
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 38, No. 1, April 2025, pp. 417∼427
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v38.i1.pp417-427 ❒ 417

An enhanced least recently used page replacement
algorithm

Afaf Tareef1, Khawla Al-Tarawneh2, Omar Alhuniti2
1Faculty of Information Technology, Mutah University, Karak, Jordan

2King Abdullah II School for Information Technology, University of Jordan, Amman, Jordan

Article Info

Article history:

Received Mar 5, 2024
Revised Sep 23, 2024
Accepted Oct 7, 2024

Keywords:

Enhanced least recently used
First in first out
Least frequently used
Least recently used
Most recently used
Page fault
Page replacement

ABSTRACT

Page replacement algorithms play a crucial role in enhancing the performance
issue brought on by variations in processor speeds and memory by effectively
removing pages from computer memory to improve overall efficiency. The ma-
jority of these algorithms can address the page replacement problems, but their
implementation is challenging. This paper introduces a new efficient page re-
placement algorithm, i.e., enhanced least-replacement (E-LRU) based on two
introduced features used to select the victim page. By incorporating elements
of traditional algorithms such as first in first out (FIFO) and least recently used
(LRU), E-LRU presents itself as a new approach with potential benefits for mem-
ory management. This study evaluates the effectiveness of E-LRU in reducing
power consumption by reducing cache faults and compares its performance to
existing algorithms in various settings. The results provide insight into the ad-
vantages and disadvantages of E-LRU and essential perspectives on its potential
benefits for contemporary memory management algorithms. Furthermore, the
study puts E-LRU into the perspective of evolving algorithms and provides di-
rections for future investigation and improvement in the ever-changing field of
memory management. The study proved that E-LRU works better than FIFO
and LRU algorithms.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Afaf Tareef
Faculty of Information Technology, Mutah University
Karak (61710), Jordan
Email: a.tareef@mutah.edu.jo

1. INTRODUCTION
Memory management stands out as a critical component of the operating system, involving the divi-

sion of main memory into fixed-size frames [1]. Simultaneously, the virtual address space undergoes division
into fixed-size blocks known as pages. When a page fault occurs in the main memory, signifying the need for a
new page, the operating system must determine which existing page to replace, making space for the incoming
page. This decision arises when an executing process references a specific page, leading to a search in the
main memory. If the required page is absent, a page fault occurs, potentially necessitating the removal of pages
due to limited storage. Herein lies the role of page replacement algorithms in minimizing the fault rate by
strategically selecting the optimal victim page for removal from main memory [2].

The page replacement algorithm determines which memory page to replace or remove, a process
known as swap out. This replacement occurs when a page fault transpires, indicating the need to load a new
page into the main memory when no available space (frame) exists. The approach of page replacement al-

Journal homepage: http://ijeecs.iaescore.com



418 ❒ ISSN: 2502-4752

gorithms is direct: when a new page requires loading into main memory, and no free frame is available, the
algorithm selects which pages to replace, aiming to decrease the overall number of fault pages. The algorithm
selects a page not currently in use, freeing it to accommodate the required page [3].

There are many page replacement algorithms introduced in the literature, e.g., [4]–[9]. The evaluation
of such algorithms requires executing them on a particular sequence of memory references and calculating the
number of page faults. A lower number of page faults indicates a more efficient algorithm for that specific
scenario [10], [11]. The majority of these algorithms are inefficient and challenging to execute. To this context,
our study proposes an efficient least recently used (LRU)-based page replacement strategy to cluster cache
pages. More fairness in the victim page selection is achieved by introducing a new characteristic, i.e., the total
number of references (TNR), which improves cache memory efficiency.

2. BACKGROUND
There are four types of replacement algorithms. Four subsections below described them with simple

examples:

2.1. First in first out
The most straightforward page replacement strategy is the first in first out (FIFO) algorithm. To keep

track of all the pages that are currently in main memory, the operating system (OS) typically implements queue
management. This queue is set up to accommodate several pages, with the most recent page accessed at the
back and the oldest page at the front. The replacement of the page that has been in the main memory for the
longest is the basic idea behind FIFO [4]. FIFO algorithm focuses on the length of time a page has been in the
main memory rather than how much the page has been used in the main memory. For more details, Figure 1
illustrates an example of the FIFO algorithm. Consider the page reference string of size 20: 7, 0, 1, 2, 0, 3, 0,
4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 with frame size 3 (i.e., maximum three pages in a frame) as shown in Figure 1.
According to the figure, the total page faults (M) equal to 15 and total page hits (H) is five.

