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 In distributed systems and parallel computing, optimal load balancing is 

difficult. These abstract addresses load balancing in distributed situations, 

highlighting current solutions' flaws and emphasizing the need for new ones. 

Load balancing research includes centralized and distributed algorithms, 

heuristics, and predictive models. Despite various successful methods, 

workload adaptability, overhead reduction, and scaling to large systems 

remain unresolved. This study proposes a particle swarm optimization (PSO) 

load balancing method that considers global and local stability 

considerations. The proposed method uses PSO principles to balance 

exploration and exploitation and allocate resources among distributed nodes. 

Predictive components improve preventative load management by predicting 

workload changes. Global and local load balancing stability criteria 

distinguish this study. The recommended method considers global system-

wide performance indicators, local node-level characteristics, and micro-

level stability to maximize system efficiency. A dual-focus technique 

distinguishes the proposed load balancing strategy from others, solving 

dynamic distributed system challenges. The study examines load balancing 

system advances and suggests improvements and further research. More 

accurate prediction modeling, stability measures, and application-specific 

enhancements may be studied in the future. Experimental validation and 

real-world implementation of the recommended approach are necessary to 

determine its practicality and ability to handle modern distributed computing 

systems. 

Keywords: 

Cloud-based load balancing 

Particle swarm optimization  

Resource utilization analysis 

Service level agreements 

Space-time swarm positioning 

Time complexity reduction 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Niladri Sekhar Dey 

Department of Computer Science and Engineering, KLEF 

Vijayawada, Andhra Pradesh, India 

Email: sd.niladri@gmail.com 

 

 

1. INTRODUCTION 

In the dynamic field of modern computer systems, the main challenge is to achieve optimal resource 

use while maintaining system stability and performance. To address the challenges of task distribution and 

resource management in extensive distributed computing systems, innovative strategies must be devised. 

Load balancing is essential in this scenario as it ensures the equitable distribution of resources across the 

system to prevent congestion, decrease response times, and enhance overall efficiency. Predictive load 

balancing methods have transformed systems by allowing them to predict and preemptively handle 

fluctuations in demand, thus avoiding performance degradation or system failures. An new strategy in load 

balancing research and implementation involves integrating particle swarm optimization (PSO) ideas with 

global and local stability considerations. 

https://creativecommons.org/licenses/by-sa/4.0/
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This publication signifies the completion of this revolutionary technique. The framework tries to 

efficiently handle the intricate relationships among system dynamics, workload fluctuations, and resource 

limitations. The method employs the concepts of PSO, a bio-inspired optimization technique that relies on 

the collective behavior of swarming organisms. The system uses virtual particles to systematically investigate 

and improve the solution space in order to achieve load balance throughout the distributed system. This 

approach is unusual since it focuses on both global and local stability, not only optimization. Global stability 

ensures the system's overall balance and resilience to disruptive events, whereas local stability pertains to the 

behavior of individual nodes and resource utilization patterns, contributing to the system's overall robustness. 

Essentially, the predictive nature of this load balancing solution represents a break from reactive approaches 

that rely on adjusting based on deviations from ideal performance circumstances. This approach uses 

predictive analytics and machine learning algorithms to forecast future workload patterns based on historical 

data. It then redistributes resources beforehand to avoid any discrepancies or excessive loads. 

The system becomes more responsive and develops proactive intelligence by using predictive 

analytics, allowing it to adapt to changing workload dynamics and emerging trends. The approach constantly 

enhances its prediction models by consistently monitoring and evaluating crucial performance data and 

promptly obtaining feedback. This improves their accuracy and ability to adapt to evolving operational 

conditions. The emphasis on global and local stability is essential for ensuring the system's resilience against 

transient interruptions and unforeseen events. The method uses data from network structure, traffic patterns, 

and resource utilization measures to redistribute resources effectively. This guarantees the overall stability of 

the system and the security of each individual node. This paper gives a thorough approach for handling 

workloads in distributed computing environments. It surpasses traditional methods and recognizes the 

complexities of present systems. The method integrates PSO ideas with predictive analytics and stability-

driven optimization techniques to enhance efficiency, resilience, and performance in distributed systems 

architecture. This advanced framework is prepared to redefine load balancing performance boundaries in the 

dynamic digital world, allowing organizations to gain more scalability, reliability, and agility in their quest 

for computational superiority. 

