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 The fast growth of internet of vehicles (IoV) has created a new area of 

connectedness, with promising safety and efficiency in transportation. 

However, this advancement in vehicle technology has come with significant 

cybersecurity risks, specifically through control area network (CAN) 

protocol and other communication techniques within vehicles. This 

experimental study suggests a machine learning (ML) based security 

approach based on the extreme learning machine (ELM) algorithm to 

address these challenges. Unlike customary neural networks, ELM is known 

for its fast processing, minimal training time, and high accuracy, making it 

preferably suitable for dynamic IoV environments. The methodology 

involves data preprocessing, feature selection, and employing ELM for 

attack classification; the algorithm’s performance is evaluated using CAR-

Hacking, NSL-KDD, and EdgeIIoT datasets. We also examine the 

significance of distributed processing to enhance the computational 

efficiency of the model, obtaining 89% accuracy in 3 ms run-time for 

external networks, and 83% accuracy with 9 ms run-time for intra-vehical 

networks. This newly proposed security mechanism using ELM shows very 

accurate results in detecting intrusions with a high recall rate and reduced 

computation time through distributed processing. 
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1. INTRODUCTION 

Internet of vehicles (IoV) is a highly sophisticated connected transportation technique utilizing latest 

technology to transfer real-time data among vehicles, infrastructure, pedestrians, and traffic management 

systems [1]. The communication among different interior parts is simplified via an intra_vehicle network. 

The network components are engine control units (ECUs), gateways, sensors, actuators, and other equipment. 

There are approximately 70 ECUs, enabling exchange of about 2,500 electronic signals across different parts. 

Each unit is responsible for a specific task and manages a particular component via a universal protocol 

within vehicle’s network [2]. 

The control area network (CAN) protocol is widely employed standard for intra_vehicle networks in 

automotive and industrial sectors because of its flexible architecture and cost-effectiveness [3]. It 

significantly lowers complexity of vehicle’s wiring systems, making them more intelligent and using real-

time data to make decisions. This lead to improved traffic flow, fewer accidents and an efficient 

transportation system. However, researchers have highlighted the vulnerabilities in CAN protocol for 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 A lightweight distributed elm-based security framework for … (Aziz Ullah Karimy) 

1703 

cybercrime. Hoppe et al. [4] proved the exposure of CAN protocol to attacks like frame sniffing and replay; 

these can compromise functions like window controls, warning systems, and ABS, leading to severe 

consequences. Woo et al. [5] explained about chances of remote attacks via adversarial mobile apps,  

by manipulating interfaces like telematics, Bluethooh, WiFi of even OBD ports. On some other experimental 

study, Miller and Valasek [6] compromised infotainment system of Jeep Cherokee, led to significant recall of 

affected vehicles. Based on a study carried out by Keen Security Lab, pointed out the existing vulnerabilities 

of remote controlling features like brakes and door locks in Tesla X. They found that, CAN protocol which is 

core responsible for communication among various parts of the vehicle, is susceptible to denial-of-service 

(DoS) attack, this can happen when intruder send high-priority messages within short interval of time, 

making the legitimate node to stop transmitting. Similarly, on other study Nie et al. [7] showed about 

injection attack on CAN bus. 

Researchers have been studying advanced ML techniques to mitigate potential threats of IoV 

networks by enhancing security and privacy. These techniques are well-known for its ability to demonstrate 

complicated data patterns, for example using multi-layered nonlinear networks. Xiao et al. [8] carried out 

studies on combination of ML techniques with edge computing to examine vehicle traffic, proposing 

personalized protection insights. Rosay et al. [9] designed deep learning (DL) based Intrusion detection 

systems (IDS) using multi-layer perception, evaluated its performance on automotive microprocessors with 

