙𝑜𝑠𝑠 = (
1

𝑛
) × ∑ |𝑋 − 𝑌| (1) 

 

The absolute difference between the original message and the reconstructed message is taken for 

each element, and the mean of these differences is computed by summing and dividing by the number of 

batch sizes. It was ensured that Eve’s output has at least 50% wrong bits by applying the formula shown in (2) 

with the loss computation in Alice-Bob loss, where N is the message bit length and Eve loss is the loss 

computed from Eve’s L1 destination loss.  

 

𝐸𝑣𝑒 50% 𝑙𝑜𝑠𝑠 =  
(

𝑁

2
– 𝐸𝑣𝑒 𝑙𝑜𝑠𝑠)

2

(
𝑁

2
)

2      (2) 

 

In (2), N represents the total number of bits in the message. By subtracting Eve’s loss from N/2 and 

squaring the result, the formula quantifies the deviation of Eve’s output from the ideal scenario of 50% 

incorrect bits. Dividing this squared deviation by (N/2)2 scales the loss value appropriately. The training 

modifies the model parameters to enhance the network’s ability to communicate securely between Alice and 

Bob while making it difficult for Eve to eavesdrop. The parameter value for the model is examined in the 

project’s second phase. 

 

2.3.1. Configuring the parameter for model training 

The three value adjustment training parameters in Table 1 are applied. For the first set, three epochs 

are selected (1,000, 4,000, and 8,000). These values are selected to capture a range of training scenarios, from 

relatively short durations to longer sessions. For the second set, the project uses different batch sizes, 

representing the number of samples processed in each training iteration, which is changed across three levels: 

256, 1024, and 4096. Batch sizes in multiples of 128 or 256 optimize the Tensor Core design’s performance [24]. 

The choice of these batch sizes is motivated by the need to explore the model’s behavior under different 

computational loads. Lastly, the third set uses different learning rates. A common suggestion is to consider a 

learning rate of less than 1.0 and greater than 0.00001 [25]. In this project, the learning rate is tested at three 

values (0.0001, 0.0008, and 0.0016) to evaluate the model’s sensitivity to the learning rate. Lower values 

suggest more accurate convergence but at the risk of slower learning; higher values indicate a risk of 

overshooting the optimal parameters.  

 

 

Table 1. Values of parameters used for training 
Parameter name First set value adjustment Second set value adjustment Third set value adjustment 

Epoch 1,000, 4,000, 8,000 8,000 8,000 

Batch size 4096 256, 1,024, 4,096 4,096 

Learning rate 0.0008 0.0008 0.0001, 0.0008, 0.0016 

 

 

3. RESULTS AND DISCUSSION  

Figure 3 shows the results of the bits error and accuracy of Alice-Bob and Eve for 1,000, 4,000, and 

8,000 epochs. As depicted in Figure 3(a), the Alice-Bob bits error consistently dropped to 0.3 on epoch 300 

in all scenarios and then gradually approached 0 and was maintained until the final epoch, indicating 

successful learning and improved communication. At the same time, Eve’s loss rapidly increased until 900 

epochs, showing the system’s resilience against decryption attempts by Eve. For the final bits error, the 

system achieved 7.446 for 8,000 epochs, 7.1965 for 4,000 epochs, and 6.9035 for 1,000 epochs.  

Meanwhile, Figure 3(b) shows Alice-Bob’s and Eve’s accuracy for 1,000, 4,000, and 8,000 epochs. 

The message-decoding accuracy of Alice and Bob for all scenarios showed a consistent rise that reached 

approximately 1, indicating the model’s skill in learning the encryption-decryption process until 700 epochs 

and maintaining their performance until the final epochs. Furthermore, Eve’s accuracy for all scenarios 
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rapidly increased to 0.45 at 300 epochs and subsequently decreased, reaching almost 0 at 700 epochs, which 

was then maintained until the final epochs. These outcomes highlight the encryption scheme’s effectiveness, 

especially with extended training. Across all scenarios, no significant difference was found in any of the 

graphs other than that representing the number of epochs. 

Figure 4 shows the results of the bits error and accuracy of Alice-Bob and Eve for batch sizes of 

256, 1,024, and 4,096. In the first scenario (Figure 4(a)), with a batch size of 256, Alice-Bob’s value quickly 

dropped to 1.9345 at 400 epochs and then slowly reached 0.1256 at 3,000 epochs, where it stayed. 

Meanwhile, Eve’s value quickly fell to 2.3444 at 300 epochs and then gradually rose to 6.4084 at the final 

epoch of 8,000. In the second scenario, with a batch size of 1,024, Alice-Bob’s value plummeted to 0.1345 at 

500 epochs and remained constant. Eve’s value also dropped to 2.5746 at 200 epochs and increased to 7.1922 

at 1000 epochs, where it stayed. In the third scenario, with a batch size of 4,096, Alice-Bob’s value sharply 

declined to 0.1724 at 400 epochs and did not change thereafter. Eve’s value also sharply dropped to 2.4703 at 

200 epochs, sharply rose to 7.6532 at 1,900 epochs, and then oscillated between 7.2 and 7.8.  