The literature review is an essential element in comprehending the background, development, and 

present status of research relevant to the subject of "A particle swarm optimization inspired global and local 

stability driven predictive load balancing strategy." This section explores a wide range of topics in literature 

related to load balancing tactics, optimization techniques, predictive analytics, and stability-driven 

approaches in distributed computing settings. Our goal is to provide a strong theoretical basis for our 

revolutionary predictive load balancing system by combining insights from important publications, current 

research projects, and advanced methodologies. We want to understand the complexities of load balancing 

dynamics and gain significant insights for the development of our suggested strategy by thoroughly 

examining important topics, theoretical concepts, empirical findings, and methodological advancements. 

The literature on load balancing algorithms in cloud computing covers a wide range of methods that 

try to optimize resource allocation, improve system performance, and ensure fair distribution of workloads. 

In their study, Beegom and Rajasree [1] provide integer-PSO, a specialized PSO algorithm designed for job 

scheduling in cloud computing systems. In their study, Mapetu et al. [2] provide a binary particle swarm 

optimization technique that is both cost-effective and has a low time complexity. The approach is specifically 

designed for job scheduling and load balancing in cloud computing, with a focus on achieving high 

efficiency and scalability. In their study, Ghomi et al. [3] investigate the optimization of resource usage in 

cloud manufacturing through service load balancing, job scheduling, and transportation optimization. They 

utilize queuing systems to achieve this objective. 

In their study, Ahmad and Khan [4] propose a task scheduling method for cloud computing settings 

that utilizes a PSO approach and incorporates adaptive load balancing. The program aims to enhance 

flexibility and optimize performance. Alguliyev et al. [5] propose a load balancing strategy based on PSO, 

which aims to achieve a balanced distribution of computational workloads in cloud computing systems. In 

their study, Radhamani and Dalin [6] suggest using a PCA-TA-IRIAL strategy that utilizes optimization 

algorithms to choose migrating virtual machines and destination physical machines for cloud computing that 

is both environmentally friendly and evenly distributed in terms of workload. 

Dewangan et al. [7] propose GAP, a hybrid task scheduling method that aims to improve load 

balancing in cloud systems by incorporating several optimization strategies. In their study, Kumar and 

Sharma [8] propose an innovative resource scheduling approach that utilizes PSO to enhance the quality of 

service (QoS) characteristics in cloud computing settings. Ahmad and Khan [9] provide an effective load 

balancing scheduling solution for cloud computing, which integrates components of hybrid systems to get 

optimal resource usage. 

Kodli and Terdal [10] suggest a hybrid max-min genetic algorithm for achieving load balancing and 

work scheduling in cloud systems, with a focus on optimizing computing resources. Junaid et al. [11] provide 

a refined method for distributing workloads in the cloud, using many optimization algorithms to guarantee 
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effective allocation of resources. Kruekaew and Kimpan [12] improve the artificial bee colony method for 

virtual machine scheduling and load balancing in cloud computing, with a specific emphasis on enhancing 

performance and scalability. 

In their study, Mishra and Majhi [13] propose a load balancing method for cloud computing 

environments that is based on binary bird swarm optimization. The approach focuses on improving efficiency 

and flexibility. Goyal et al. [14] introduce an enhanced framework for allocating energy resources in cloud 

settings using the whale optimization algorithm. The primary objective of this framework is to promote 

sustainability and improve resource efficiency. Mirmohseni et al. [15] propose LBPSGORA, a load 

balancing method that combines particle swarm genetic optimization method to enhance resource allocation 

and reduce energy usage in cloud networks. 

