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 Early diagnosis is paramount to preventing skin diseases and reducing 

mortality, given their global prevalence. Visual detection by experts using 

dermoscopy images has become the gold standard for detecting skin cancer. 

However, a significant challenge in skin cancer detection and classification 

lies in the similarity of appearance among skin disease lesions and the 

complexity of dermoscopic images. In response, we developed multi-model 

late feature fusion network (MLFF-Net), a multi-model late feature fusion 

network tailored for skin disease detection. Our approach begins with image 

pre-processing techniques to enhance image quality. We then employ a two-

stream network comprising an enhanced densely linked network (DenseNet-

121) and a vision transformer (ViTb16). We leverage shallow and deep 

feature fusion, late fusion, and an attention module to enhance the model’s 

feature extraction efficiency. The subsequent feature fusion module 

constructs multi-receptive fields to capture disease information across 

various scales and uses generalized mean pooling (GeM) pooling to reduce 

the spatial dimensions of lesion characteristics. Finally, we implement and 

test our skin lesion categorization model, demonstrating its effectiveness. 

Despite the combination, convolutional neural network (CNN) outperforms 

ViT approaches, with our model enhancing the accuracy of the best model 

by 6.1%. 
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1. INTRODUCTION 

Common proliferative diseases of the skin include skin lesions, which present in a wide variety and 

are clinically categorized as benign or malignant. In most cases, therapy is unnecessary for benign skin 

lesions [1] because they typically exhibit slow growth, do not invade nearby structures, and do not cause 

systemic effects. Malignant skin lesions, on the other hand, can invade neighboring tissues and metastasize to 

other organs, making prompt identification and treatment crucial. Therefore, developing a fast and precise 

approach for detecting skin cancer at an early stage is imperative. Artificial intelligence (AI) [2] has 

advanced to the point where it can now diagnose skin conditions using computer algorithms. This technology 

has the potential to significantly advance dermatology by aiding in the development of new diagnostic 

methods [3], [4]. To further enhance the accuracy of AI in diagnosis, dermatologists can contribute by 

providing the system with clinical data from their daily practice. 

Khouloud et al. [5] introduced a deep-learning system for melanoma identification, combining  

a segmentation network and a classification network. The W-Net demonstrated superior accuracy and 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

MLFF-Net: a multi-model late feature fusion network … (Ajay Krishan Gairola) 

1907 

performance over conventional neural networks in both segmentation and classification tasks. Benyahia et al. [6] 

explored 24 AI classification methods and 17 pre-trained convolutional neural network (CNN) architectures 

for skin lesion classification. On the PH2 and ISIC2019 datasets, densely linked network (DenseNet-201) [7] 

coupled with a cubic support vector machine or fine k-nearest neighbors yielded the best results. Benyahia 

published her findings in the machine learning journal. Popescu et al. [8] integrated deep learning with 

crowdsourcing to enhance skin lesion classification. They developed a weight matrix by evaluating nine 

classification networks to improve prediction accuracy. Skin lesions were segmented using an optimized 

color feature (OCF), and a deep CNN was employed for classification, as proposed by Hasan et al. [9].  

The hybrid technique aimed to enhance lesion contrast while minimizing artifacts. Features were extracted 

using the deep CNN-9 model before being merged with OCFs. Finally, a normal distribution-based high-

ranking feature selection method was used to identify the most robust classification characteristics. 

Here, we present a framework for skin disease categorization that leverages late feature fusion.  

Our primary contributions can be summarized as follows: 

− We propose a multi-model late feature fusion network (MLFF-Net) designed for the multi-modal 

classification of skin diseases. This network integrates features from multiple modalities or sources, 

allowing for a more comprehensive representation of the data. The proposed representation is then 

utilized for the classification of several classes of skin diseases, enhancing the accuracy and robustness of 

the classification process. 

− We demonstrate that late feature fusion methods can enhance the performance of our proposed multi-

model MLFF-Net by utilizing improved versions of DenseNet-121 and vision transformer (ViTb16) 

models. These models are used to extract features from different modalities. By combining the input 

feature maps from these two models, we can capture and leverage the relationship between the two 

modalities, leading to improved classification performance. 

