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 Lung cancer is one of the diseases with the highest incidence and mortality 

in the world. Machine learning (ML) models can play an important role in 

the early detection of this disease. This study aims to identify the ML 
algorithm that has the best performance in predicting lung cancer. The 

algorithms that were contrasted were logistic regression (LR), decision tree 

(DT), k-nearest neighbors (KNN), gaussian Naive Bayes (GNB), 

multinomial Naive Bayes (MNB), support vector classifier (SVC), random 
forest (RF), extreme gradient boosting (XGBoost), multilayer perceptron 

(MLP) and gradient boosting (GB). The dataset used was provided by 

Kaggle, with a total of 309 records and 16 attributes. The study was 

developed in several phases, such as the description of the ML models and 
the analysis of the dataset. In addition, the contrast of the models was 

performed under the metrics of specificity, sensitivity, F1 count, accuracy, 

and precision. The results showed that the SVC, RF, MLP, and GB models 

obtained the best performance metrics, achieving 98% accuracy, 98% 
precision, and 98% sensitivity. 
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1. INTRODUCTION 

Lung cancer is one of the diseases with the highest mortality and incidence in the world [1].  

It is estimated that about 1.8 million new cases and 1.6 million deaths occur each year [2]. Lung cancer is 

classified into molecularly and histologically heterogeneous categories [3], [4]. The most common types 

include large or small cell carcinoma, adenocarcinoma, squamous cell, and carcinoid [5]. Some of these 

cancers originate from poorly differentiated neuroendocrine cells, resulting in more rapid metastasis, 

consequently, poor prognosis [6]. Among the main risk factors for lung cancer is smoking, which accounts 

for 80% to 90% of diagnosed cases [1], [7]. People who die from this disease are usually diagnosed late, 

which makes it difficult to administer effective treatment and reduces the probability of survival [8]. 

Globally, approximately slightly more than 20% of patients diagnosed with lung cancer live longer 

than 5 years [9]. In countries such as the United States, lung cancer ranks second in terms of incidence, 

accounting for approximately 25% of all cancer deaths in the country [10]. On the other hand, in countries 

with a medium-high development index, an increase in the mortality rate has been observed [11]. Lung 

cancer is the leading cause of cancer death in the U.S., accounting for approximately 20.8% of all cancer 

deaths in 2023 [12], [13]. In 2020, Japan was the second country in the Organisation for Economic  

Co-operation and Development (OECD) with the most lung cancer deaths [14]. According to the most recent 

WHO data from 2020, lung cancer deaths in several countries show alarming figures. Hungary tops the list 
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with 8,377 deaths (7.29% of all deaths), followed by Serbia, Turkey, North Korea and China, highlighting the 

urgency of preventive and treatment measures [15], [16]. In countries such as Greenland, Italy, and Slovenia, 

a decrease in lung cancer incidence has been observed. On the other hand, in Slovakia, Poland, and the 

Netherlands, an increase in the incidence of this disease has been recorded [17]. 

In recent decades, the field of machine learning (ML) has experienced great advances in the 

development of sophisticated algorithms and data preprocessing [18]. Emphasizing the importance of 

researchers taking advantage of ML’s predictive capabilities to address the diagnosis and treatment of 

diseases, using mathematical models to identify patterns in the data [19]-[21]. There are 4 types of ML 

techniques, which are supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning [22]. In general, ML models provide systems with the ability to learn and improve 

through training, without the need to be explicitly programmed [23], [24]. Similarly, ML algorithms seek to 

automate the development of analytical models to perform tasks related to the detection or prediction of 

objects, and diseases, among others [25], [26]. However, to achieve greater accuracy in predictions, a large 

amount of data related to the subject of study is required [27]. 

This study aims to identify the ML algorithm with the best performance in predicting lung cancer. 