Malik et al. [16] propose a load balancing algorithm that focuses on energy efficiency for 

scheduling workflows in cloud data centers. The program utilizes queuing theory and thresholds to maximize 

the consumption of resources. Miao et al. [17] provide a discrete PSO technique for load balancing in 

distributed simulations within cloud settings. The algorithm focuses on achieving high efficiency and 

scalability. Alghamdi [18] presents a novel approach employing artificial neural networks and binary PSO to 

optimize load balancing and job scheduling in cloud computing settings. The study primarily focuses on 

enhancing optimization and performance. 

Ajagbe et al. [19] introduce P-ACOHONEYBEE, an innovative load balancer for cloud computing 

that utilizes a mathematical method to guarantee optimal distribution of resources. In their study, Adil et al. 

[20] provide PSO-CALBA, a load balancing technique that utilizes PSO to improve resource allocation in 

cloud computing systems. Malik and Suman [21] introduce a method called lateral wolf-based particle swarm 

optimization (LW-PSO) for achieving load balancing in cloud computing. Their approach focuses on the key 

aspects of flexibility and efficiency. Pradhan and Bisoy [22] introduce an innovative load balancing method 

utilizing PSO for cloud computing platforms. Their primary objectives are to enhance scalability and 

optimize performance. 

Chen et al. [23] introduce a particle swarm-grey wolf cooperation algorithm for the purpose of 

scheduling microservice containers in cloud computing. The algorithm focuses on promoting collaboration 

and optimizing efficiency. Yu et al. [24] propose a novel approach to optimize task scheduling in cloud 

settings. They utilize an enhanced version of the bat algorithm to achieve performance optimization and 

maximize resource consumption. Gabhane et al. [25] introduce a novel method for load balancing across 

several resources, combining ant colony optimization with tabu search. The methodology focuses on 

achieving flexibility and optimization. In their study, Adil et al. [26] assess load-balancing algorithms in 

cloud computing, specifically examining the performance assessment and system efficiency of various 

service broker policies. In their study, Shahid et al. [27] present a rapid and universally optimal method for 

load balancing in cloud computing, with a focus on efficiency and scalability. The summary of the recent 

works are summarized in Table 1. 

 

 

2. THE PROPOSED METHOD  

After the detailed analysis of the parallel research outcomes and a brief introduction of the 

problems, in this section of the work, the problems are identified in detail with mathematical formulations. 

Firstly, the identification of the loaded instances with virtualization is identified. The local configurations 

primarily lead to the local thresholding and during the distributed application architecture, the local 

thresholds are not sufficient to identify the overall load or service quality disruptions for any application or 

service. To prove this stated ideology, assuming that the total task set, T[], is a collection of individual tasks 

as Ti. Thus, for a total number of n tasks, this relation can be formulated as (1). 
 

𝑇[] = ∑ 𝑇𝑖
𝑛
𝑖=1  (1) 

 

Also, the complete infrastructure in the cloud computing environment primarily relies on the virtualization 

concept and assuming that each physical infrastructure, Ij, is part of the global infrastructure I[]. Thus, for a 

total number of m instances, the relation can be formulated as (2). 
 

𝐼[] = ∑ 𝐼𝑗
𝑚
𝑗=1  (2) 

 

Further, each virtual machine, VMk, is part of the collection of the total virtual machines, VM[], 

allocated to a single task Ti. Thus, for a p number of virtual machines, this relation can be formulated as (3). 
 

𝑇𝑖 → 𝑉𝑀[] = ∑ 𝑉𝑀𝑘
𝑝
𝑘=1  (3) 
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Also, 
 

𝑉𝑀[] → 𝐼𝑗 (4) 

 

Thus, 
 

𝑇𝑖 → 𝑉𝑀[] → 𝐼𝑗  (5) 

 

Regardless of to mention, that each physical instance is again a collection of four standard components as 

compute, C, network bandwidth, N, memory, M and storage, S. Where each of these four components has its 

capacity. Henceforth, the capacity, 𝛷(𝐼𝑗), can be presented as (6). 
 