− The feature fusion block (FFB) in our model is designed to create multiple receptive fields, allowing for 

the gathering of disease information at various scales. Following this, the generalized mean pooling 

(GeM) technique is employed to reduce the spatial dimensions of lesion features, enhancing the model’s 

ability to capture and process information efficiently. 
 

 

2. PROPOSED METHOD 

To enhance the accuracy of skin lesion classification, we have developed a MLFF model. Our model 

is built upon the ViTb16 network and an upgraded version of the DenseNet-121 network. By merging the 

output features of these two networks and employing multi-receptive field approaches, we achieve multi-

granularity and multi-scale global features. The late feature fusion module plays a crucial role in enhancing 

the model’s ability to distinguish between healthy and unhealthy areas. Our network architecture consists of a 

two-stream network, a multi-classification module, and the late feature fusion module. The proposed model’s 

structure is illustrated in Figure 1. The details are mentioned below: 

 

2.1.  Data pre-processing 

To achieve the intended results and enhance the quality of the images, pre-processing is necessary. 

Figure 1(a) shows that images could have distracting elements like hair, air bubbles, and noises. Image 

preparation encompasses: 

− Image resizing: the proposed CNN reduces the input image to 224×224 dimensions to accommodate the 

variety of image sizes. Despite this scaling down, the data from the photograph remains unaltered. 

− Image standardization: to normalize the data, we first convert the input image to a collection of pixels 

with a range of 0 to 1. Splitting each pixel by 255 normalizes the image pixel values, which range from 0 

to 255, to a range of pixels from 0 to 1. 

 

2.2.  The enhanced DenseNet block’s structure 

DenseNet [7] is a renowned approach in image categorization, known for its dense connection 

method shown in Figure 1(b). In DenseNet, each layer receives feature maps from all preceding layers and 

passes its own feature maps to all subsequent layers, promoting feature reuse and alleviating the vanishing 

gradient problem. The DenseNet-201 model, with additional network layers, has been fine-tuned, 

demonstrating the effectiveness of dense connections in various image classification tasks. Zhou [10] 

demonstrated the robustness of DenseNet by addressing the vanishing gradient problem. Attention 

mechanisms, such as the one in SENet [11], offer several benefits in network models, including improved 

classification performance, enhanced data extraction from images, and the ability to focus on specific regions 

of interest. SENet’s squeeze-excitation block, designed to improve model representation and capture channel 

interactions, implements this mechanism. However, adding a squeeze-excitation block to DenseNet’s internal 
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module did not enhance classification performance on a private dataset of acne-like skin disorders. This 

limitation may stem from SENet’s channel reduction method, which does not accurately replicate the 

connection between input weight vectors and the model. To overcome this limitation, Wang et al. [12] 

introduced efficient channel attention (ECA), which uses 1D convolution to identify channel interactions. 

ECA includes an efficient excitation module for cross-channel stimulation and a squeeze module for global 

spatial data, simplifying the concept and eliminating the need for channels to indirectly correspond with their 

k-nearest neighbors. 

 

2.3.  The architecture of the ViT 

The ViT architecture begins by dividing the input image into non-overlapping patches of a 

predefined size. These patches are then augmented with position embeddings, and the resulting tokens are 

inputted into a transformer encoder. Finally, an MLP head layer is used for image classification. Figure 1(c) 

provides a visual representation of this basic framework. The transformer network in ViT consists of two 

main modules: The multi-layer perceptron (MLP) and the multi-head self-attention (MSA). Each module 

incorporates layer normalization (LN), and both benefit from the residual structure. The formulation for each 

layer of the transformer can be expressed as (2): 

 

𝑂𝐿 = 𝑀𝑆𝐴(𝐿𝑁(𝑂𝐿−1)) + 𝑂𝐿−1 (1) 

 

in which 𝑂𝐿  stands for the L-th layer’s output. As a last point, the classifier in this study is fed the first token 

from the last layer embedded 𝑂𝐿 . The image’s multi-scale features are stored in 𝑂𝐿 , and a classifier is applied 

to it for classification. 