The algorithms that were contrasted were logistic regression (LR), decision tree (DT), k-nearest neighbors 

(KNN), gaussian Naive Bayes (GNB), multinomial Naive Bayes (MNB), support vector classifier (SVC), 

random forest (RF), extreme gradient boosting (XGBoost), multilayer perceptron (MLP) and gradient 

boosting (GB). In addition, the article is structured in 6 sections. In section 1 introduction, the problem of the 

case study is detailed. Section 2 bibliographic review describes the studies related to this research. Section 3 

methodology is devoted to the research methodology, which is divided into two parts: 3.1. description of the 

ML models and 3.2. case study. Section 4 results, presents the model training results. The last sections are 5 

discussions and 6 conclusions, where the obtained results are discussed and concluded. 

 

 

2. BIBLIOGRAPHIC REVIEW 

In this section, related work related to the case study is described. Radhika et al. [28], evaluate the 

performance of NB, support vector machine (SVM), DT, and LR algorithms for early diagnosis of lung 

cancer. Two datasets were used for training the algorithms. The results of the study showed that, with the 

first dataset, LR obtained the highest accuracy with a value of 0.969. With the second data set, SVM 

achieved the highest accuracy with a value of 0.992, followed by DT with 0.9 and NB with 0.8787. On the 

other hand, Dritsas and Trigka [29] compared the performance of NB, Bayesian network (BayesNet), 

stochastic gradient descent (SGD), SVM, LR, artificial neural network (ANN), KNN, J48, logistic model tree 

(LMT), RF, random tree (RT), reduced error pruning tree (RepTree), rotation forest (RotF) and adaptive 

boosting (AdaBoostM1) algorithms. In addition, their methodology employed the SMOTE technique and the 

cross-validation method for data processing. The study positioned RotF as the most efficient algorithm, 

achieving an accuracy and precision of 0.971, and an area under of curve (AUC) value of 0.993. On the other 

hand, LR achieved an accuracy and precision of 0.963, while KNN and RF obtained an accuracy and 

precision of 0.952. Similarly, Singh and Gupta [30] an efficient approach for lung cancer detection and 

classification based on images related to this disease is presented, and KNN, SVM, DT, MNB, SGD, RF, and 

MLP algorithms were analyzed. The results of the study positioned MLP with the best metrics, as it scored 

0.8855 in accuracy and 0.8695 in precision. In contrast, the RF, SGD, MNB, DT, and SVM algorithms 

achieved 0.8481, 0.5771, 0.5140, and 0.5724, respectively. Patra [31], analyzed the radial basis function 

network (RBFN), SVC, LR, RF, J48, NB, and KNN algorithms for lung cancer prediction. The study 

concluded that RBFN obtained the highest accuracy with 0.8125, followed by NB and J48 with 0.7812, and 

KNN with 0.75. In contrast, Faisal et al. [32] evaluated MLP, NB, SVM, DT, gradient boosted tree (GBT), 

ANN, and RF algorithms for early-stage lung cancer prediction. The results position GBT as the best 

predictor with 0.9 in accuracy, followed by NB with 0.85, SVM and RF with 0.7917, and MLP with 0.7833. 

Similarly, Xie et al. [33] different ML algorithms are compared for the detection of biomarkers that aid in the 

early detection of lung cancer, SVM, RF, ANN, NB, and AdaBoost algorithms were analyzed. The study 

positioned NB with the best metrics with 0.1 in accuracy. In turn, Mishra and Gangwar [34] evaluate KNN, 

NB, DT, RF, and SVM algorithms for early detection of lung cancer. The study concluded that DT achieved 

the best performance with 0.1 in precision and accuracy, followed by RF with 0.98 and 0.984, KNN with 