𝛷(𝐼𝑗) = ⟨𝐶, 𝑁,𝑀, 𝑆⟩ (6) 

 

Again, during the task allocation process, the utilization or demand, 𝛤(𝑇𝑖 → 𝐼𝑗), of these four resource 

components also must be analyzed to identify the overloading situations as (7). 
 

𝛤(𝑇𝑖 → 𝐼𝑗) = ⟨𝐶, 𝑁,𝑀, 𝑆⟩ (7) 

 

In the standard process, of overload condition identification, if the following condition is true, then the 

system is to be considered unstable and further demands load balancing. 
 

𝛤(𝑇𝑖 → 𝐼𝑗) ≥ 𝛷(𝐼𝑗) (8) 

 

Nevertheless, during the identification of the overloaded conditions, the consideration of the 

distributed architecture for any application or services must be assumed, as a single task can be replicated 

over multiple physical instances as (9). 
 

𝑇𝑖 → 𝐼𝑗 , 𝐼𝑗+1 (9) 

 

Thus, the calculation of the load situation or the quality of the services, QoS, must be formulated as (10). 
 

𝑄𝑜𝑆 ⇐ |𝛤(𝑇𝑖 → 𝐼𝑗 , 𝑇𝑖 → 𝐼𝑗+1) − 𝛷(𝐼𝑗 , 𝐼𝑗+1)| (10) 

 

Henceforth, it is conclusive to state that, the correct method to identify the quality of the service is stated in 

(23), rather than (21). Hence, this problem is also considered as a bottleneck of the current research and the 

proposed solution is formulated in the next section of this work.  

Secondly, during any genetic optimization method, the termination condition is always driven by the 

fitness function or maximizing the fitness function in terms of the objective function. In the traditional 

method the objective function is always calculated in terms of the local best allocation as stated in the 

following formulation, derived from (20). 
 

𝑓(𝐼𝑗) = 𝑚𝑎𝑥(
∑ 𝛤(𝑇𝑖)→𝐼𝑗
𝑛
𝑖=1

𝑛
) (11) 

 

This objective function will lead to the stability of the local resource pools. However, the stability of the data 

center cannot be guaranteed. As, for the rest of the resource pools, the objective function may not ensure the 

same maximization conditions. 
 

𝑓(𝐼𝑗) ≠ 𝑓(𝐼𝑗+1) ≠ 𝑓(𝐼𝑗+𝑛) (12) 

 

Henceforth, this challenge must be addressed with the consideration of the complete system stabilization, for 

which the solution is stated in the next section of this work. 

Finally, the location of the swarm in the PSO model plays a vital role as the velocity of the swarms 

must be calculated using the personal best and global best location in every iteration. Any location, 𝐿𝛼, on a 

two-dimensional search space can always be presented with the help of two variables denoting the coordinate 

values as (13). 
 

𝐿𝛼 = 𝑓(𝑋, 𝑌) (13) 
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Assuming that, one particle has two identified coordinates at two different time intervals at t1 and t2, as𝐿𝛼1, 

𝐿𝛼2, which can be formulated as (14). 
 

𝐿𝛼1 = 𝑓(𝑋1, 𝑌1)[𝑡1] (14) 
 

and, 
 

𝐿𝛼2 = 𝑓(𝑋2, 𝑌2)[𝑡2] (15) 

 

Considering the distance from the origin [0,0] for these two points are 𝛿1 and 𝛿2. Assuming the coordinates at 

the first instance is further than the coordinates at the second time instance as the distance vectors hold the 

following relation. 
 

𝛿1 > 𝛿2 (16) 
 

Further, as the coordinates are different 𝑋1 ≠ 𝑋2, 𝑌1 ≠ 𝑌2, the new location, 𝐿𝛼2, will be considered as an 

improvement in the search space. This process shall leave to an unsolvable and infinite backtracking problem 

as shown in Table 2. 

