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 Plant diseases present substantial challenges to global agriculture, 

significantly affecting crop yields and jeopardizing food security. Accurate 

and timely detection of these diseases is paramount for mitigating their 

adverse effects. This paper proposes a novel approach for plant disease 

classification by integrating convolutional neural networks (CNNs) and 

graph convolutional networks (GCNs). The model aims to enhance 

classification accuracy by leveraging both visual features extracted by CNNs 

and relational information captured by GCNs. Using a Kaggle dataset 

containing images of diseased and healthy plant leaves from 31 classes, 

including apple, corn, grape, peach, pepper bell, potato, strawberry, and 

tomato. Standalone CNN models were trained on image data from each plant 

type, while standalone GCN models utilized graph-structured data 

representing plant relationships within each subset. The proposed integrated 

CNN-GCN model capitalizes on the complementary strengths of CNNs and 

GCNs to achieve improved classification performance. Through rigorous 

experimentation and comparative analysis, the effectiveness of the integrated 

CNN-GCN approach was evaluated alongside standalone CNN and GCN 

models across all plant types. Results demonstrated the superiority of the 

integrated model, highlighting its potential for enhancing plant disease 

classification accuracy. 
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1. INTRODUCTION  

Plant diseases represent a formidable challenge to global agriculture, exerting immense economic 

pressures and jeopardizing food security on a global scale. The timely and precise identification of these 

diseases plays an indispensable role in implementing proactive mitigation measures and upholding 

sustainable crop production practices. However, traditional disease diagnosis methods predominantly rely on 

manual visual inspections conducted by agricultural experts. While these methods have served as the 

cornerstone of disease management for decades, they are inherently prone to limitations such as being time-

consuming, labor-intensive, and susceptible to human error. In recent years, the landscape of disease 

detection and classification has undergone a paradigm shift with the advent of deep learning (DL) 

https://creativecommons.org/licenses/by-sa/4.0/
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technologies. DL techniques, particularly convolutional neural networks (CNNs), have emerged as powerful 

tools capable of revolutionizing various domains, including medical imaging and object recognition. CNNs 

excel in learning hierarchical representations of image features, enabling them to discern subtle patterns and 

nuances in visual data. In the context of plant disease detection, CNNs hold immense promise for automating 

the process of identifying diseased plant tissues from their healthy counterparts with unprecedented accuracy 

and efficiency. Moreover, the integration of graph convolutional networks (GCNs) into the realm of plant 

disease classification presents an exciting frontier in agricultural research. GCNs offer a unique framework 

for modeling relational data and capturing intricate dependencies among interconnected entities, making 

them particularly well-suited for analyzing complex agricultural ecosystems. The convergence of CNNs and 

GCNs heralds a new era of innovation in plant disease detection, offering a synergistic blend of visual feature 

extraction and relational modeling capabilities. 

Demilie [1] research addressed DL and machine learning (ML) methods, notably CNNs, for image 

identification and classification. CNNs were preferred for image classification because they automatically 

extracted key visual characteristics and captured spatial hierarchies. Problem type, data availability, and 

computing resources determined the decision between traditional ML and DL. When data and computing 

resources were abundant, DL, particularly CNNs, performed better in image identification and classification. 

Ullah et al. [2] suggested an innovative, efficient, and lightweight DL architecture for plant leaf disease 

prediction and categorization. DeepPlantNet has 28 learnt layers, including 25 ConV layers. A new plant 

disease classification framework was developed using Leaky rectified linear unit (LReLU), batch 

normalization (BN), fire modules, and a combination of 3×3 and 1×1 filters. 

Saad and Salman [3] proposed Siamese neural network (SNN) one-shot learning (OSL) methods for 

plant disease classification with minimal datasets. To expand the dataset, it used data augmentation and used 

region-based picture segmentation. Generalization enhanced using support vector machine (SVM)-based 

classifiers for primary diagnoses. OSL with Siamese networks had far higher classification accuracy and 

fewer mistakes than normal transfer learning, with a processing time of 5 ms for real-time applications. The 

authors identified 182 plant disease detection and classification studies using keywords from peer-reviewed 

publications between 2010 and 2022 in [4]. After title, abstract, conclusion, and full text exclusion,  