0.96 and 0.949, and NB and SVM with 0.91 in accuracy. Similarly, Gupta et al. [35] compare ML algorithms 

for lung cancer prediction, KNN, RF, and SVM algorithms were contrasted. The results of the study showed 

that RF performed the best with 0.842 in accuracy and 0.85 in precision, followed by SVM with 0.821 in 

accuracy and 0.828 in precision. Meanwhile, Ingle et al. [36] compared different ML algorithms for the 

detection of different types of lung cancer. The results position AdaBoost as the best algorithm, since it 

achieved 0.9074 in accuracy, 0.8180 in sensitivity, and 0.9399 in specificity. Celik et al. [37] perform a 

comparative study of different ML algorithms for lung cancer prediction. The study concluded that RF 
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obtained the best performance with 0.9608 in accuracy. On the other hand, Mokoatle et al. [38] contrast 

XGBoost, light gradient boosting (LightGBM), RF, and convolutional neural network (CNN) algorithms for 

lung, breast, and prostate cancer detection. In their methodology, they employed the SMOTE technique, 

sentence-BERT (SBERT) and simple and efficient contrasting of sentence embeddings (SimCSE) transforms 

for data processing. The results of the study showed that XGBoost is the most efficient algorithm with an 

accuracy of 0.73. Göltepe [39] compare the performance of RF, KNN, NB, LR, DT, and SVM algorithms for 

lung cancer prediction. The study concluded that KNN, NB, and DT algorithms obtained the best 

performance with 0.71 accuracy. Similarly, Bharathy et al. [40] train SVM, KNN, DT, LR, NB, and RF 

algorithms to determine their performance in lung cancer detection. The results revealed that RF obtained an 

accuracy of 0.885, being the best algorithm in the lung cancer detection task. Meanwhile, Khan et al. [41] 

they evaluated multiple ML algorithms for lung cancer prediction. In their methodology, they employed the 

Kruskal-Walli test to select gene expression data. The results position RF as the most accurate, as it reached 

0.84375. Finally, Banerjee and Das [42] they analyze SVM, RF, and ANN algorithms for lung cancer 

prediction. The results of the study show that ANN achieved the highest accuracy with 0.96, followed by 

SVM with 0.80 and RF with 0.70. 

 

 

3. METHOD 

In this section, the case study in which different ML models were developed and trained is 

presented. In the first part, the models (LR, DT, KNN, GNB, MNB, SVC, RF, XGBoost, MLP, and GB) are 

described. In the second part, the case study is described. 

 

3.1.  Description of the MLs models 

3.1.1. Logistic regression 

The LR model is one of the most widely used algorithms in medicine because of its usefulness in 

multivariable modeling [43], [44]. One of the most obvious advantages is its ability to convert coefficients 

into proportional odds [45]. In addition, LR provides us with a technique that guarantees that the training 

result is expressed in binary form, with values of 0 and 1 [46]. The mathematical equation of the LR model is 

expressed in (1). 
 

𝑃(𝑌) =
1

1+𝑒−(𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑛𝑋𝑛),                   (1) 

 

3.1.2. Decision tree 
The DT model is a simple tool that can separate data into categories with the use of classification 

rules [47]. DT is based on the divide-and-conquer strategy and is composed of leaf nodes that are connected, 

forming a hierarchical structure [48]. Since it is a classification model, it can be applied in various fields, 

including data mining and classification [49], [50]. DT can be represented in (2). Where E denotes the 

entropy, s is the sample, Py is the probability of occurrence of the SI event and Pn is the probability of 

occurrence of the NO event. 
 

𝐸(𝑠) = ∑ (
𝑛
𝑘

) −𝑛
𝑘=0 𝑃𝑦 ∗ log 2𝑃𝑛, (2) 

 

3.1.3. K-nearest neighbor 
The KNN model is widely recognized for its effectiveness in data separation and can be useful when 

study data present ambiguities [51]. Furthermore, KNN groups data into coherent subsets and labels new data 

according to their similarity to the training results [52]. The model is a nonparametric algorithm, i.e., there is 

no fixed number of parameters independent of the data size [53]. The Euclidean equation in this model is 

show in (3). 
 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑟𝑖 − 𝑥𝑟𝑗)2𝑝
𝑟=1 , (3) 

 