Figure 1. FIFO representation for three frames, M is fault (fault), and H is hit

In the initial phase, the first three slots of the memory table are vacant, leading to three-page faults
as references 7, 0, and 1 fill these empty slots based on their sequential arrival. Subsequently, when reference
number 2 is introduced, it is not existing in the memory, resulting in a page fault. The algorithm replaces the
oldest page in main memory, reference number 7, as evidenced by its presence in the first frame and being
the oldest reference. As reference 0 arrives, it finds a place in the main memory, occupying the second frame,
leading to a page hit with no replacement. This pattern continues for the subsequent string references; when
page 3 arrives and is not existing in the memory, a page fault occurs, resulting in the replacement of reference 0
and reference 1 by reference 4. Then, the same process will be repeated until all pages complete their traversing.

2.2. Least frequently used
The least frequently used (LFU) page replacement algorithm is one of the prevalent replacement algo-

rithms; the main idea of the LFU algorithm is that the page with the minor visits in a given period is removed.
When a page must be allocated or replaced in the main memory, and all the frames are fully used, the LFU
will choose the least frequently used page in LFU. If two or more reference pages have the same frequency,
perform the FIFO method on these reference pages that have the same frequency and remove the oldest page
among them [5].

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 417–427



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 419

For more details, Figure 2 illustrates an example of LFU algorithm. Consider the page reference string
of size 20: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 with frame of size 3. The total page faults (M)
is 13, and total page hits (H) is 7. In the beginning, the first three slots are empty, so directly, three-page faults
will appear to fill the first three slots in the table. Specifically, the references 7, 0, and 1 will be allocated in the
empty frames based on their arrival, and the number of frequencies will be incremented.

When page 2 comes which is not available in the main memory, a page fault occurs. Since all the
frequencies are equal in this case, the FIFO method will replace the oldest page in memory (i.e., page 7) by the
new page (i.e., page 2). The frequencies for each page will be then decreased by 1 for page 7, and increased by
1 for page 2. Next, when page 0 comes, it will be found in the main memory in the second frame, so, a page
hit occurs and no replacement occurs. Thus, the frequency for page 0 is increased by 1.

When page 3 comes, it is not existing in the main memory, so a page fault occurs, then page 3 replaces
page 1. Because two pages shared the same frequencies, pages 1 and 2, the FIFO method is utilized and change
the frequencies for each page. The same steps are repeated until all pages complete their traversing. Moreover,
in the end, each page’s frequencies will be as follows in Figure 2, which shows the previous steps.

Figure 2. LFU representation for three frames, M is fault (fault), and H is hit

2.3. Least recently used
LRU replacement algorithm associates with each page the time of that page’s last use. That means

this algorithm maintains record of reference page usage across a short period, unlike the FIFO replacement
algorithm. The main idea of LRU is assuming that the pages that have been most heavily used in the past are
most likely to be used heavily in the future, too [6]. So, this page is replaced first. When a page must be
allocated or replaced in the main memory, and all the frames are complete, the LRU will choose the page that
has not been used for the most extended period. Figure 3 illustrates an example of LRU, considering the page
reference string of size 20: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 with frame size 3. Here, the total
page faults (M) is 12, and the total page hits (H) is 8.

Figure 3. LRU representation for three frames, M is fault (fault) and H is hit

At the outset, with the first three slots unoccupied, three-page faults manifest directly, filling the
initial frames in the table as references 7, 0, and 1 are assigned to the empty frames based on their arrival.
Subsequently, when page 2 is introduced, its absence in the main memory triggers a page fault. In the context
of LRU, the selection criteria involve identifying the least recently used page that is farthest away from the
page intended for allocation in the main memory, thus, page 7 is replaced by page 2. As page 0 enters, finding
a place in the main memory and occupying the second frame results in a page hit, signifying no replacement.

An enhanced least recently used page replacement algorithm (Afaf Tareef)



420 ❒ ISSN: 2502-4752

The arrival of page 3, which is not exist in memory, initiates another page fault, replacing page 1, identified as
the least recently used page among the existing references. Likewise, when page 4 arrives and is not in main
memory, a page fault ensues, leading to the replacement of page 2 in this instance. Then, repeat the same steps
until all pages complete their traversing.

2.4. Most recently used
It is a replacement algorithm that assigns a timestamp to each page, indicating the time of its most

recent use. This algorithm employs a mechanism to monitor the most recently used page within a brief time-
frame, as opposed to the FIFO replacement algorithm. The fundamental principle of the most recently used
(MRU) algorithm is to give priority to the pages that have been accessed most recently, under the assumption
that they will continue to be heavily used in the immediate future. As a result, the page that was MRU is
replaced first [7].