75 articles were reviewed. Data-driven methods improved plant disease diagnosis system performance and 

accuracy, making this study useful for researchers. Anandhi and Sathiamoorthy [5] used DL-based automated 

rice plant disease recognition and classification (DL-ARPDRC) to improve accuracy and diagnostics. Pre-

processing began with picture scaling and gaussian filter (GF) to increase image quality. Otsu's threshold-

based segmentation isolated lesions from the background, concentrating on the area of interest. To 

distinguish illnesses, visual geometry group (VGG)-19 architectural feature extraction and extreme gradient 

boosting (XGBoost) classification were used. Experimental findings indicated that DL-ARPDRC 

outperformed other contemporary methods. Degadwala et al. [6] accurately diagnosed hop plant diseases, 

indicating early detection and exact management. By CNN architectures, hops plant disease classification 

performance is compared. Their method might automate and enhance hops plant disease control, maintain 

hop crop sustainability and quality for brewing, and provide the groundwork for similar agricultural issues. 

A deep CNN model for plant disease identification that overcomes field issues was proposed [7].  

It performed well on the PlantVillage dataset, which included pictures of 14 healthy and sick crop leaves in 

31 varieties. The CNN model has 98% training and 94% test accuracy in experiments. The program 

identified leaf diseases early, indicating it may be used for agricultural health monitoring. Using optimization 

and DL, [8] built a you only live once (YOLO)-based leaf disease detection and classification system.  

Pre-processing, PCFAN feature map generation, and ShuffleNet/ERSO classification optimization comprised 

the framework. FCN-RFO identified disease-prone locations. On a custom plant leaf picture dataset, the 

model surpassed earlier methods with high accuracy. These studies showed that DL classifiers might identify 

leaf diseases. Rice, wheat, and maize databases were created in [9] to address the stated problems. The 

datasets examined two bacterial and two fungal illnesses for rice, four fungal diseases for maize, and four 

fungal diseases for wheat, which destroy the whole plant. With constant training hyperparameters, eight fine-

tuned DL models were used. Pre-trained deep CNN models were tested using EfficientNetB3-adaptive 

augmented DL (AADL) for exact illness diagnosis [10]. It is shown that the proposed model can provide 

accurate, real-time agricultural disease diagnosis. 

The 'Zero-shot transfer learning' approach was proposed in [11] to improve classifier performance in 

tomato and potato datasets when the source domain has different classes than the destination domain. CNN 

models, data augmentation, synthetic data creation, and strong discriminative losses improved classifier 

performance in zero-shot conditions. Rashid et al. [12] proposed CNN-based precision agricultural disease 

classification architecture MMF-Net. MMF-Net improved accuracy with RL-block and PL-block 1 and 2 

multi-contextual features. Fusion adaptively created the final judgment probability score, classifying maize 

leaf diseases with 99.23% accuracy. Overall, MMF-Net seemed promising for PA plant leaf disease 
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detection. Ahmad et al. [13] evaluated plant disease detection DL models across datasets and settings. Five 

maize foliar disease datasets were used to test DL-based image classification algorithms. The best pre-trained 

DNN architecture for transfer learning was DenseNet169. Generalization accuracy was highest in CD&S 

RGBA photographs without backgrounds. New field and lab data improved model performance, suggesting 

field-deployable disease management methods. 

A deep CNN model for plant disease categorization was developed in [14] to solve these issues. The 

model used PlantVillage photos of 14 healthy and sick crop leaves divided into 38 classifications. The CNN 

model has 98.01% training accuracy and 94% test accuracy in experiments. These data showed that the 

model was efficient for early leaf disease detection. A SVM and image processing method for grape leaf 

disease detection and classification was suggested [15]. Imaging, denoising, enhancement, segmentation, 

principal component analysis (PCA) feature extraction, and classification utilizing particle swarm 

optimizartion (PSO) SVM, back propagation neural network (BPNN), and random forest algorithms were 

performed. In grape leaf disease classification and detection, PSO SVM performed better. Sameera et al. [16] 

applied various DL models and achived reported good results for plant disease detection. Padma et al. [17] 

focused on Downey and Powdery Mildew, which produce significant grape fruit production losses, to 

effectively detect and classify illnesses in folio descriptions. For classifier-based identification, the research 

recommended deleting leaf traits like the major and small axes. Early illness detection and categorization 

benefit from image processing. Elfatimi et al. [18] introduced a method for classifying bean leaf diseases, 

optimizing network architecture, hyperparameters, and evaluating on a public dataset. MobileNetV2 

architecture demonstrated high accuracy on the training set and test set for unhealthy (angular leaf spot 

disease and bean rust disease) and healthy classes. 