3.1.4. Gaussian Naive Bayes 

The GNB model is a probabilistic classification algorithm that has multiple applications, such as 

vehicle control and medical diagnosis [54]. GNB uses Bayes’ rules and is based on assuming independence 

between features provided by the class, the model allows us to perform classifications efficiently [55]. In (4) 

describes the density function used in the model, where P(X|Y) is evaluated, “X” represents a class, and “Y” 

represents a particular object [56]. 
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𝑃(𝑋|𝑌 = 𝑐) =
1

√2𝑐𝜎𝑐
2

𝑒
−(𝑥−𝜇𝑐)2

2𝜎𝑐
2 , (4) 

 

3.1.5. Multinomial Naive Bayes 

The MNB model is an adaptation of the Naive Bayes algorithm, which is mainly focused on text 

processing [57]. MNB counts the frequency with which words appear, completely ignoring binary occurrence 

[58]. Therefore, the model is suitable for categorizing documents [59]. The mathematical equation of the LR 

model is expressed in (5). Where |V| corresponds to the vocabulary size and (Ci) indicates the total number 

of words. 
 

𝑃(𝑑𝑗|𝐶𝑖) = ∏ 𝑃(𝑊𝑡|𝐶𝑖)𝑥𝑡|𝑉|
𝑡=1 , (5) 

 

3.1.6. Support vector classifier 

The SVC model is based on sound principles derived from statistical learning theory, these 

fundamentals are used to develop models that can optimally apply classification or regression [60]. SVC is a 

generic classifier that can be applied in multiple fields since it can process numerical data and text [61].  

The core of the model focuses on optimization, as it minimizes the common problems of ML algorithms.  

The objective function can be defined in (6) and (7). Where W is the vector of weights, b is the bias term, x is 

the feature vector, 𝑦𝑖 is the sample class label, and n is the number of samples. 
 

min 1/2𝑤2,                (6) 
 

which is subject to: 
 

𝑦𝑖(𝑤𝑥 + 𝑏) − 1 ≥ 0, 𝑖 = 1 … . 𝑛, (7) 
 

3.1.7. Random forest 
The RF model is recognized for obtaining excellent results in ML [62], [63]. RF is mainly used for 

classification and regression but can be applied to other tasks [64]. Likewise, it is used in multiple scientific 

fields, since it can reduce multi-source and multi-dimensional data [65]. 
 

3.1.8. Extreme gradient boosting 
The XGB model is an ML algorithm that employs multiple weak learners to achieve a greater effect, 

it is used in multiple sectors, such as medicine [66]. The fundamental basis of XGB is the injection of 

numerous DT in each interaction to improve its performance, since these trees focus on the most difficult 

points to predict [67]. Also, to avoid over-fitting the data, the model uses a combination of the GB algorithm 

and regularization techniques [68], [69]. The (8) used to calculate the predictions of an XGB tree is detailed 

below. Where y is the final prediction of the model and f(x) is the prediction of the i-th DT. 
 

 𝑦�̂� = ∑ 𝑓𝑡(𝑥𝑖)
𝑚
𝑡=1 , (8) 

 

3.1.9. Multi-layer perceptron classifier 

MLP model is a powerful tool for supervised training using multiple data output examples known to 

the algorithm [70]. MLP is a kind of ANN that generally consists of three layers, which are input, hidden, 

and output [71]. Similarly, the model is feedforward type, since it uses a backpropagation technique to learn 

[72]. Each node of the model is governed by (9). Where ℎ1𝑗 is the output of node j, 𝑤𝑖𝑗 represents the input 

gate of node j in the hidden layer ℎ1, 𝑥𝑖 is the input corresponding to node j and 𝑏𝑗 is the bias associated to 

node j. 
 

 ℎ1𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝑛
𝑖=0 ), (9) 

 

3.1.10. Gradient boosting 

The GB model belongs to one of the most powerful classes of ML algorithms, due to its proven 

efficiency in various applications and areas of study [73]. Moreover, GB is one of the algorithms that mainly 

focuses on accuracy and speed for data processing [74]. The model is based on the statistical concept 

developed by Friedman, where the algorithm is optimized by using the gradient in the function space.  