Feature fusion block, the uneven distribution of affected regions in skin lesion images requires us to 

define the range of recovered attributes using the size of the convolutional kernel. These regions often exhibit 

varying diameters and poor continuity. Larger convolutional kernels are better suited for extracting global 

characteristics from pathological images, while smaller kernels excel at capturing local features. However, 

relying solely on smaller kernels may necessitate a deeper network to ensure a sufficiently large output 

feature mapping, potentially leading to overfitting. On the other hand, using larger convolutional kernels can 

be inefficient as they do not consider local information. Furthermore, stacking larger kernels can increase 

computational complexity and reduce model efficiency. 

 

2.4.  The architecture of the ECA block 

In the context of these shared features, we have developed a new block structure for DenseNet by 

incorporating the ECA block. As inputs, layer L takes in all of the feature mappings that preceded it. The 

notation [𝑖_0, 𝑖_1, . . . , 𝑖_(𝐿 − 1)] stands for the merging of feature mappings produced in layers 0, 1, . . . , 𝐿 −
 1. This combination operation involves several steps, including batch normalization (BN), rectified linear 

units (ReLUs), pooling, convolution, and an ECA block denoted as 𝑖_0, 𝑖_1, . . . , 𝑁_𝐿. Figure 1(d) depicts the 

construction of both the enhanced block and layer, which are both made up of numerous improved layers 

connected by dense connections. Our enhanced layer, from top to bottom, includes the following steps: an 

ECA block, Conv 1×1, BN, ReLU, Conv 3×3, BN, ReLU, and Conv 5×5. 

 

𝑖_𝐿 = 𝑁_𝐿 ([𝑖_0, 𝑖_1, . . . , 𝑖_(𝐿 − 1)]) (2) 

 

2.5.  The FFB 

Our goal in creating this feature fusion module is to collect data on a wider range of skin lesions by 

capturing their multi receptive fields. As depicted in the FFB of Figure 1(e), the multi receptive fields are 

made up of numerous convolution layers with different kernel sizes. To capture more diseased areas, a multi 

receptive field must encompass a wider area of skin lesions. Each convolutional layer learns weights that are 

specific to its respective receptive fields, and the smaller and larger convolution kernels cooperate.  

This approach enhances the model’s overall accuracy by exploring a broader pathological region. To perform 

non-linear and channel-integrated processing, the feature maps from all the convolutions with different 

receptive fields are combined and sent into the dropout + ReLU layers. The feature fusion includes a GeM 

pooling technique [13], [14] to assess the problematic regions derived from the features. The input for the 

pooling procedure is a 1×1×1536 feature vector F, and the output is a vector V. This vector 𝑉𝑛
𝑚𝑝

 is provided 

when max pooling is used. 

 

𝑉𝑚𝑝 = [𝑉1
𝑚𝑝

… 𝑉𝑛
𝑚𝑝

… 𝑉𝐶
𝑚𝑝

]𝑇 , 𝑉𝑛
𝑚𝑝

= max
𝑓∈𝐹𝐶

𝑓 (3) 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

MLFF-Net: a multi-model late feature fusion network … (Ajay Krishan Gairola) 

1909 

In which C represents the feature map’s channel count. 𝐹𝐶 is the set of feature maps where n is a 

member of (1, C). The network produces a total of C feature maps. All of the features 𝐹𝐶 are represented by f, 

and mp is the max pooling operation. By utilizing average pooling, the vector 𝑉𝑛
𝑎 is provided by (4). 

 

𝑉𝑎 = [𝑉1
𝑎 … 𝑉𝑛

𝑎 … 𝑉𝐶
𝑎]𝑇 , 𝑉𝑛

𝑎 =
1

𝐹𝐶
∑ 𝑓𝑓∈𝐹𝐶

 (4) 

 

Alternatively, the vector 𝑉𝑛
𝑔

 is provided by taking advantage of GeM pooling. 