 

 

3. METHOD  

After the proposed mathematical models for solving, the identified research problems, based on the 

same mathematical models, in this section of the work, the proposed algorithms are furnished. The LGT-LCI 

algorithm efficiently allocates jobs to virtual machines (VMs) in distributed systems by using local and 

global threshold-based load condition identification. The method requires input in the form of tasks (T[]), 

VMs assigned to those tasks (VM[]), the infrastructure allocated to the VMs (I[]), and the physical locations 

given to the infrastructures (L[]). The main result is the detection of loaded virtual machines (VMx[]). 

The algorithm functions through many phases. The process involves analyzing each job separately 

to determine its capacity requirements and to identify the virtual machines assigned to it. The program 

calculates the local threshold for each virtual machine depending on the infrastructure capacity assigned to 

that specific VM. The system evaluates the task demand with local and global thresholds to decide if the VM 

should be classified as loaded. 

The algorithm modifies the global threshold based on the capacity of the physical location allotted 

to the infrastructure when the task demand exceeds the local threshold. When the task demand exceeds the 

global threshold, the VM is labeled as loaded, and its identifier is included in the output list (VMx[]). When 

the system is considered somewhat stable, the method transfers the determined thresholds to the system 

stability driven objective function (SSOF) algorithm for additional assessment. The LGT-LCI algorithm as 

shown in Algorithm 1 provides a thorough method for identifying load conditions by including local and 

global thresholds, optimizing resource allocation in dispersed settings while upholding system stability. 

Firstly, the load condition identification algorithm is furnished.  
 

Algorithm 1. Local and global threshold-based load condition identification (LGT-LCI) algorithm 
Input:  

T[]: Tasks, VM[]: Virtual Machines allocated to the Tasks, I[]: Infrastructure allocated to 

the VMs, L[]: Physical location allocated to Infrastructures   

Output:  

VMx[]: Loaded VMs 

Process: 

Step-1 For each element in the T[] as T[k] 

a. Calculate the capacity demand as Dem(T[k]) <= <Compute Capacity, Memory 

Capacity, Storage Capacity, Network Bandwidth> 

b. Identify the set of VMs allocated to T[k]  

c. If VM[k]:T[k] 

d. Then, VMI[i] = VM[k] 

e. For each element in the VMI[] as VMI[i]  

i. Identify the I[] capacity allocate to VMI[i] as Cap(I[j]) <= <Compute 

Capacity, Memory Capacity, Storage Capacity, Network Bandwidth> 

ii. For all I[0..j] 

1. Local Threshold <= Local Threshold + Cap(I[j])  

iii. If Dem(T[k]) > Local Threshold 

iv. Then, Identify the capacity of L[] allocated to I[j] as Cap(L[p]) <= 

<Compute Capacity, Memory Capacity, Storage Capacity, Network Bandwidth> 

1. For all L[0..p] 

a. Global Threshold <= Global Threshold + L[p] 

2. If Dem(T[k]) > Global Threshold  
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3. Then, mark VMI[i] as loaded VM and VMx[n++] <= VMI[i] 

v. Else, the Mark system is partially stable and pass (Local Threshold, 

Global Threshold) to the SSOF algorithm 

f. End 

Step-2 End 

Step-3 Return VMx[] 

 

This first algorithm is significantly proven that the distributed nature of the cloud-based 

architectures is not limited to a single physical location and in most cases, the services or applications are 

replicated to provide higher availability. Henceforth, identification of the load condition must consider the 

local and global threshold for the application or service. Secondly, the time-dependent location or space-time 

location identification algorithm is furnished in Algorithm 2. This proposed algorithm is significantly 

observed that without the time-variant parameter in the coordinate system or without the space-time 

coordinate system, the complete load balancing strategy can turn into an infinite backtracking problem.  
 