The algorithm can be expressed as (10). Where �̂� is the final model accuracy, f(x) is the prediction function, γ 

is the learning coefficient and h(x) is the prediction of the i-th weakest model. 
 

  �̂� = 𝑓(𝑥) = ∑ 𝛾 ∗ ℎ(𝑥), (10) 
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3.2.  Case study 

3.2.1. Understanding the dataset 

The data used for this study were obtained from the Kaggle platform. The dataset has a total of 309 

patient records collected from the online lung cancer prediction system website, with patients aged 21-87 

years, balancing the records between males and females. The data contains 14 attributes, such as gender 

(M=male, F=emale), patient age, smoking (yes=2, no=1), yellow fingers (yes=2, no=1), anxiety (yes=2, 

no=1), pressure (yes=2, no=1), chronic disease (yes=2, no=1), fatigue (yes=2, no=1), allergy (yes=2, no=1), 

frostbite (yes=2, no=1), alcohol consumption (yes=2, no=1), cough (yes=2, no=1), shortness of breath 

(yes=2, no=1), difficulty swallowing (yes=2, no=1), chest pain (yes=2, no=1), lung pain (yes=2, no=1), lung 

cancer (yes=positive, no=negative). The development process of this investigation is detailed in Figure 1. 

 

 

 
 

Figure 1. Case study development process 

 

 

3.2.2. Preparation of the dataset 
In this phase, a thorough analysis of the data in each column was performed as a starting point for 

processing. First, the necessary libraries were imported to perform a general exploration of the data. During 

the analysis, the types of variables found in each column were examined, as shown in supplementary  

Table 1. In addition, it was verified that there were no null data, after which the existence of duplicate data 

was verified, and once identified, the presence of duplicate data was eliminated. It should be noted that a 

column called “sex” was identified, which stored a character representative of the patient’s sex. In this 

regard, it was changed to binary values, where “1” was male and “0” female. Similarly, the column  

“lung cancer” was changed from string to number, where “1” was positive and “0” negative. In addition, the 

rest of the variables where “yes” was “2” and “no” was “1” were transformed to binary, where “1” was yes 

and “0” was no. Finally, the type of variable storing the column “sex” and “lung cancer” was changed, since 

it was originally identified as an object and when transforming the data it was changed to integer. The results 

of the data processing are shown supplementary Table 2. 

 

 

Table 1. Information about the dataset 
# Column Non-null Dtype 

0 gender 309 non-null int64  

1 age  309 non-null int64  

2 smoking 309 non-null int64 

3 yellow_fingers 309 non-null int64 

4 anxiety 309 non-null int64 

5 peer_pressure 309 non-null int64 

6 chronic disease 309 non-null int64 

7 fatigue 309 non-null int64 

8 allergy 309 non-null int64 

9 wheezing 309 non-null int64 

10 alcohol consuming 309 non-null int64 

11 coughing 309 non-null int64 

12 shortness of breath 309 non-null int64 

13 swallowing difficulty 309 non-null int64 

14 chest pain 309 non-null int64 

15 lung_cancer 309 non-null int64 
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Table 2. Analysis of dataset variables 
 0 1 2 3 4 ... 279 280 281 282 283 