Depth-wise, point-wise convolutions were added to the Inception module version in [19]. The 

Inception module and pre-trained MobileNet were the support extractors for high-quality picture features. For 

crop disease classification and detection, a fully connected Softmax layer and single shot detector (SSD) 

block were included. The model was trained using two-stage transfer learning. Wu et al. [20] introduced a 

fine-grained disease categorization method using an attention network. The "Classification model" 

incorporated attention mechanisms for enhanced identification. During training, a "Reconstruction-generation 

model" directed focus on differentiating areas, and adversarial loss reduced noise from the "Discrimination 

model". These were used exclusively during training, avoiding complexity in the inference phase. The 

method improved generalization ability, increasing identification accuracy with lower memory requirements. 

[21] extracted deep corn plant characteristics using two pre-trained CNNs, EfficientNetB0, and 

DenseNet121. Deep features from each CNN were concatenated to create a more complicated feature set to 

improve model learning. Data augmentation diversified the training dataset to help the model handle more 

complicated instances.  

Ahmad et al. [22] used memory-efficient CNNs to identify plant disease symptoms. The suggested 

training setup reduced training time and handled class imbalance using statistics. Stepwise transfer learning 

was suggested to address negative transfer learning concerns during knowledge transfer between domains. 

Chen et al. [23] improved YOLOv5 for real-time strawberry disease detection. To decrease parameters and 

FLOPs, it included GhostConv. An involution operator broadened the receptive field, while a CBAM 

increased feature extraction. Content-Aware ReAssembly of Features replaced upsampling. A modified 

lightweight CNN may enhance fine-grained crop disease categorization [24]. The upgraded SqueezeNext 

model with a multi-scale convolution kernel and coordinate attention mechanism outperformed the original 

model in recognition accuracy. The lower model size and somewhat greater accuracy of ResNet50 and 

MobileNetV2 compared to Xception. A reconstructed residual dense network for tomato leaf disease 

detection [25] combined deep residual and dense network benefits. The model, originally built for picture 

super-resolution, scored 95% on the Tomato test dataset.  

 

 

2. METHOD 

The proposed method for plant disease prediction was shown in Figure 1. The research methodology 

involved several sequential steps to ensure robustness and effectiveness in plant disease classification. 

Initially, a diverse dataset was compiled, consisting of images portraying both diseased and healthy states 

across various plant types. Rigorous efforts were made to ensure sufficient coverage of plant diseases and 

authenticity of the dataset to minimize biases. Following data collection, the dataset was meticulously 

prepared by dividing it into distinct subsets corresponding to different plant types such as Apple, Cherry, 

Corn, Grape, Peach, Pepper bell, Potato, Strawberry, and Tomato. The next phase involved partitioning each 

plant-specific dataset subset into training, and testing subsets using appropriate ratios. Special attention was 

given to maintaining proportional representation of diseased and healthy samples in each subset to avoid bias 

and ensure model generalization. Subsequently, standalone CNN models were developed, tailored 

specifically for plant disease classification. 
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Figure 1. Proposed methodology 
 

 

The CNN models were fine-tuned on the training set of each plant-specific dataset subset, with 

adjustments made to hyperparameters and regularization techniques. Model validation was conducted on 

corresponding validation subsets, with performance metrics monitored and architecture refined based on 

results. In parallel, standalone GCN models were constructed to exploit relational information encoded in 

graph structures of the dataset subsets. Graph representations were constructed where nodes represented 

plants and edges represented relationships such as co-occurrence or spatial proximity. 

As a last phase of methodology, an integrated architecture combining CNNs and GCNs was 

developed to fuse visual and relational information for enhanced classification. This involved establishing 

connections between CNN and GCN components to facilitate seamless information flow and feature 

integration. The integrated model was trained on the training sets of each plant-specific dataset subset, with 

parameters fine-tuned and fusion strategies optimized to maximize performance. Model validation was 

performed on corresponding validation subsets, with performance compared against standalone CNN and 

GCN models. After applying GCN+CNN hybrd integraion, it is observed that the results with integrated 

model was better than the individual models. 