CICIDS2017 dataset. Yang et al. [10] suggested tree-based stacking algorithm to improve traffic analysis 

within IoV networks, algorithm showed optimistic results with CICIDS2017 datasets. Mehedi et al. [11] 

proposed PLeNet for intrusion detection in IoV, employing deep transfer learning, which showed promising 

accuracy. Li et al. [12] and Shone et al. [13] carried out an experimental study on transfer and unsupervised 

deep learning techniques to demonstrate effectiveness of IDS in IoV. However, they have still struggling 

with unbalanced datasets. Xu et al. [14] did an innovative experimental study using Log-Cosh variational 

autoencoder by generating diverse intrusion to enhance detection accuracy. However, despite all these 

numerous efforts to improve IoV security, it still encounters considerable challenges. Employing DL models 

needs vast computational resources and training time, which makes these models less feasible for real-time 

IoV apps, where fast reaction is necessary. On the other hand, IoV networks are quit dynamic, DL models 

struggle with data distribution and dynamic attack patterns. This results in model obsolescence. 

In this experimental study, we propose an extreme learning machine (ELM) based security approach 

to detect anomalies in intra_vehicle and external vehicle networks. Since ELM is capable of processing large 

amounts of data with limited processing units and quickly adapt to recognize intrusion patterns in a very 

accurate and efficient way. Hence, it is a promising security approach for IoV networks. Furthermore, 

distributed processing is also employed for this study to enhance the detection rate, reduce response times, 

and develop scalable solutions for handling vast volume of data generated by IoV environments. The IDS 

based on ELM can be a significant breakthrough for IoV. This approach can use a dynamic and flexible 

model and continuously monitor network traffic and user behavior for anomaly detection and to avoid 

security breaches in IoV networks. 

 

 

2. METHOD 

2.1.  CAN 

CAN is widely used protocol in smart vehicles for communicating with each other and their 

integrated units for smooth operation. This protocol is exploitable to cyber threats that can be manipulated 

through different access points, such as spoofing and replay attacks. Intruders can exploit ODB-II connector, 

and gain access through malicious dongles or connected devices. Manipulation of wiring harnesses is another 

possible exploitation way to change security systems [5]. Infotainment is a vulnerable gateway for hackers to 

exploit networks through connected digital devices such as USB, Bluetooth, or Wi-Fi. They can also use 

software vulnerabilities of ECUs to disrupt vehicle functions or run malicious code remotely or locally [15]. 

 

2.2.  ELM 

After data is preprocessed, ELM is used to classify threats, ELM algorithm has high-speed 

processing, minimal training time, and commendable accuracy. Unlike traditional neural networks, which 

require iterative tuning of weights and biases, ELM randomly allocates weights and biases to hidden nodes 

and calculates output weights analytically. Given a train-set (xi, ti), where xi represents input vector and ti 

denotes target vector, ELM process can be succinctly described as follows, as noted in [16]: Initially, input 

weights w and biases b for the hidden nodes are assigned randomly. Subsequently, the hidden layer output 

matrix H is computed using an activation function g(.), expressed as H=g (w. x+b). Finally, the output weight 

matrix β is determined by calculating the pseudoinverse of H and then multiplying it by target matrix T, 

which can be formulated as β = H~. T. This streamlined approach enables ELM to rapidly train neural 
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networks by analytically determining the weights connecting the hidden layer to output layer, bypassing need 

for iterative tuning. 

 

2.3.  Proposed ELM based framework 

IDS are useful method of protecting IoV networks from cybercriminal attacks; they function fast, 

identifying and mitigating potential intrusions [15]. The framework suggested in this paper to secure 

intra_vehicles and external networks of IoV by employing IDS as demonstrated in Figure 1. Hence,  

the suggested IDS could be integrated with intra_vehicle network for detecting anomalies [17] in CAN-Bus; 

at same time, it is recommended to install IDS into gateways for identifying malicious external attempts 

compromising vehicles [15]. 

 

 

 
 

Figure 1. Proposed ELM based architecture 

 

 

Since CAN-Bus runs on specified communication patterns, IDS can predict the expected behavior of 

vehicle’s system. With this capability, IDS monitor CAN-Bus traffic in real-time, ensuring communication 

sticks to the specified patterns [18]. By leveraging ELM algorithm, this framework improves IDS’s ability to 

distinguish between normal operations and malicious activities, delivering a delicate and quick response 

mechanism. The overview of proposed approach is illustrated in Figure 2, has the capability of detecting 

intrusions, including DoS, frame attacks, and subtle timing attacks on specific frames by observing the 

timestamps of frames on the bus. We examined distributed computing using socket programming to spread 

computational loads, speed up training and response time, and enhance efficiency of ELM algorithm with the 

help of server and client architecture [19]. This system is evaluated using three specific datasets, each one of 

them explained in details in section 3.1, Car-Hacking for intra_vehicle networks, NSL-KDD and EdgeIIoT 

for external networks to demonstrate a broad spectrum of testing scenarios. 
 