Algorithm 2. Time-dependent location identification (TDLI) algorithm 
Input:  

S[]: Set of Swarms, L[]: Coordinate of the swarms as (x,y), T[]: Time Instances connected 

to (x,y)  

Output:  

SPC: Space-time coordinate 
Process:  

Step-1 For each element in S[] as S[i] 

a. Identify the coordinates for each S[i] as L[j] with (x,y) at T[i] 

b. Calculate the SPC <= power(x.y,T[i]) 

Step-2 End 

Step-3 Return SPC 

 

Thirdly, the proposed predictive method for the identification of the future best locales, both on a 

personal and global scale, is shown here. This algorithm is illustrated in Algorithm 3. A significant 

improvement in the performance of the PSO has been demonstrated to be brought about by the algorithm that 

has been proposed. The source of this information, which is located in the fourth location, is the technique 

that is utilized in order to ascertain the goal function. Through the utilization of technique that has been 

presented in Algorithm 4, it has been demonstrated beyond a reasonable doubt that the performance of the 

aim function may be enhanced.  
 

Algorithm 3. Predictive local and global best position detection (PLGB-PD) algorithm 
Input:  

SPC[]: Space-time coordinates from TDLI algorithm, V[]: Velocity, W[]: Inertia  

Output:  

LBP[]: Local best positions, GBP: Global best position 
Process:  

Step-1 For each element in V[] as V[i] 

a. Initialize the Error Correction factor, EC[] = 0 

b. Calculate the Regression Coefficient RC <= Mean(V[0..i]) 

c. Calculate V[i+1] <=  W[i] + RC * V[i] + EC[i] 

d. Update EC[i] = Abs(V[i+1] - V[i])/Mean(EC[0..i-1]) 

e. Re-Calculate V[i+1] <=  W[i] + RC * V[i] + EC[i] 

Step-2 End 

Step-3 For each element in SPC[] as SPC[i] 

f. Calculate the SPC[i+1] <= V[i+1] + SPC[i] 

g. If SPC[i+1] > All{SPC[]} 

h. Then, GBP <= SPC[i] 

i. If SPC[i+1] > Any{SPC[]} 

j. Then, LBP[K] <= SPC[i] 

k. Else, Continue  

Step-4 End  

Step-5 Return LBP[], GBP 

 

Algorithm 4. System stability driven objective function (SSOF) algorithm 
Input:  

I[]: Infrastructure allocated to the VMs, LT: Local Threshold, GT: Global Threshold 

Output:  

SS: System state {Balanced, Un-Balanced} 
Process:  

Step-1 For each element in I[] as I[k] 

a. Identify the utilization as Util(I[k]) <= capacity{<Compute Capacity, Memory 

Capacity, Storage Capacity, Network Bandwidth>} - demand{<Compute Capacity, 

Memory Capacity, Storage Capacity, Network Bandwidth>} 

b. If Util(I[k]) < LT 

i. For each element in I[0..k] 
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1. Calculate the total capacity as TC = TC + Util(I[k]) 

ii. If TC < GT 

iii. Then SS: Balanced  

c. Else 

i. SS: Un-Balanced 

Step-2 End 

Step-3 Return SS 

 

Finally, the time-variant predictive location driven corrective velocity-based PSO for load balancing 

algorithm is furnished in Algorithm 5. The final proposed TVPL-CV-PSO-LB algorithm is formulated for 

applying the load balancing strategy and the outcomes are evaluated in the further section of this work. 

Furthermore, in the forthcoming sections of this work, the benchmarked dataset, experimental setup, and the 

obtained results are furnished and discussed.  

 

Algorithm 5. Time-variant predictive location driven corrective velocity-based particle swarm optimization 

for load balancing (TVPL-CV-PSO-LB) algorithm 
Input:  

VMx[]: Loaded VMs from LGT-LCI algorithms, V[]: Velocity, PSO[]: Particles, LBP[]: Local 

best positions from PLGB-PD algorithm, GBP: Global best position from PLGB-PD algorithm 

LT: Local Threshold, GT: Global Threshold 

I[]: Infrastructure allocated to the VMx 

Output: 

SS: System state {Balanced, Un-Balanced}, Map(VMx[]::I[]) 
Process:  