 

2.1.  Plant leaf image dataset gathering and preparation 

A plant leaf image dataset was gathered from Kaggle [26]. The dataset contains 31 classes of images 

with Apple, Corn, Grape, Peach, Pepper bell, Potato, Strawberry, and Tomato types. This dataset is further 

divided as serrate datasets. The details of separated datasets are shown in Table 1. From Table 1, it is 

observed that the number samples available from Apple, Corn, Grape, Peach, Pepperbell, Potato, Tomato and 

Strawberry datasets are 3171, 3852, 4062, 2657, 2475, 2152, 18160, and 1565 respectively. 

 

2.2.  Convolutional neural networks 

CNNs are DL models for image identification and classification. Convolutional, pooling, and 

fully linked CNN layers capture hierarchical and spatial picture characteristics well. CNNs excel at plant 

disease categorization. CNNs can assess detailed plant leaf patterns and textures to identify healthy from 

unhealthy plants by automatically learning key information from photos. CNNs classify plant diseases 

accurately and efficiently using feature extraction and hierarchical representation learning. CNNs have 

improved plant disease categorization accuracy and speed, enabling more prompt and effective agricultural 

treatments. 
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Table 1. Dataset preparation details 
Dataset Type of images Number of images 

Apple_dataset Apple___Apple_scab 630 
Apple___Black_rot 621 

Apple___Cedar_apple_rust 275 

Apple___healthy 1645 
Corn_dataset Corn_Cercospora_leaf_spot  513 

Corn_Common_rust_ 1192 

Corn_healthy 1162 
Corn_Northern_Leaf_Blight 985 

Grape_dataset Grape_Black_rot 1180 

Grape_Esca_(Black_Measles) 1383 
Grape_healthy 423 

Grape_Leaf_blight 1076 

Peach_dataset Peach___Bacterial_spot 2297 
Peach___healthy 360 

Pepperbell_dataset Peppebell_Bacterial_spot 997 

Pepperbell_healthy 1478 

 

Potato_dataset 

Potato___Early_blight 1000 

Potato___healthy 152 

Potato___Late_blight 1000 
 

 
 

 

 
 

 

Tomato_dataset 

Tomato___Bacterial_spot 2127 

Tomato___Early_blight 1000 
Tomato___Late_blight 1909 

Tomato___Leaf_Mold 952 

Tomato_Septoria_leaf_spot 1771 
Tomato_Spider_mites Two-spotted_spider_mite 1676 

Tomato___Target_Spot 1404 

Tomato__mosaic_virus 373 
Tomato_Yellow_Leaf_Curl_Virus 5357 

Tomato___healthy 1591 

Strawberry_dataset Strawberry___Leaf_scorch 1109 
Strawberry___healthy 456 

 

 

2.3.  Graph convolutional networks  

GCNs are good at capturing linkages and dependencies in non-Euclidean domains including 

social, citation, and biological networks, unlike grid-like neural networks. GCNs can be used to classify 

plant diseases by evaluating correlations between plant species, weather, and geography. by propagating 

information across the network via graph convolutional layers, GCNs let the model to learn from data 

point interconnectivity. In plant disease categorization, GCNs may capture intricate connections between 

plants, illnesses, and external variables, helping to comprehend the agricultural environment. Incorporating 

relational information into plant disease classification using GCNs offers a possible path for more 

comprehensive and context-aware disease detection in agriculture. 

 

2.4.  Integration of CNN and GCN 

The combination of GCNs with CNNs for plant disease categorization is innovative and 

synergistic. This hybrid model combines CNNs' visual pattern recognition with GCNs' capacity to 

represent agricultural network interactions. The combined GCN+CNN model provides a more complete 

and context-aware plant disease diagnosis solution by combining spatial image characteristics with graph-

based information such plant species relationships and environmental parameters. This novel method 

improves accuracy and interpretability, offering a comprehensive foundation for agricultural disease control.  

 

 

3. RESULTS AND DISCUSSION 

During the data preparation stage, eight datasets were created, each tailored for experimentation. All 

experiments were carried out in Google Colab using PyTorch. Initially, a CNN served as the base model. 