The MRU replacement method exhibits comparable behavior to the optimal replacement strategy.
When the main memory is full and a page needs to be allocated or replaced, MRU selects the page that has
been accessed most recently. Figure 4 explains this algorithm, given a page reference string consisting of 20
elements: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3, and a frame size of 4. Based on Figure 4, the total number
of page faults (M) is 12, while the total number of page hits (H) is 2. At first, when the first four slots are
empty, four-page errors happen when references 7, 0, 1, and 2 are allocated to the vacant frames according to
their arrival. And also, no need to replacement for 0 and hit it, when page 3 is inserted, its absence in the main
memory causes a page fault, resulting in the replacement of the most recently used page (i.e., page 0).

When page 0 is placed in the second frame, it causes a page hit, indicating no replacement is needed.
Upon the arrival of page 3, which is not stored in memory, a page fault occurs. This results in the replacement
of page 1, which is determined to be the most recently accessed page among the existing references. Likewise,
if page 4 is not currently stored in memory, a page fault occurs, resulting in the substitution of page 2. Continue
executing these instructions repeatedly until all pages have finished traversing.

Figure 4. MRU representation for four frames, M is fault (fault), and H is hit

2.5. Optimal page replacement algorithm
The optimal page replacement (OPR) algorithm is the most efficient page replacement algorithm,

resulting in the fewest page faults [8], [9]. The clairvoyant replacement algorithm, often known as Belady’s
optimal page replacement policy, is a method used for page replacement. This algorithm replaces pages in the
memory that will be referenced farthest in the future, i.e., the pages that will not be used for the longest period
of time. Figure 5 provides a visual representation of the OPR algorithm, offering additional information. Let’s
examine a page reference string of length 20: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1, and the frame
size is set to 3. According to Figure 5, the total page faults (M) is 9, and the total page hits (H) is 11.

Initially, with the first three slots unoccupied, three-page faults occur directly, filling the initial three
frames in the table as references 7, 0, and 1 are assigned to the empty frames based on their arrival order.
Subsequently, as page 2 enters and is absent from the memory, a page fault ensues, replacing page 7. The OPR
algorithm, employed in this context, seeks the least likely used page for the longest time in the future; thus,
page 7, identified as least valuable, is replaced by page 2. Upon the arrival of page 0, no replacement required.
However, when page 3 arrives and is not exist in main memory, another page fault occurs, leading to replacing
page 1, which is recognized as the least useful for future references. This cycle repeats the same steps until all
pages conclude their traversal.

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 417–427



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 421

Figure 5. OPR representation for three frames, M is fault (fault), and H is hit

2.6. Other page replacement algorithms
Recently, some researches propose new page replacement method [12]–[18]. For instance, Arya et al.

[12] propose modified page replacement algorithm based on block reading of pages. The model retrieves a
set of pages equal to the number of frames allotted for a process. The lazy evaluation method (LEM) was
introduced in [13] as a novel cache management replacement algorithm capable of effectively managing long-
term re-reference patterns. LEM defers the assessment of the reference count of a page until it is removed
from the cache, at which point it determines whether to retain it or not based on a predetermined threshold.
The researchers assess the performance of LEM through simulation using traces from the SPEC CPU2006
benchmark. The results demonstrate that LEM surpasses previous methods like LRU and adaptive replacement
cache (ARC).

Another page replacement algorithm called fuzzy clustering based page replacement algorithm (FCPRA)
is proposed in [14], [19], where fuzzy C-means (FCM) algorithm is utilized to select a page of the lowest
priority cluster and the largest login order based on three features: novelty, frequency, and reference rate.
Muthusundari et al. [15], novel page replacement mechanism known as buffer-based page replacement (BBPR)
is discussed. This mechanism effectively minimizes the occurrence of page faults in memory management. The
BBPR algorithm utilizes a buffer to store two additional inputs from the reference string prior to changing the
pages in the frames. This enables BBPR to enhance the success rate and prevent superfluous page substitutions.
The paper assesses the performance of BBPR through simulation using various reference strings and compares
it to other algorithms such as FIFO, LRU, and optimal page replacement (OPT). The findings indicate that
BBPR effectively decreases the occurrence of page faults by 5%.