 

 
 

Figure 2. ELM-based IDS framework 
 
 

3. RESULTS AND DISCUSSION 

We implemented this experiment using Scikit-learn, Tensorflow, Scipy libraries, and socket 

programming for distributed processing with Python programming language. A Toshiba machine with 8 GB 

RAM, a 750 GB HDD, and an AMD FX-8800P 2.1 GHz processor were the hardware part for the 

experimental study. Methodology was evaluated using three IoV security related established datasets,  

the CAR-Hacking, NSL-KDD, and EdgeIIoT. To prevent risks of overfitting and skewed outcomes, and 
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assure the model’s robustness, we employed fivefold cross-validation. Accuracy, recall, precision, and  

F1-score metrics were used to measure the model’s performances, and these metrics are calculated as [20].  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁+𝐹𝑃 + 𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

The terminologies associate with the metric are: 

− True positive (TP) = number of samples correctly detected as intrusion instances; 

− True negative (TN) = number of samples correctly detected as normal samples; 

− False positive (FP) = number of samples incorrectly detected as intrusion instances; 

− False negative (FN) = number of samples incorrectly detected as normal samples. 
 

3.1.  Datasets 

− Car-Hacking: dataset was generated using simulating cyber-attacks on CAN-bus, it contains two key 

attributes: CAN identifier (ID) and 8-byte data field (DATA [0] -DATA [7]). It consists of four simulated 

cyber-attacks, DoS, which overloads the network with excessive traffic; Fuzzy for malfunctioning of the 

system; gear spoofing, which manipulates gear display messages; and RPM spoofing, modifying engine 

readings [21].  

− NSL-KDD: is improved version of KDD’99 dataset, and handles some drawbacks of KDD’99 dataset, 

such as redundancy and duplicate records. The dataset comprises normal and malicious traffic samples; 

there are four categories of attacks: DoS, Probe, user to root (U2R), and remote to local (R2L), with 41 

incorporated features from various aspects of network connections [22]. 

− EdgeIIoTset: dataset contains testbed with seven layers; contains information from various IoT devices, 

including temperature and humidity sensors, ultrasonic sensors, and water level detectors. It covers a wide 

range of fourteen attacks against IoT and IoT communication protocols divided into five categories of 

threats, including DoS/DDoS, data collection, injection attacks, malware attacks, and man_in_the_middle 

attacks [23]. 

 

3.2.  Data preprocessing 

We outlined the specific steps for preprocessing of the data in Algorithm 1. We started methodology 

with a comprehensive analysis of raw data. To balance the data, SMOTE and random under sampler 

techniques were utilized. SMOTE is widely used technique for handling imbalanced data [24]; it creates 

synthetic examples rather than repeating existing samples. The mathematical procedure of SMOTE is 

explained in the following steps: 

If xi is a minority class sample and xzi is one of its k nearest neighbors, a synthetic sample xnew is 

created as (5): 
 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆 (𝑥𝑧𝑖 − 𝑥𝑖) (5) 
 

where λ is a random number between 0 and 1. 

We proceed with feature selection, which is essential step for identifying most correlated and 

significant features, to contribute in classification [25]. We applied f_classif and SelectKBest to isolate a 

group of highly correlated features with target variables to improve model’s predictive accuracy. If F the 

ratio of between_group variability to within_group variability, is given by (6): 
 

𝐹 =
𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (6) 

 

the exact calculation of these involves means and variances of groups and the overall dataset, which can be 

detailed as (7): 
 

Between_group variability = ∑
𝑛𝑖.(𝑥𝑖

′−𝑥′)2

𝑘−1

𝑛
𝑖=1  (7) 
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and the formula for within-group variability is (8): 
 

within_group variability = ∑
∑ (𝑥𝑖𝑗−𝑥𝑖

′)2𝑛𝑖
𝑗=1

𝑁−𝑘

𝑛
𝑖=1  (8) 

 

where: ni is the number of observations in group i, x’i is the mean of group i, x’ is the overall mean, k is the 

number of groups, N is the total number of observations, xij is the jth observation in the ith group. 
 