Gender 1 1 0 1 0 ... 0 0 1 1 1 

Age 69 74 59 63 63 ... 59 59 55 46 60 

Smoking 0 1 0 1 0 ... 0 1 1 0 0 

Yellow_fingers 1 0 0 1 1 ... 1 0 0 1 1 

Anxiety 1 0 0 1 0 ... 1 0 0 1 1 

Peer_pressure 0 0 1 0 0 ... 1 0 0 0 0 

Chronic disease 0 1 0 0 0 ... 0 1 0 0 0 

Fatigue 1 1 1 0 0 ... 0 1 1 0 1 

Allergy 0 1 0 0 0 ... 1 1 1 0 0 

Wheezing 1 0 1 0 1 ... 1 0 0 0 1 

Alcohol consuming 1 0 0 1 0 ... 0 0 0 0 1 

Coughing 1 0 1 0 1 ... 1 0 0 0 1 

Shortness of breath 1 1 1 0 1 ... 0 1 1 0 1 

Swallowing difficulty 1 1 0 1 0 ... 1 0 0 1 1 

Chest pain 1 1 1 1 0 ... 0 0 1 1 1 

dfa 1 1 0 0 0 ... 1 0 0 0 1 

 

 

3.2.3. Exploratory analysis of the data 

In the analysis of the “lung cancer” column, an imbalance was observed in the diagnosed cases, as 

there is a higher number of records with positive diagnoses, as shown in Figure 2. Therefore, this imbalance 

should be taken into account for the development of the models. Figure 3 shows the visualization of the 

variables according to their distribution by risk factors. According to Figures 3(a) and 3(b) people who 

consume alcohol and smoke have a higher probability of developing lung cancer (76 vs. 3). Similarly, people 

who smoke have a high probability of developing lung cancer (55 vs. 16)u, as do those who consume alcohol 

(69 vs. 4). On the other hand, people who do not consume alcohol and do not smoke can also develop lung 

cancer (38 cases). 

 

 

 
 

Figure 2. Analysis of lung cancer diagnoses 

 

 

 
(a) 

 
(b) 

 

Figure 3. Visualization of variables, (a) risk factors present in the positive diagnosis of cancer and  

(b) risk factors present in the negative diagnosis of cancer 
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Figure 4 presents the statistical graphs that analyze the symptoms of lung cancer. It is observed that 

cough and chest pain are more frequent in patients diagnosed with this disease and less common in those 

without it. Therefore, identifying these symptoms can be vital for the diagnosis of lung cancer, according to 

Figures 4(a) and 4(b). On the other hand, Figures 4(c) and 4(d) show that fatigue and shortness of breath are 

manifested in patients with and without lung cancer, but it can be evidenced that their presence is twice as 

high in patients diagnosed with cancer. Consequently, these symptoms can be considered as indicators for the 

diagnosis of lung cancer. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 4. Symptoms of lung cancer; (a) analysis of cough and diagnosis of lung cancer,  

(b) analysis of chest pain and diagnosis of lung cancer, (c) analysis of fatigue and the diagnosis of lung 

cancer, and (d) analysis of shortness of breath and diagnosis of lung cancer 

 

 

Figure 5 presents the statistical graphs that analyze the secondary symptoms of lung cancer.  

Figure 5(a) shows that anxiety appears to have a slight relationship with this condition. Similarly, chronic 

disease has a subtle correlation with lung cancer, according to Figure 5(b). Therefore, since chronic disease is 

a physiological comorbidity, it could be taken as a secondary symptom to predict lung cancer. 

 

3.2.4. Data processing and modeling 

Before the modeling and training of the algorithms, the RandomOverSampler technique of the 

Imblearn library was used to balance the data of the “lung cancer” column, which showed a significant 

imbalance in the number of positive and negative diagnoses. Subsequently, the dataset was split into two 

parts, one part for training and one part for testing. In addition, scaling was applied to both parts and then the 

models were trained. 
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(a) 

 
(b) 

 

Figure 5. Secondary symptoms, (a) analysis of anxiety and the diagnosis of lung cancer and  

(b) analysis of chronic disease and lung cancer diagnosis 

 

 

4. RESULTS 

For this study, LR, DT, KNN, GNB, MNB, SVC, RF, XGBoost, MLP, and GB algorithms were 

trained to find the best-performing model for lung cancer prediction. The dataset was provided by Kaggle, 

these data were processed and cleaned for algorithm training. The training results are detailed in Table 3. 