Banerjee et al. [17] introduces a novel hybrid page replacement algorithm (HPRA) for real-time
systems, integrating FIFO, LRU, and optimal algorithms with an anti-variant for monitoring page duplication.
Performance evaluation, comparing HPRA to an industry-standard page replacement algorithm, reveals its
effectiveness in minimizing page faults in real-time systems. Lee et al. [18] introduced an adaptive page
replacement (APR), which effectively manages looping access patterns in scientific applications. The APR
algorithm identifies loops in real time by leveraging the data stored in the virtual memory subsystem of the
operating system and adjusts the page replacement policy accordingly. The study assesses the effectiveness
of APR through trace-driven simulation using traces derived from the SPLASH-2x benchmark. The results
demonstrate that APR surpasses previous methods, such as CLOCK, in terms of performance.

Several studies conduct a performance analysis of existing page replacement methods, including
FIFO, LRU, MRU, and OPR [20], [21]. The performance is evaluated based on various sequences of page
references and quantifying the occurrence of page faults. It is concluded that OPR performs the best. How-
ever, this approach is costly, limited to a few specific operating systems, and difficult to implement because the
operating system cannot predict future reference chains [9].

3. RESEARCH METHOD
The algorithm being presented is derived from the traditional LRU algorithm, and it is named enhanced

LRU (E-LRU). Nevertheless, this approach differs from the conventional LRU algorithm due to the inclusion
of a useful characteristic, which is the TNR. Furthermore, this algorithm incorporates the notion of modified
bit, i.e., M, which is initially assigned to zero for all reference string, and modified to one in case of page hit
occurrence. The proposed algorithms is described in details in the following steps:

An enhanced least recently used page replacement algorithm (Afaf Tareef)



422 ❒ ISSN: 2502-4752

− Step 1: the proposed technique begins by determining the TNR for each page reference and assigns zeros
to all M bits. Subsequently, in case of a page fault, our technique examines the TNR values for every page,
and the page with the minimal TNR value will be chosen for eviction from the main memory, and it might
be referred to as a victim page.

− Step 2: each page table entry now contains a modified reference. The proposed approach will initialize the
modified reference/bit of each page to zero, denoted as M=0. Whenever the contents of a page in the main
memory are modified, the value of M will be set to one, indicating that M=1 for that particular page.

− Step 3: in the event that two or more reference pages in the same slot have the same minimum TNR value
and M=0 for each page, handle it in a manner consistent with the LRU method.

− Step 4: in the event that there are multiple reference pages in the same slot with the same minimum TNR
value and any of these pages are modified, always replace the modified page with a page that has M = 1.

− Step 5: if the minimum TNR value is shared among specific fractions of pages and many or all of them
have been amended, replace the most recently modified page with a replacement. Additionally, reset the
changed bit for every page and assign it a value of zero (i.e., M=0).

It is important to observe that whenever a modified page is replaced, the modified bits for each table
entry will be reset to 0, denoted as M=0. Continuously perform these procedures until all pages have finished
being traversed. To further explain the proposed E-LRU algorithm, Figure 6 shows an example of the proposed
E-LRU algorithm using a page reference string of length 20: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1.
First, the total number of references, denoted as TNR, is computed for each page reference. The modified bit
for each page is also set to zero, represented as M = 0.

Figure 6. E-LRU representation for three frames, M is fault, and H is hit

Initially, the first three slots in the table are empty, leading to the occurrence of three-page faults.
These page faults are responsible for filling the first three slots (frames). Consequently, the references 7, 0, and
1 are assigned to the empty frames based on their arrival. The changed bit for each page will be reset to zero,
denoted as M=0. When page 2 is requested and not found in the memory, a page fault occurs. As a result, page
2 replaces page 7, which has the lowest TNR value and is only referenced twice. The modified bit for page 2 is
also set to 1, as mentioned earlier in the previous steps. Page 0 is loaded into the main memory and allocated in
the second frame. In this scenario, a page hit takes happen without any replacement. When page 3 is requested
but not exist in main memory, a page fault occurs, resulting in the replacement of page 2 with page 3. Since
the minimum TNR value is expected on pages 1 and 2, they possess identical TNR values. In this scenario, it
is necessary to examine the parameter M, which represents the modified bit for page 2 and is equal to 1 (M=1).
Consequently, page 3 should be promptly replaced with page 2, as stated in step 4. Subsequently, assign a zero
value to the changed bit for every page (M=0). When page 4 is requested but not exist in the main memory,
a page fault occurs, and page 4 replaces page 3. Because page 3 has the lowest TNR value, it is necessary to
assign a value of M=1 to the modified bit of page 4. The same action will be taken when page 2 is encountered.
When the second occurrence of page 3 in the reference string is encountered, it is not existing in main memory,
resulting in a page fault. Consequently, page 3 replaces page 1. Since the minimum TNR value is expected on
pages 1 and 2, they possess identical TNR values. Furthermore, the modified bit for page 2 equals zero (M=0),
which applies to page 1. Therefore, it is necessary to execute the LRU algorithm and substitute the page with
the lowest usage, specifically page 1 as indicated in step 3. As shown in Figure 6, there have been ten-page
faults and an equal number of page hits.