Subsequently, GCN was implemented individually with each of the eight datasets. Finally, a novel integrated 

approach, combining both CNN and GCN (CNN+GCN), was applied for a comprehensive evaluation. 

 

3.1.  Applying convolutional neural networks 

In the experimentation phase, we employed a CNN as the foundational model for plant disease 

classification. All the eight datasets underwent preprocessing and organization, utilizing the PyTorch 

framework within Google Colab for flexibility and scalability. Image resizing to a consistent dimension of 

224×224 pixels and conversion to tensors were achieved through PyTorch's torchvision library. The dataset 

was then split into training and testing sets to ensure robust model evaluation. The CNN model architecture, 
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designed to capture spatial features within the images, comprised convolutional layers for hierarchical pattern 

extraction, followed by max-pooling layers for down sampling. The fully connected layer facilitated the 

classification process for four disease categories. The model underwent ten epochs of training using the 

Adam optimizer and cross-entropy loss function. The performance was evaluated on a separate test set to 

assess generalization capabilities. The results of CNN experiment were shown in Table 2. Table 2 shows 

accuracy and loss values obtained with eight types of plants. The epoch wise accuracy and loss also shown 

for two datasets namely Apple and Tomato. 

Figure 2 shows epoch wise performance of model with apple dataset. Figure 2(a) shows epoch wise 

training and testing loss for Apple dataset. Figure 2(b) shows epoch wise training and testing accuracy. The 

accuracy obtained for Apple dataset is 88%. Figure 3 shows epoch wise performance of model with Tomato 

dataset. Figure 3(a) shows epoch wise training and testing loss. Figure 3(b) shows training gand testing 

accuracy for Tomato dataset. The accuracy obtained for Apple dataset is 88%. 

 

 

Table 2. Results with CNN 
Dataset name Accuracy  Loss 

Apple_dataset 0.93 0.18 

Corn_dataset 0.93 0.15 

Grape_dataset 0.92 0.20 
Peach_dataset 0.97 0.05 

Pepperbell_dataset 0.95 0.11 

Potato_dataset 0.97 0.07 
Tomato_dataset 0.88 0.416 

Strawberry_dataset 0.97 0.09 

 

 

 
 

(a) (b) 
 

Figure 2. Epcohwise (a) loss for apple dataset and (b) accuracy for apple dataset 

 

 

  
(a) (b) 

 

Figure 3. Epcohwise (a) loss and (b) accuracy for tomato dataset 
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3.2.  Applying graph convolutional network 

The GCN model architecture defines the structure of the GCN, consisting of two fully connected 

layers with ReLU. These layers enable the model to capture non-linear relationships between nodes in the 

graph. During the training procedure, the loss function (criterion) is specified as cross-entropy loss, and the 

optimizer (optimizer) is defined as Adam. The calculate_accuracy() function computes the accuracy of model 

predictions, and the train_model() function trains the GCN model iteratively across epochs, executing 

forward and backward passes and updating model parameters based on gradients. Following training, 

evaluation, and performance analysis are conducted. The model's performance is assessed using the test 

dataset, computing metrics such as accuracy and loss. The results of GCN experiment were shown in Table 3. 

Table 3 shows accuracy and loss obtained with eight types plants. 

 

 

Table 3. Results with GCN 
Dataset name Accuracy  Loss 

Apple_dataset 0.94 0.24 

Corn_dataset 0.93 0.34 

Grape_dataset 0.93 0.17 

Peach_dataset 0.97 0.09 
Pepperbell_dataset 0.96 0.21 

Potato_dataset 0.95 0.09 
Tomato_dataset 0.89 0.52 

Strawberry_dataset 0.98 0.12 

 

 

3.3.  Applying novel integration of CNN and GCN  

In this phase, we integrated Convnets with GCNs for plant disease classification, aiming to enhance 

accuracy and efficacy in diagnosing diseases based on leaf images. Our approach centers on the robust 

ResNet18 architecture within the CNN component, renowned for its effectiveness in image classification 

tasks. By adapting the fully connected layer to our dataset's requirements, we ensure seamless integration 

with the subsequent stages of our hybrid model. Complementing this, the GCN component captures relational 

information among images through two carefully crafted GCN layers, leveraging graph-based 

representations. Graph convolutional operations and activation functions enhance the classification process 

with nuanced relational insights. During training, our hybrid model undergoes optimization facilitated by the 