 

 

Table 3. Training results 
 Precision (%) Recall (%) F1-score (%) Support  Precision (%) Recall (%) F1-score (%) Support 

Logistic regression  Decision tree 

0 0.96 1 0.98 64 … 0.93 0.97 0.95 64 

1 1 0.95 0.97 56 … 0.96 0.91 0.94 56 

Accuracy - - 0.97 120 … - - 0.94 120 

Macro avg 0.98 0.97 0.97 120 … 0.94 0.94 0.94 120 

Weighted avg 0.98 0.97 0.97 120 … 0.94 0.94 0.94 120 

KNN Gaussian Naive Bayes 

0 0.93 1 0.96 64 … 0.95 0.89 0.92 64 

1 1 0.91 0.95 56 … 0.88 0.95 0.91 56 

Accuracy - - 0.96 120 … - - 0.92 120 

Macro avg 0.96 0.96 0.96 120 … 0.92 0.92 0.92 120 

Weighted avg 0.96 0.96 0.96 120  0.92 0.92 0.92 120 

Multinomial Naive Bayes SVM 

0 0.89 0.73 0.8 64 … 0.98 0.98 0.98 64 

1 0.75 0.89 0.81 56 … 0.98 0.98 0.98 56 

Accuracy - - 0.81 120 … - - 0.98 120 

Macro avg 0.82 0.81 0.81 120 … 0.98 0.98 0.98 120 

Weighted avg 0.82 0.81 0.81 120  0.98 0.98 0.98 120 

Random forest XGBoost 

0 0.98 0.98 0.98 64 … 0.98 0.97 0.98 64 

1 0.98 0.98 0.98 56 … 0.96 0.98 0.97 56 

Accuracy - - 0.98 120 … - - 0.97 120 

Macro avg 0.98 0.98 0.98 120 … 0.97 0.98 0.97 120 

Weighted avg 0.98 0.98 0.98 120  0.98 0.97 0.98 120 

MLP classifier Gradient boosting 

0 0.98 0.98 0.98 64 … 0.98 0.98 0.98 64 

1 0.98 0.98 0.98 56 … 0.98 0.98 0.98 56 

Accuracy - - 0.98 120 … - - 0.98 120 

Macro avg 0.98 0.98 0.98 120 … 0.98 0.98 0.98 120 

Weighted avg 0.98 0.98 0.98 120  0.98 0.98 0.98 120 

 

 

After training, the LR, DT, KNN, GNB, MNB, SVC, RF, XGBoost, MLP, and GB algorithms 

achieved 97%, 94%, 96%, 92%, 81%, 98%, 98%, 97%, 98%, and 98% accuracy, respectively. The complete 

information is shown in Table 3. In addition, Figure 6 shows the precision percentage of the algorithms 

visually, which helps to easily compare the performance of each model. 

According to the results in Table 3, the SVC, RF, MLP, and GB models obtained the best 

performance metrics, since they achieved 98% in accuracy, 98% in precision, and 98% in sensitivity.  
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In the second place, the LR and XGBoost models achieved 97% accuracy, 98% precision, and 97% 

sensitivity. In third place is the KNN model that achieved 96% accuracy, precision and sensitivity. In the last 

places are the DT, GNB, and MNB models, which achieved the lowest metrics, 94%, 92%, and 81% 

accuracy. 

 

 

 
 

Figure 6. Precision of algorithms for predicting lung cancer 

 

 

5. DISCUSSION 

Lung cancer remains one of the cancers with the highest incidence and mortality worldwide, 

claiming thousands of lives each year. Early detection is crucial to improving survival rates, as it allows for 

timely treatment interventions. This study investigated the effects of ML models on lung cancer prediction. 

While previous studies have explored the impact of various ML algorithms on disease prediction, the 

literature lacks comprehensive comparisons between a wide range of ML models (such as LR, DT, KNN, 

GNB, MNB, SVC, RF, XGBoost, MLP, and GB). This study aims to fill this gap by identifying the model 

with the best performance in predicting lung cancer. 