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 417–427



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 423

4. RESULTS AND DISCUSSION
The proposed E-LRU algorithm was constructed using Python [22] on the well-known Google Colab

environment in order to evaluate the suggested algorithm empirically. The proposed algorithm was executed
with different sizes of randomly generated strings with a length (1000, 1500, 2000), each time tested on three
different sizes of frames (3, 5, 7, and 9). The current algorithms, such as LRU, MRU, FIFO, and optimal page
replacement algorithms, have handled the same set of strings with equal frames [23], [24]. Various aspects,
such as the choice of replacement algorithm, the size of the frame, and the degree of locality of reference
for cache queries, influence the occurrence of page faults. The hit ratio percentage (HITR) can be defined
as (1) [25].

HITR =
H

H +M
× 100 (1)

To clarify further, let’s consider a scenario where the total number of hits for a specific replacement
procedure is 8, and the total number of faults is 12. In this case, HITR can be calculated as 8/(8+12)×100 =
40%. The hit ratio was determined by calculating the average count of page faults and hits for each replacement
for one hundred runs. The results have been reported in Tables 1 to 4.

Table 1 displays a comparison of total hit for several algorithms while Table 2 displays the hit ratios
for different string lengths and frame sizes. In general term, the overall number of hits for all methods increases
when the frame size is increased from 3 to 9. This is expected since a larger frame size means more pages can
be stored in memory, which decreases the demand for page replacements and thus increases the number of hits.
As shown in the tables, the proposed method generally performs better than FIFO, LFU, LRU, and MRU, but
it’s not as efficient as OPR. For instance, with a string length of 1000, the total hits for FIFO, LFU, LRU, and
MRU was improved with increasing the frame size to 866, 900, 893, and 893, respectively, whereas the total
hits was improved by our proposed E-LRU to 904. Table 3 shows a comparison of the total fault while Table 4
shows the faults ratio across different string lengths and frame sizes. In almost every case, the proposed E-LRU
performs better than FIFO, LFU, and MRU, while being slightly behind OPR.

Table 1. Comparison of total hits for several algorithms
String length Frame size FIFO LFU LRU MRU OPR ELRU

1000 3 311 312 287 287 523 314
1000 5 460 489 496 493 718 500
1000 7 690 701 710 704 859 712
1000 9 866 900 893 893 958 904
1500 3 438 434 438 438 770 436
1500 5 743 755 762 762 1091 734
1500 7 1038 1061 1054 1054 1300 1083
1500 9 1337 1377 1337 1337 1436 1347
2000 3 600 603 625 625 1046 668
2000 5 1005 1001 982 982 1453 1006
2000 7 1417 1393 1387 1387 1742 1432
2000 9 1789 1782 1785 1785 1924 1793

Table 2. Comparison of hit ratio for several algorithms
String length Frame size FIFO LFU LRU MRU OPR ELRU

1000 3 31.10 31.20 28.70 28.70 52.30 31.40
1000 5 46.00 48.90 49.60 49.30 71.80 50.00
1000 7 69.00 70.10 71.00 70.40 85.90 71.20
1000 9 86.60 90.00 89.30 89.30 95.80 90.40
1500 3 29.20 28.93 29.20 29.20 51.33 29.07
1500 5 49.53 50.33 50.80 50.80 72.73 48.93
1500 7 69.20 70.73 70.27 70.27 86.67 72.20
1500 9 89.13 91.80 89.13 89.13 95.73 89.80
2000 3 30.00 30.15 31.25 31.25 52.30 33.40
2000 5 50.25 50.05 49.10 49.10 72.65 50.30
2000 7 70.85 69.65 69.35 69.35 87.10 71.60
2000 9 89.45 89.10 89.25 89.25 96.20 89.65

An enhanced least recently used page replacement algorithm (Afaf Tareef)



424 ❒ ISSN: 2502-4752

Table 3. Comparison of total faults for several algorithms
String length Frame size FIFO LFU LRU MRU OPR ELRU