Adam optimizer, evolving collaboratively to enhance classification accuracy. The model traverses epochs 

with a shared learning rate, refining parameters through iterative forward and backward passes. The cross-

entropy loss function guides optimization, ensuring alignment with ground truth labels in plant disease 

classification. Post-training, rigorous evaluation on an independent test set illuminates real-world 

performance using metrics such as test loss and accuracy. The aggregation of average test metrics provides a 

comprehensive snapshot of the model's diagnostic capabilities. In essence, our fusion of CNN and GCN 

marks a new era in plant disease classification, promising unparalleled accuracy and robustness.  

By combining image feature extraction and relational information modeling, our hybrid model 

stands poised to revolutionize agricultural technology, enhancing crop protection and sustainable practices. 

The results with integrated CNN and GCN is shown in Table 4. From Table 4, it is observed that, the 

integration of CNN anf GCN boost the accuracy and redice the loss values for all types of plants. 

 

 

Table 4. Results with integration of CNN+GCN 
Dataset Name Accuracy  Loss 

Apple_dataset 0.99 0.04 
Corn_dataset 0.94 0.15 

Grape_dataset 0.98 0.03 

Peach_dataset 0.99 0.01 
Pepperbell_dataset 0.99 0.05 

Potato_dataset 0.99 0.008 

Tomato_dataset 0.98 0.05 
Strawberry_dataset 0.99 0.001 

 

 

The epoch wise performance of the model for apple dataset is shown in Figure 4. Figure 4(a) shows 

epoch wise training accuracy and Figure 4(b) shows epoch wise training loss. It is observed that the accuracy 

increased gradually from epoch1 to epoch-10. The training loss value values gradually decreased from 

epoch-1 to epoch-10.  
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The epoch wise performance of the model for grape dataset was shown in Figure 5. The epoch wise 

training accuracy is shown in Figure 5(a). Figure 5(b) shows epoch wise training loss for grape dataset It is 

identified that the accuracy increased gradually from epoch1 to epoch-10. The training loss value values 

gradually decreased from epoch-1 to epoch-10. The similar type of trend achieved for all the eight datasets. 

 

 

 
 

(a) (b) 
 

Figure 4. Epochwise (a) accuracy and (b) loss values for apple dataset 

 

 

  
(a) (b) 

 

Figure 5. Epochwise (a) accuracy and (b) loss values for grape dataset 

 

 

3.4.  Comparison with existing work 

Table 5 shows the comparison of proposed work with previous work. Ullah et al. [2], applied a 

novel DeepPlantNet and achieved an accuracy of 98%. Anandhi and Sathiamoorthy [5], the ensemble model 

of several DL techniques given highest accuracy of 91%. Lakshmanarao et al. [14], an accuracy of 95% 

achieved with transfer learning techniques. The proposed integration of CNN and GCN achived an accuracy 

of 99% and outperformed the conventional models. 

 

 

Table 5. Comparison with existing work 
Dataset Name Accuracy  

DeepPlantNet [2] 98% 

Ensemble model [5] 91% 
Transfer learning [14] 95% 

Proposed method 99% 

 

 

4. CONCLUSION  

Plant diseases had posed significant challenges to global agriculture, profoundly impacting crop 

yields and threatening food security. Accurate and timely detection of these diseases had been paramount for 

mitigating their adverse effects. In this study, we proposed a novel approach for plant disease classification 

by integrating CNN and GCNs. Our model aimed to enhance classification accuracy by leveraging both 
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visual features extracted by CNNs and relational information captured by GCNs. Using a Kaggle dataset 

containing images of diseased and healthy plant leaves from 31 classes, including Apple, Corn, Grape, Peach, 

Pepper bell, Potato, Strawberry, and Tomato, we partitioned the dataset into separate subsets for each plant 

type. Standalone CNN models were trained on image data from each plant type, while standalone GCN 

models utilized graph-structured data representing plant relationships within each subset. Our proposed 

integrated CNN-GCN model capitalized on the complementary strengths of CNNs and GCNs to achieve 

improved classification performance. Through rigorous experimentation and comparative analysis, we 

evaluated the effectiveness of our integrated CNN-GCN approach alongside standalone CNN and GCN 

models across all plant types.  
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