Algorithm 1. Data preprocessing 

- Validation: ensure absence of infinite or missing values in train-set and test-set. 

- One-hot encoding: convert categorical features into numerical values to facilitate computation. 

- Label encoding: transform all classes into numerical values, streamlining model training process. 

- Column pruning: eliminate unnecessary label columns, retaining only the ‘label’ column indicative of 

attack classes. 

- Data balancing: employ SMOTE for oversampling and RandomUnderSampler for undersampling to 

balance the dataset. 

- Feature elimination: remove features with zero variation and those deemed redundant or irrelevant. 

- Correlation analysis: calculate standard correlation coefficient between attributes and the target to identify 

predictive features. 

- Feature scaling: standardize numerical features in train-set and test-set to have mean of zero and a 

variance of one. 
 

3.3.  Performance analysis 

Performance of the proposed approach for external networks of IoV are evaluated on NSL-KDD and 

EdgeIIoT datasets and for intra-networks are evaluated on Car-Hacking dataset. Furthermore, in this study, 

we compare the effectiveness of the suggested approach against some existing models, such as SVM, DNN, 

and RF algorithms. For external networks the proposed approach is tested on NSL-KDD and EdgeIIoT 

datasets, and comparison of selected ML algorithms applied in this approach are illustrated in Table 1 and 

Figure 3. Considering the accuracy rate, DNN has achieved highest accuracy of (82.91%) and (96%) in both 

datasets, ELM with single processing unite and distributed processing has achieved the second highest 

accuracy of (84%) and (89%). The SVM classifier achieved the lowest accuracy of 77.52%. 

On the other hand, integrating distributed processing with ELM significantly reduces training time, 

with NSL-KDD it reduced from (2.37697053 seconds) to (0.00972438 seconds), similarly with EdgeIIoT 

dataset the training and response time reduced from (6.4260058 seconds) to the lowest run-time of (0.003 

seconds) among models, showing a substantial improvement in processing efficiency without compromising 

performance metrics [26]. Moreover, stark drop in run-time with ELM and distributed processing, enhances 

efficiency of IDS, mitigates the processing time issues of neural networks [27], making it more promising for 

real-time IoV security. Furthermore, we notice from Figures 3(a) and 3(b) ELM and DNN show progressive 

improvement compared to SVM and RF models, outlines advantages of applying neural networks in network 

security. Considering precision, recall and f1-score rate as shown in Figure 3(c), ELM and ELM+Parallel 

illustrated very strong performance, specifically in terms of recall and F1-score, obtaining (100%) and (97%), 

and (89%) and (93%) with NSL-KDD and EdgeIIoT dataset respectively, indicating their effectiveness in 

detecting true positive attacks. 

For intra-networks, suggested approach is evaluated on Car-hacking dataset, which is based on the 

traffic flow CAN protocol, and results are demonstrated in Table 2 and Figure 3. Considering recall and 

accuracy rate, here also ELM with single and distributed processing architecture shows highest recall (95%) 

and superior accuracy of (83.28%) as illustrates in Figures 3(a) and 3(b) respectively, outlining its usefulness 

in detecting TP with minimal FN. 
 

 

Table 1. Comparison of ML algorithms performance across datasets 
Datasets Algorithm Accuracy (%) Precision (%) Recall (%) F1-score (%) Run-time (seconds) 

NSL-KDD SVM 77.52  77 81 78 75.5937 

RF 79.34  78 80 83 2.4228816 

DNN 82.91 82 91 86 15.667436 
ELM 84.56 81 100 89 2.37697053 

ELM+Parallel 83.28 82 95 88 0.00972438 

EdgeIIoT SVM 87.38  87 76 81 45.6554601 
RF 80.45  100 99 99 19.70665836 

DNN 96  95 90 92 29.452039 
ELM 89.71 90 97 93 6.4260058 

ELM+Parallel 89  91 96 93 0.00313806534 
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Table 2. Comparison of ML algorithms performance across car-hacking dataset 
Datasets Algorithm Accuracy (%) Precision (%) Recall (%) F1-score (%) Run-time (seconds) 