1000 3 689 688 713 713 477 686
1000 5 540 511 504 507 282 500
1000 7 310 299 290 296 141 288
1000 9 134 100 107 107 42 96
1500 3 1062 1066 1062 1062 730 1064
1500 5 757 745 738 738 409 766
1500 7 462 439 446 446 200 417
1500 9 163 123 163 163 64 153
2000 3 1400 1397 1375 1375 954 1332
2000 5 995 999 1018 1018 547 994
2000 7 583 607 613 613 258 568
2000 9 211 218 215 215 76 207

Table 4. Comparison of faults ratio for several algorithms
String length Frame size FIFO LFU LRU MRU OPR ELRU

1000 3 68.90 68.80 71.30 71.30 47.70 68.60
1000 5 54.00 51.10 50.40 50.70 28.20 50.00
1000 7 31.00 29.90 29.00 29.60 14.10 28.80
1000 9 13.40 10.00 10.70 10.70 4.20 9.60
1500 3 70.80 71.07 70.80 70.80 48.67 70.93
1500 5 50.47 49.67 49.20 49.20 27.27 51.07
1500 7 30.80 29.27 29.73 29.73 13.33 27.80
1500 9 10.87 8.20 10.87 10.87 4.27 10.20
2000 3 70.00 69.85 68.75 68.75 47.70 66.60
2000 5 49.75 49.95 50.90 50.90 27.35 49.70
2000 7 29.15 30.35 30.65 30.65 12.90 28.40
2000 9 10.55 10.90 10.75 10.75 3.80 10.35

Overall, according to the obtained results in the tables, FIFO tends to perform worse than most other
algorithms, especially for larger frame sizes. Its faults decrease as frame size increases, but it still trails behind
more sophisticated algorithms like OPR and E-LRU. It is also proved that the suggested algorithm E-LRU
is highly efficient, surpassing both the FIFO and LRU algorithms in terms of performance. The algorithm’s
influence increases proportionally with the number of frames. In addition, the E-LRU algorithm yields the
lowest page fault rate compared to the FIFO and LRU algorithms, resulting in a higher hit ratio percentage and
total number of hits.

For further evaluation, Figure 7 shows the computed fault ratio for each replacement strategy in
Figure 7(a), and the computed hit ratio for each replacement strategy in Figure 7(b). As shown, the pro-
posed E-LRU page replacement algorithm is generally efficient as it minimizes page faults and raises the hit
percentage. This results in enhanced system efficiency and performance. Furthermore, the E-LRU algorithm is
economically efficient as it builds upon the classic LRU algorithm, which is widely used in page replacement
algorithms and has the lowest associated costs. Furthermore, identifying flaws in this algorithm is quite effort-
less. Previous examples demonstrate that the number of page faults experienced in an n-page memory system
utilizing an (E-LRU) algorithm is lower than in a traditional LRU strategy. This indicates that our proposed
approach outperforms the LRU algorithm.

Although OPR outperformed other practical algorithms, including E-LRU, however, its implementa-
tion in practice is hindered by the fact that the operating system lacks knowledge of future requests. In addition,
identifying faults in OPR requires effort, making error handling particularly challenging. Occasionally, the re-
cently accessed page gets substituted, consuming a significant amount of time. Although the proposed E-LRU
algorithm may not yield superior outcomes to the OPR algorithm, it is advantageous due to its practical im-
plementation ability. The designed E-LRU successes in producing results nearly identical to OPR, as well as
improving system performance by reducing the page fault rate. Furthermore, it is easy to implement without
extra cost, unlike OPR. In addition, the error detection in the proposed algorithm is relatively straightforward,
and its cost is comparably lower than that of the OPR algorithm. It also yields superior outcomes compared to
the currently available page replacement algorithms. Occasionally, mainly when augmenting the frame count,
it attains comparable outcomes to OPR, making it an excellent alternative to the OPR algorithm.

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 417–427



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 425

(a)

(b)

Figure 7. The computed (a) faults ratio and (b) hit ratio for each replacement strategy

5. CONCLUSION
Several page replacement strategies and algorithms have garnered significant attention from researchers

globally to enhance system performance and reduces the occurrence of page faults. In this paper, a new effi-
cient page replacement algorithm, i.e., enhanced LRU, is proposed based on two new features used to select
the victim pages, which are the total number of references and the modified bit. The proposed algorithm is
implemented and compared with other page replacement algorithms, including FIFO, LRU, and OPR to assess
their efficiency and performance. According to the experimental results, our proposed E-LRU demonstrated
its efficiency over other replacement algorithms. As a future work, the suggested algorithm can be improved
by taking into account the extra parameters and criteria that characterize the features of the pages in the cache,
such as the size and cost of each object in the cache.