Step-1 Initialize GBP <= 0 

Step-2 For each element in VMx as VMx[i] 

a. Position PSO[0..i] 

b. For each element in PSO[0..i] as PSO[k] 

c. LBP[k] <= SPC[i] from TDLI algorithm  

d. If LBP[k] is best(GBP) 

e. Then, GBP <= LBP[k] 

f. Update LT and GT for I[] 

g. For each element in I[] as I[p] 

i. Call SSOF (I[0..p],LBP[0..k],GBP) 

ii. If SS is Balanced 

iii. Then, STOP 

iv. Else Migrate VMx[i] to I[p+1] 

v. Continue until SS is Balanced   

h. End 

Step-3 End 

Step-4 Return SS, Map(VMx[]::I[]) 

 

 

4. RESULTS AND DISCUSSION 

The obtained results from the proposed algorithms are highly satisfactory and the obtained results 

are discussed here. Firstly, the location prediction results are analyzed in Table 3. During the analysis, the 

mean values from the location vector points are collected and compared with the mean values of the 

predicted location vector for 10 iterations.  

The results are analyzed graphically as well as shown in Figure 1. The table presents the results of 

experiments that evaluated the precision of predicted position vector means compared to real values. Each 

trial is assigned a sequential number, along with entries for the actual location vector mean, the anticipated 

location vector means, and the accuracy %. The "actual location vector mean" column displays the true 

values obtained from experimental data, whereas the "predicted location vector mean" column shows the 

average values predicted by a certain model or method. The "accuracy (%)" column measures the precision 

of the forecasts by calculating the percentage of divergence from the actual mean. The accuracy percentages 

across the trials vary from 97.15% to 99.71%, demonstrating the consistency and dependability of the 

predictive model in estimating the position vector means. The results indicate that the model is good at 

identifying patterns and trends in the data, making it potentially useful for several analytical and predictive 

purposes. 

Secondly, the improvement over the network bandwidth utilization during the live migration of the 

virtual machines is analyzed and compared with the standard benchmarked PSO. During a total of 20 

iterations, a few of the times, the benchmarked PSO have demonstrated overutilization of the network 

bandwidth and tend to create a deadlock condition as demonstrated. The obtained results are analyzed in 

Table 4. 
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Table 1. Summary of the literature reviews 
Reference Technique used Research limitation 

Beegom and Rajasree [1] Discrete PSO algorithm High complexity 
Mapetu et al. [2] Binary PSO algorithm High complexity 

Ghomi et al. [3]  Queuing system Specific to manufacturing 

Ahmad and Khan [4]  PSO-based adaptive load balancing Limited to smaller search space 
Alguliyev et al. [5]  PSO-based load balancing Static load balancing 

Radhamani and Dalin [6] Optimization algorithm Static load balancing 

Dewangan et al. [7] Hybrid task scheduling Limited to smaller search space 
Kumar and Sharma [8]  PSO-based resource scheduling Static load balancing 

Ahmad and Khan [9]  Hybrid load balancing Specific to service domain 

Kodli and Terdal [10] Hybrid genetic algorithm Limited justification to convergence 
problem 

Junaid et al. [11] Modeling approach Higher dependencies on cloud broker 

policy  
Kruekaew and Kimpan [12]  Artificial bee colony algorithm Limited access for hybrid cloud 

Mishra and Majhi [13]  Binary bird swarm optimization Limited to smaller search space 

Goyal et al. [14]  Whale optimization algorithm Higher dependencies on cloud broker 

policy 

Mirmohseni et al. [15] Particle swarm genetic 

optimization 

Limited justification to convergence 

problem 
Malik et al. [16]  Queuing and thresholds Static load balancing 

Miao et al. [17]  Discrete PSO-based algorithm Static load balancing 
Alghamdi [18]  Artificial neural networks-based 