 

𝑉𝑔 = [𝑉1
𝑔

… 𝑉𝑛
𝑔

… 𝑉𝐶
𝑔

]𝑇 , 𝑉𝑛
𝑔

= (
1

𝐹𝐶
∑ 𝑓ℎ𝑝

𝑓∈𝐹𝐶
)

1/ℎ𝑝

 (5) 

 

A hyperparameter called hp controls how much each of the two pooling processes weighs. Pooling 

with maximum and average values is a subset of GeM pooling. Maximum and average pooling are used 

when hp approaches infinity, and if hp equals 1, it’s 0. In the end, 𝑉𝑔 is composed of the attributes of every 

feature map following pooling of GeM, and its dimensionality is C. Various hp values were taught and 

evaluated, and suitable parameters were chosen, in order to achieve superior classification results in the 

subsequent comparative tests. To accomplish multiclassification of skin lesions, we employ the SoftMax 

classifier in the multiclassification module. Algorithm 1 outlines the steps involved in the proposed method. 

 

Algorithm 1. MLFF-Net 
Input: skin disease images S = {S1, S2, ……Sn}, the initialized network MLFFNet consists of 

an improved DenseNet and ViT, maximum epochs E = 60 with a batch size of BS = 16 for the 

network, and a learning rate of 0.001.  

Output: The optimized MLFF-Net network 

While E1 ≤ En × BS do 

         Sample a batch of skin disease images. 

         Apply data preprocessing (image resizing and standardization) and feed it to the 

network. 

          Improved DenseNet model by equation (1). 

          Transform each layer by equation (2). 

          Adding the feature fusion block by equations (3-5). 

         Jointly optimize MLFFNet. 

End 
 

 

 
 

Figure 1. The proposed architecture of the MLFF-Net: (a) the data preprocessing stages, (b) the enhanced 

DenseNet block’s structure, (c) the architecture of the ViT, (d) the architecture of the ECA block, and  

(e) the FFB 
 

 

2.6.  Performance evaluations 

The effectiveness of algorithms for automatically classifying images of skin lesions is often 

measured by their F1-score, recall, precision, and accuracy. True positives (𝑇_𝑃), false negatives (F_N), and 

false positives (𝐹_𝑃) proportions provide the basis for these measures’ calculation: 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇_𝑃+𝑇_𝑁

𝑇_𝑃+𝑇_𝑁+𝐹_𝑃+𝐹_𝑁
 (6) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇_𝑃

𝑇_𝑃+𝐹_𝑃
 (7) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  𝑇_𝑃

𝑇_𝑃+𝐹_𝑁
 (8) 

 

𝑓1 =  2 ×𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (9) 

 

2.7.  Dataset 

The proposed model was trained and validated using the ISIC2016 [15], ISIC2017 [9], and 

HAM10000 [16] datasets. The HAM10000 dataset is particularly noteworthy, as over fifty percent of its skin 

lesions have been pathologically confirmed, establishing it as a gold standard in the field. The dataset was 

split into a 70:30 ratio for training and validation, as shown in Table 1. The dataset’s significant intraclass 

similarities pose a challenge for categorization. 
 

 

Table 1. A breakdown of the dataset’s distribution 
Dataset  Total  Training Test 

ISIC2016 [15] 1,279 900 379 

ISIC2017 [9] 2,750 2,000 600 

HAM10000 [16] 10,015 7,011 3,004 

 
 

2.8.  Implementation details 

The proposed model was implemented using the open-source Keras library, and all experiments 

were conducted on Google Colab with K80, P100, and T4 GPUs. A training set and a test set were randomly 

selected from a dataset containing instances of various skin diseases for this study. During the training 

process for the CNN, the image sizes were randomly reduced to 256×224 and then horizontally flipped.  

To achieve optimal performance, the following strategies were employed: the finalization vector control fully 

connected layer and the final output layer of every pre-trained network were replaced with an initialization 

vector control fully connected layer. Extra fully connected layers were added and filled with weights 

initialized using Gaussian random weights with a standard deviation of 0.001 and a mean of zero. 

 

 

3. RESULTS 

This section provides a thorough analysis in addition to explaining the research findings. Figures, 

graphs, tables, and other reader-friendly formats can be used to present results [17], [18]. There are multiple 

subsections that can cover the same ground. 
 