REFERENCES
[1] J. Kim, W. Choe, and J. Ahn, “Exploring the design space of page management for (Multi-Tiered) memory systems,” in 2021

USENIX Annual Technical Conference (USENIX ATC 21), 2021, pp. 715–728.

An enhanced least recently used page replacement algorithm (Afaf Tareef)



426 ❒ ISSN: 2502-4752

[2] G. Lia and S. Roman, “Information system for teaching virtual memory management,” in Proceedings of the VII International
Scientific and Practical Conference, 2022, p. 531, doi: 10.46299/ISG.2022.1.17.

[3] W. W. Chu and H. Opderbeck, “The page fault frequency replacement algorithm’,” in AFIPS Conference Proceedings - 1972 Fall
Joint Computer Conference, AFIPS 1972, 1972, vol. 41, pp. 597–609, doi: 10.1145/1479992.1480077.

[4] D. Meint and S. Liebald, “From FIFO to predictive cache replacement,” Network, vol. 25, 2019.
[5] J. Oh and M. K. Sang-su Kim, “On the study of block replacement policy using LFR,” in Proceedings of the Korean Institute of

Electrical Engineers Conference, 1998, pp. 499–502.
[6] C.kavar and S. Parmar, “Performance analysis of LRU page replacement algorithm with reference to different data structure,”

International Journal of Engineering Research and Application, vol. 3, no. 1, pp. 2070–2076, 2013.
[7] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: simple and effective adaptive page replacement,” ACM Sigmetrics Performance

Evaluation Review, vol. 27, no. 1, pp. 122–133, 1999, doi: 10.1145/301464.301486.
[8] M. M. Kumar and B. R. Rajendra, “An input enhancement technique to maximize the performance of page replacement

algorithms,” International Journal of Research in Engineering and Technology, vol. 04, no. 06, pp. 302–307, 2015, doi:
10.15623/ijret.2015.0406051.

[9] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page replacement,” Journal of the ACM (JACM), vol. 18, no. 1,
pp. 80–93, 1971, doi: 10.1145/321623.321632.

[10] A. Saxena, “A study of page replacement algorithms,” International Journal of Engineering Research and General Science, vol. 2,
no. 4, pp. 385–388, 2014.

[11] A. S. Chavan, K. R. Nayak, K. D. Vora, M. D. Purohit, and P. M. Chawan, “A comparison of page replacement algorithms,”
International Journal of Engineering and Technology, vol. 3, no. 2, p. 171, 2011.

[12] G. P. Arya, D. Prasad, and S. S. Rana, “An improved page replacement algorithm using block retrieval of pages,” International
Journal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 32–35, 2018, doi: 10.14419/ijet.v7i4.5.20004.

[13] H. Nomura, “Experimental investigation of lazy evaluation method in replacement algorithm for long-term re-reference cache
management,” Bulletin of Networking, Computing, Systems, and Software, vol. 9, no. 1, pp. 83–90, 2020.

[14] D. Akbari-Bengar, A. Ebrahimnejad, H. Motameni, and M. Golsorkhtabaramiri, “Improving of cache memory performance based
on a fuzzy clustering based page replacement algorithm by using four features,” Journal of Intelligent and Fuzzy Systems, vol. 39,
no. 5, pp. 7899–7908, 2020, doi: 10.3233/JIFS-201360.

[15] S. Muthusundari, M. A. Berlin, J. G. Priya, and K. Balasaranya, “A buffer based page replacement algorithm to reduce page fault,”
Materials Today: Proceedings, vol. 33, pp. 4557–4560, 2020, doi: 10.1016/j.matpr.2020.08.182.

[16] S. Das, N. R. Das, S. K. Basu, H. Mondal, and A. Bose, “Page replacement technique on the basis of frequency of occurrence of
pages,” in Proceedings of International Conference on Frontiers in Computing and Systems: COMSYS, 2021, pp. 823–831, doi:
10.1007/978-981-15-7834-2 77.

[17] P. Banerjee, V. Raj, K. Thakur, B. Kumar, and M. K. Dehury, “A new proposed hybrid page replacement algorithm (HPRA) in
real time systems.,” in Proceedings - 5th International Conference on Smart Systems and Inventive Technology, ICSSIT, 2023,
pp. 1620–1625, doi: 10.1109/ICSSIT55814.2023.10060934.