Car-Hacking SVM 79.62 89 89 89 37.54407978 
RF 76.91 49 84 62 6.438039779 

DNN 80.72 88 68 77 21.02034759 

ELM 81.39 67 68 68 9.92550539970 
ELM+Parallel 83.28 82 95 88 0.00900697708 

 

 

Further, it significantly reduces run-time from (9.92550539970 seconds) to (0.0088 seconds), 

through distributed processing, which emphasizes the importance of speed and efficiency for real-time apps 

as depicted from Figure 3(c). ELM demonstrating notable advantages over the other algorithms highlighted 

in survey paper by Xing et al. [19]. These results emphasize ability of ELM for high detection accuracy and 

quick response in real-time, especially in the context of IoV where the nature of network is highly dynamic [15]. 

 

 

 

 
(b) 

 

 
(a) (c) 

 

Figure 3. Comparative analysis of; (a) various metrics, (b) accuracy across algorithms, and  

(c) run time performance of different algorithms 
 

 

For real IoV networks, real-time performance of ECUs is estimated to be generally about 10 ms [3], 

and based on previous works that used convolutional neural network (CNN) and tree-based algorithms for 

intrusion diction in [8], [10], similarly, transfer learning and DNN algorithms used in [12], [13] respectively 

employed to train datasets, these methods require more time for computation and response. The run-time of 

IDS with the ELM algorithm and distributed processing method is about 0.5 ms, showing its suitability for 

real-time applications. 

Overall, the proposed IDS, can be integrated into IoV network, it can detect various intrusions from 

intra_vehicle and external networks, enhancing transportation safety and efficiency. Furthermore, distributed 

processing techniques speed up detection tasks and can classify normal and abnormal operations within 

milliseconds. By safeguarding communication among vehicles, the proposed IDS strengthens the solidity of 

vehicles against cyber_attacks, and also helps to create safer and more efficient transportation environments. 

How hybrid models of DNN with ELM can enhance IDS by leveraging deep feature extraction capabilities of 
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DNN and rapid learning speed of ELM is worth exploring. This could result in IDS being both highly 

accurate and efficient, able to detect complex data patterns rapidly. 

 

 

4. CONCLUSION 

In this paper, we presented a novel approach for securing IoVs with help of an IDS using ELM 

algorithm. This suggested system can handle the critical vulnerabilities in both intra_vehicle and external 

vehicle networks. Particularly for intra_vehicle exposures associated with CAN protocols and other digital 

interfaces. With the utilization of ELM, the proposed approach demonstrated an efficient way of processing 

large data volumes for fast and precise anomaly detection. First, we performed data cleaning and normalization. 

Then, feature selection is applied based on feature correlation of CAN security data to get the best feature 

subset. The model is validated using benchmark datasets like NSL-KDD, EdgeIIoT for external vehicle 

networks, verifying its superiority in terms of detection accuracy (89.71%), recall (97%), computational 

resource efficiency, and a response time (3 ms) with integration of distributed processing. On the other hand, 

with Car-Hacking dataset for intra_vehicle networks, our approach demonstrates its ability, obtaining accuracy 

(83.28%), and recall (95%) with distributed processing has reduced the response time to (9 ms). 

The results of this approach show the usefulness of ELM in securing IoVs networks, with significant 

improvement in accuracy, recall rates, and run-time efficiency with distributed processing. These findings 

highlight potential of ELM-based IDS in securing smart vehicles environments. Our approach demonstrated 

fair results in detection accuracy and response time. However, as the IoV grows, the complexity and volume 

of generated data will also increase, requiring more refined approaches for feature extraction and data 

analysis. Since deep learning is familiar for its capability to address complicated data, and extract meaningful 

features, can be a promising technique. In future work, we suggest examining a hybrid IDS of deep learning 

with extreme learning for IoV environment. 
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