3.1.  Results of individual models using three datasets 

Models trained with DenseNet-121 and ViTb16 have an average F1-score of 80 and 79, recall of  

79 and 75, precision of 81 and 75, and accuracy of 83% and 79%, respectively, on ISIC2016 dataset.  

DenseNet-121 and ViTb16 models, respectively, achieve an average of 84% and 80% accuracy, 78 and 77 

precision, 83 and 81 recall, and 82 and 79 F1-score on ISIC2017. Models trained with DenseNet-121 and 

ViTb16 have an average F1-score of 81 and 80, recall of 81 and 78, precision of 83 and 79, and accuracy of 

85% and 81%, respectively, on the HAM10000 dataset. Therefore, the best accuracy is 85% for the 

DenseNet-121 model on the HAM10000 dataset. The results are broken down and summarized in Table 2. 
 

 

Table 2. Summarize classification results of single network on three datasets 
 Model Precision Recall F1-score Testing accuracy (%) 

Single network - ISIC -2016 dataset DenseNet-121 81 79 80 83 

 ViTb16 75 75 79 79 

single network - ISIC -2017 dataset DenseNet-121 78 83 82 84 
 ViTb16 77 81 79 80 

Single network - HAM10000 dataset DenseNet-121 83 81 81 85 

 ViTb16 79 78 80 81 

 

 

3.2.  Results of late fused models using three datasets 

Experiments on late fused models with DenseNet-121+ViTb16 have an average F1-score of 78, 

recall of 79, precision of 80, and accuracy of 81% on ISIC2016 dataset. Experiments on late fused models 
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with DenseNet-121+ViTb16 have an average F1-score of 82, recall of 80, precision of 81, and accuracy of 

82% on ISIC2017 dataset. Experiments on late fused models with DenseNet-121+ViTb16 have an average 

F1-score of 83, recall of 80, precision of 78, and accuracy of 84% on the HAM10000 dataset. The best 

accuracy is 84% of the fused model on the HAM10000 dataset. Three datasets were used to display the 

classification results of the late fusion network, as shown in Table 3. 

 

 

Table 3. Summarize classification results of late fusion network on three datasets 
 Model Precision Recall F1-score Testing accuracy (%) 

Late fusion - ISIC -2016 dataset DenseNet-121+ViTb16 80 79 78 81 

Late fusion - ISIC -2017 dataset DenseNet-121+ViTb16 81 80 82 82 

Late fusion - HAM10000 dataset DenseNet-121+ViTb16 78 80 83 84 

 

 

3.3.  Results of proposed approach using three datasets 

The proposed model, respectively, achieves an average accuracy of 82%, 79 precision, 80 recall, and 

an 80 F1-score on ISIC2016 dataset. The proposed model, respectively, achieves an average accuracy of 

84%, 82 precision, 80 recall, and 78 F1-score on ISIC2017 dataset. The proposed model, respectively, 

achieves an average accuracy of 86%, 77 precision, 82 recall, and an 84 F1-score on the HAM10000 dataset 

shown in Table 4. 

 

 

Table 4. Summarizes classification results of proposed method on three datasets 
 Model Precision Recall F1-score Testing accuracy (%) 

ISIC -2016 dataset Proposed method 79 80 80 82 

ISIC -2017 dataset Proposed method 82 80 78 84 

HAM10000 dataset Proposed method 77 82 84 86 

 

 

3.4.  Comparative analysis of DenseNet-121 and ViTb16 

Analyzing the parallels and dissimilarities between the DenseNet-121 and ViTb16 models presented 

in Figure 2. On the HAM10000 dataset, DenseNet-121 achieves an accuracy of 85% in classification, 

surpassing the second-best method by more than 1%. The second-best accuracy is 84% with DenseNet-121 

on the ISIC2017. 
 