[18] Y. Lee, H. Y. Yeom, and H. Han, “APR: adaptive page replacement scheme for scientific applications,” Cluster Computing, vol. 26,
no. 5, pp. 2551–2562, 2023, doi: 10.1007/s10586-021-03296-2.

[19] D. A. Bengar, A. Ebrahimnejad, H. Motameni, and M. Golsorkhtabaramiri, “A page replacement algorithm based on
a fuzzy approach to improve cache memory performance,” Soft Computing, vol. 24, no. 2, pp. 955–963, 2020, doi:
10.1007/s00500-019-04624-w.

[20] G. Rexha, E. Elmazi, and I. Tafa, “A comparison of three page replacement algorithms: FIFO, LRU and optimal,” Academic Journal
of Interdisciplinary Studies, vol. 4, no. 2, 2015, doi: 10.5901/ajis.2015.v4n2s2p56.

[21] S. H. Abbas, W. A. K. Naser, and L. M. Kadhim, “Study and comparison of replacement algorithms,” International Journal of
Engineering Research and Advanced Technology, vol. 08, no. 08, pp. 01–06, 2022, doi: 10.31695/ijerat.2022.8.8.1.

[22] P. G. Naik, G. R. Naik, and M. B. Patil, Conceptualizing Python in Google Colab. Shashwat Publication, 2022.
[23] Aman, “Optimal page replacement algorithm.” Scaler, 2023, Accessed: Mar. 1, 2024. [Online]. Available:

https://www.scaler.com/topics/optimal-page-replacement-algorithm.
[24] “Page replacement algorithms in operating systems,” Geeksforgeeks.org, 2024. Accessed: Mar. 1, 2024. [Online]. Available:

https://www.geeksforgeeks.org/page-replacement-algorithms-in-operating-systems/.
[25] K. R. Baskaran and C. Kalaiarasan, “Improving hit ratio and byte hit ratio using combined pre-fetching and web caching,” Interna-

tional Review on Computers and Software, vol. 9, no. 8, pp. 1426–1433, 2014, doi: 10.15866/irecos.v9i8.2594.

BIOGRAPHIES OF AUTHORS
Afaf Tareef received a B.Sc. degree in computer science from Mutah University, Jor-
dan in 2008, an M.Phil. degree from the University of Jordan in 2010, and a Ph.D. degree from the
University of Sydney, Australia in 2017. She is currently an associate professor in the Faculty of
Information Technology at Mutah University, Jordan. She has many publications in several interna-
tional conferences and journals. Her research interests include image processing and medical image
analysis. She can be contacted at email: a.tareef@mutah.edu.jo.

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 417–427

https://orcid.org/0000-0001-7265-030X
https://scholar.google.com/citations?user=BEhg3s4AAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=56418660000


Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 427

Khawla Al-Tarawneh received a B.Sc. degree in computer science from Mutah Univer-
sity, Jordan in 2015, a master degree from the Mutah University in 2018. and student of Ph.D. in
University of Jordan from 2022 to present, lab supervisor and teacher assistant in Mutah University,
Jordan from 2015 to present. She can be contacted at email: Kol9220471@ju.edu.jo.

Omar Alhuniti is a Ph.D. candidate in computer science at the University of Jordan,
with a strong academic and professional background. He holds an M.Sc. in Computer Science
from Princess Sumaya University for Technology (PSUT), and a B.Sc. from AL-Balqa’a Applied
University. He currently serves as IT Manager at the Ministry of Tourism and Antiquities in Jordan,
where he leverages his skills in programming, systems development, and IT management. He has
previously held roles as a teacher assistant at PSUT and as a programmer/systems developer at both
the Ministry of Tourism and Antiquities and Next Generation Technologies Co. Ltd. Now pursuing
his Ph.D., he is focused on advancing his knowledge in artificial intelligence. He can be contacted at
email: AMR9220474@ju.edu.jo.

An enhanced least recently used page replacement algorithm (Afaf Tareef)

https://orcid.org/0009-0001-0559-8393
https://orcid.org/0000-0002-6894-998X
https://scholar.google.com/citations?user=GJOxW4cAAAAJ&hl=en&oi=ao

	Introduction
	Background
	First in first out
	Least frequently used
	Least recently used
	Most recently used
	Optimal page replacement algorithm
	Other page replacement algorithms

	Research Method
	Results and Discussion
	Conclusion