Figure 4(b) shows the Alice-Bob and Eve accuracies for batch sizes of 256, 1,024, and 4,096. In the 

first scenario, with a batch size of 256, Alice-Bob’s accuracy gradually rose to 0.9885 at 5000 epochs, where 

it stayed. Eve’s accuracy quickly climbed to 0.4997 at 300 epochs and then slowly dropped to 0.0395 by the 

final epoch of 8,000. The second and third scenarios, with batch sizes of 1,024 and 4,096, indicate similar 

performances. Alice-Bob’s accuracy swiftly reached 1 at 1,200 epochs and then remained constant. Eve’s 

accuracy ascended to 0.45 at 200 epochs and then swiftly descended to 0.008 at 1,100 epochs, where it 

stayed. In summary, the batch size of 4,096 was the most effective for both Alice-Bob and Eve regarding bit 

error and accuracy.  

 

 

  

(a) (b) 

 

Figure 3. The results of Alice-Bob and Eve for 1,000, 4,000, and 8,000 epochs: (a) bits error and (b) accuracy 

 

 

  

(a) (b) 

 

Figure 4. The results of Alice-Bob and Eve for batch sizes of 256, 1,024, and 4,096: (a) bits error and  

(b) accuracy 
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Figure 5 shows the results of the bits error and accuracy of Alice-Bob and Eve for learning rates of 

0.0001, 0.0008, and 0.0016. Figure 5(a) shows that for the first scenario, with a learning rate of 0.0001, 

Alice-Bob’s bits error slowly dropped to 0.2574 at 8,000 epochs. Eve’s bits error quickly fell to 1.4933 at 

1,500 epochs and then slowly rose to 7.700 at 8,000 epochs. In the second scenario, with a learning rate of 

0.0008, Alice-Bob’s bits error sharply declined to 0.0669 at 600 epochs, where it stayed. Eve’s bits error 

sharply decreased to 2.4703 at 200 epochs, sharply increased to 7.6532 at 1,900 epochs, and then varied 

between 7.2 and 7.8. In the third scenario, with a learning rate of 0.0016, Alice-Bob’s bits error swiftly 

dropped to 0.0733 at 300 epochs and remained constant, except for a spike of 1.446 at 3,000 epochs. Eve’s 

bits error swiftly decreased to 2.0473 at 100 epochs, rapidly increased to 7.1239 at 500 epochs, and then 

fluctuated between 7 and 7.6.  

Figure 5(b) shows the accuracy of Alice-Bob and Eve for learning rates of 0.0001, 0.0008, and 

0.0016. In the first scenario, with a learning rate of 0.0001, Alice-Bob’s accuracy slowly rose to 0.9021 at 

3,000 epochs and stayed at that level. Eve’s accuracy quickly climbed to 0.6615 at 1,500 epochs and then 

dropped to 0.0107 at 4,500 epochs, where it remained. In the second scenario, with a learning rate of 0.0008, 

Alice-Bob’s accuracy quickly reached 0.9747 at 500 epochs and did not change after that. Eve’s accuracy 

ascended to 0.4778 at 200 epochs and swiftly descended to 0.0214 at 700 epochs, where it stayed. In the third 

scenario, with a learning rate of 0.0016, Alice-Bob’s accuracy sharply increased to 0.9817 at 300 epochs and 

remained constant, except for a downward spike of 0.6710 at 3000 epochs. Eve’s accuracy sharply rose to 

0.5537 at 100 epochs, sharply fell to 0.0120 at 500 epochs, and then remained constant. According to the 

results, the learning rate of 0.0008 was the most effective for both Alice-Bob and Eve regarding bit error and 

accuracy. 

 

 

  

(a) (b) 

 

Figure 5. The results of Alice-Bob and Eve for learning rates of 0.0001, 0.0008, and 0.0016: (a) bits error and 

(b) accuracy 

 

 

The performance and security of the hybrid encryption method were analyzed based on XOR 

encryption and a GAN model under different hyperparameters. The best hyperparameters for both the 

training and validation phases were 8,000 epochs, a batch size of 4,096, and a learning rate of 0.0008, which 

generated the highest accuracy for Alice-Bob on the new validation dataset. The worst hyperparameters were 

8,000 epochs, a batch size of 4,096, and a learning rate of 0.0001, which resulted in low accuracy for Alice-

Bob. These results show that the hybrid encryption method based on XOR encryption and a GAN model 

effectively and securely encrypts messages, as it can prevent unauthorized access and ensure confidential 

communication. The results also indicate that the model’s performance depends on the configuration of 

hyperparameters. 

 

 

4. CONCLUSION 

Integrating XOR encryption with a GAN neural network was highly effective in encrypting 

messages, offering strong security against unauthorized access. The best configuration consisted of training 

for 8,000 epochs using a batch size of 4,096 and a learning rate of 0.0008. These parameters reliably 

achieved an impressive accuracy of 100% on Alice-Bob. In comparison, Eve achieved an accuracy of 

52.1423%, highlighting this configuration’s success in enabling secure communication and protecting 
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confidential information from unwanted parties. It is suggested that future research examine the scalability of 

the model and its performance on larger datasets. It can also be beneficial to consider practical situations in 

which the system will be used and potential malicious attacks to enhance its ability to deal with real-world 

challenges. 
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