 

 
 

Figure 2. Graphical representation of the classification report on various parameters: accuracy, precision, 

recall, and F1-score on single models 

 

 

3.5.  Comparative analysis of late-fused models 

In this analysis, we compared and contrasted the late fusion shown in Figure 3. The fused model 

outperforms the gold standard by more than 2% on the HAM10000 dataset, with a classification accuracy of 

84%. Hence, the most accurate fused model using HAM100000 is the one that combines DenseNet-121 and 

ViTb16. 
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Figure 3. Line graph representation of the classification report on various parameters (F1-score, recall, 

precision, and testing accuracy) on fused models 

 

 

3.6.  Comparative analysis of the proposed model 

Here, we looked at the proposed approach in Figure 4 and compared it to others. A classification 

accuracy of 86% shows that the proposed approach surpasses the gold standard by over 2% on the 

HAM10000 dataset. These results show that the proposed technique successfully and efficiently categorizes 

skin diseases. 
 

 

 
 

Figure 4. Graphical form of classification report on various parameters (F1-score, recall, precision, and 

accuracy) of the proposed approach 

 

 

3.7.  Comparative analysis of the proposed model with the state of the arts 

Analysis of all the test data showed that our proposed model correctly classified 86% of the data. 

Using the necessary data extraction techniques, we are able to determine that our DenseNet-121 and ViTb16 

do the best job of identifying images in the ISIC 2016, ISIC2017, and HAM10000 datasets. According to 

Satheesh et al. [19], He et al. [20], and Hsu and Tseng [21], our proposed method achieves an impressive 

accuracy of 86%, which is 6.1% higher than the next highest accuracy. Several alternatives to traditional 

deep learning models and segmentation techniques have been proposed [22]–[25]. Table 5 displays a 

comparison with the current level of technology. 

 

 

Table 5. Comparative analysis of the proposed approach 
Method Accuracy (%) 

Satheesha et al. [19] 77.04 
He et al. [20] 76.8 

Hsu and Tseng [21] 79.90 

MLFF-Net (ours) 86.00 
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4. DISCUSSION  

The main contribution is a two-stream network that classifies skin diseases using multimodal late 

feature fusion. The network performs well on three distorted datasets. DenseNet-121 improves the deep 

neural network’s classification rate and lessens gradient dispersion brought on by the overly deep network 

model due to its lower parameter count and better feature propagation through densely connected dense 

blocks. An alternative ViTb16 network model uses residual structures. Before and after layers merge, 

leftover structures are retained. Identity mapping and residual mapping can transfer layer properties.  

By training and merging more models using various data preprocessing methods, we hope to improve 

medical diagnosis classification performance. Our strategy requires us to create the experiment using a 

lightweight network, but the model isn’t. Only three ISIC datasets have been examined, but we will select 

more and use real-world clinic data. There were still several issues and limitations with our proposed model, 

even though it demonstrated descent classification performance on datasets with imbalanced or few samples. 

For example, our proposed model was found to consume high computing resources and have a comparatively 

slow training pace. More benchmark datasets are needed for training to enhance our model’s performance,  

as it only recognizes a subset of skin diseases. 

 

 

5. CONCLUSION 

The mortality rate is significant, and there is considerable similarity and variation between classes of 

malignant skin lesions. Therefore, a reliable categorization system would greatly benefit doctors in the early 

diagnosis of skin diseases. To enhance skin disease categorization, we propose a multimodal feature fusion 

model in this study. Our approach combines the strengths of transformers and CNNs. In our two-stream 

network, which integrates ViTb16 with an enhanced DenseNet-121 network, we leverage the advantages of 

both networks. To be more precise, we improve the model’s performance by incorporating more parameters 

by merging the original DenseNet-121 model’s residual structure. Subsequently, we capture multi-scale 

pathological information using feature fusion blocks. On the HAM10000 dataset, our proposed technique 

attains an 86% classification accuracy. Our model outperforms state-of-the-art models with an astonishing 

84% classification accuracy when DenseNet-121 and ViTb16 are combined. Future advancements in the field 

may be facilitated by EfficientNet and other alternatives to conventional deep learning models and 

segmentation approaches. Additionally, we plan to explore the potential of training on a large labeled dataset 

in the near future. To make the proposed model more versatile, we plan to make minor adjustments to it in 

future work. In addition, we will extensively evaluate the proposed model with extra benchmark datasets, 

including additional skin diseases. 
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