After training, it was found that the SVC, RF, MLP, and GB models exhibited the highest 

performance metrics, each achieving 98% accuracy, precision, and sensitivity in predicting lung cancer. 

These results are similar to those obtained in [34], where the RF model achieved a performance of 98%. 

Similarly, Xie et al. [33] RF, it achieved 96.68% accuracy. In contrast, in studies [35], [40], [41], [42] the RF 

model achieved performance metrics by 84.2%, 88.3%, 84.37%, and 70%, respectively, which are lower than 

those obtained in this study. Similarly, the MLP model in our study achieved 98% accuracy, outperforming 

studies [30], [32], which reported 88.55% and 78.33%, respectively. On the other hand, in this study, the LR 

and XGBoost models achieved 97% accuracy, 98% accuracy, and 97% sensitivity, results similar to those 

presented in [28], [29] as these studies achieved a performance of 96.9% and 96.3% in the LR and XGBoost 

models. In the opposite position, [38] it determined that the XGBoost model achieved an accuracy of  

73%, which is a lower result than those obtained in this study. Furthermore, in [29], [31], [34], [39] the  

KNN model scored 95.2%, 75%, 96%, and 71%, respectively. These results are mostly similar to those 

obtained in this study, as the KNN model achieved 96% in precision, accuracy, and sensitivity. This  

indicates that our dataset and preprocessing methods may have contributed significantly to the higher 

throughput. 

In the present study, a comprehensive dataset was used to evaluate the performance of various ML 

models in predicting lung cancer. However, the quality of the dataset, including its size, diversity, and feature 

representation, can significantly affect the effectiveness of models. While our study achieved high-

throughput metrics, more research is needed to validate these findings in different populations and clinical 

settings. In addition, the generalizability of the results may be limited by the specific characteristics and 

preprocessing techniques used in our study. 
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Future studies should consider diverse datasets and alternative feature sets to ensure broader 

applicability. In addition, it is essential to continue refining these models and exploring their integration into 

clinical practice to maximize their impact on patient care. The incorporation of real-time data and the 

development of hybrid models could provide significant improvements in the accuracy and clinical utility of 

ML models in lung cancer prediction. 

Our findings provide conclusive evidence of the potential of ML in medical diagnostics and the need 

for continuous improvement and validation of these models with diverse datasets. Effective implementation 

of ML models in clinical settings has the potential to revolutionize the early diagnosis of lung cancer, thereby 

improving patient outcomes and optimizing healthcare resources. 

 

 

6. CONCLUSION 

After presenting the training results of the LR, DT, KNN, GNB, MNB, SVC, RF, XGBoost, MLP, 

and GB models for the prediction of lung cancer, the following conclusions were reached. The models 

obtained outstanding results, mainly SVC, RF, MLP, and GB which achieved the best metrics in precision, 

accuracy, and sensitivity for lung cancer prediction and may be vital for early detection to help improve 

patient prognosis. Similarly, the LR, XGBoost, KNN, DT, and GNB models achieved exceptional metrics for 

cancer prediction. Except for MNB, which achieved less than 90% performance. Additionally, bad habits 

related to alcohol consumption and smoking are factors that have a higher presence in patients diagnosed 

with lung cancer. On the other hand, symptoms such as cough, chest pain, and chronic disease are indicators 

that, although present in patients without cancer, should also be considered for an early diagnosis of lung 

cancer. Finally, all of the algorithms trained and analyzed in this study proved to be useful tools for lung 

cancer prediction. Although the models achieved outstanding metrics, it is recommended for future research 

to explore models such as CNNs or recurrent neural networks (RNNs) to see if they offer improvements in 

prediction accuracy. In addition, it would be beneficial to evaluate additional, larger, more diverse, or 

collected datasets from different geographic regions, to determine the generalizability and performance of 

models in different contexts, allowing them to be tested for effectiveness. 
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