BPSO 

Specific to service domain 

Ajagbe et al. [19]  Mathematical approach Static load balancing 
Adil et al. [20]  Content-aware load balancing Limited justification to convergence 

problem 

Malik and Suman [21]  Lateral Wolf-based PSO Specific to service domain 
Pradhan and Bisoy [22] PSO-based load balancing Higher dependencies on cloud broker 

policy 

Chen et al. [23]  Particle swarm-grey wolf 
cooperation algorithm 

Specific to service domain 

Dakun Yu et al. [24]  Improved bat algorithm Limited justification to convergence 

problem 
Gabhane et al. [25]  Ant colony optimization with tabu 

search 

Limited to smaller search space 

Adil et al. [26]  Machine learning-based load 
balancing 

Static load balancing 

Shahid et al. [27]  Service broker policies evaluation Limited to smaller search space 

 
 

Table 2. Summary of the literature reviews 
Reference Dynamic 

thresholding  

Search space 

optimization 

Genetic 

optimization 

Load 

summarization  

Dynamic load 

balancing 

Beegom and Rajasree [1]   √ √  

Mapetu et al. [2] √  √ √  

Ghomi et al. [3] √ √  √  

Ahmad and Khan [4]  √ √  √ 

Alguliyev et al. [5] √  √   

Radhamani and Dalin [6]  √    

Dewangan et al. [7] √   √  

Kumar and Sharma [8]      

Ahmad and Khan [9] √  √  √ 

Kodli and Terdal [10] √   √  

Junaid et al. [11] √     

Kruekaew and Kimpan [12]  √  √ √ 

Mishra and Majhi [13] √   √  

Goyal et al. [14] √ √ √   

Mirmohseni et al. [15] √ √  √ √ 

Malik et al. [16]  √ √ √ √ 

Miao et al. [17]  √ √   

Alghamdi [18] √ √  √ √ 

Ajagbe et al. [19] √     

Adil et al. [20] √     

Malik and Suman [21] √ √ √ √  

Pradhan and Bisoy [22] √ √  √ √ 

Chen et al. [23] √  √  √ 

Dakun Yu et al. [24]  √ √  √ 

Gabhane et al. [25]    √ √ 

Adil et al. [26] √   √  

Shahid et al. [27]  √ √   
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Table 3. Location prediction variations 
Trail # Actual location vector means Predicted location vector mean Accuracy (%) 

1 12.87388 12.59361 99.71 
2 13.15516 12.59361 99.43 

3 13.43736 12.59361 99.15 

4 13.72044 12.59361 98.87 
5 14.00435 12.59361 98.58 

6 14.28903 12.59361 98.30 

7 14.57444 12.59361 98.01 
8 14.86053 12.59361 97.73 

9 15.14728 12.59361 97.44 

10 15.43463 12.59361 97.15 

 

 

 
 

Figure 1. Sample of the actual vs. predicted locations 

 

 

Table 4. Network utilization analysis 
Trail # Bandwidth ratio (benchmarked PSO) Bandwidth ratio (proposed PSO) Improvement (%) 

1 57.29 50.41 12.00 

2 87.49 51.13 41.56 
3 68.55 50.33 26.57 

4 93.28 52.13 44.11 

5 184.77 53.64 70.97 
6 81.90 50.39 38.47 

7 53.19 51.19 3.76 

8 131.86 51.52 60.93 
9 55.49 49.91 10.06 

10 158.68 52.22 67.09 

11 184.48 51.30 72.19 
12 143.87 48.58 66.23 

13 174.13 51.01 70.70 

14 86.38 51.97 39.84 
15 246.98 50.91 79.39 

16 139.14 50.73 63.54 
17 398.12 50.89 87.22 

18 159.93 50.89 68.18 

19 82.49 50.23 39.10 
20 138.92 50.74 63.47 

 

 

The observation made during the bandwidth analysis, clearly indicates that during a few of the 

iterations such as iteration#5 and iteration#8, the benchmarked PSO has overutilized the network bandwidth 

resulting in lesser response time for the actual services. The results are analyzed graphically as well as shown 

in Figure 2. The table compares the bandwidth ratios obtained from a benchmarked PSO method with those 

from a developed PSO strategy in various trials. Each trial is assigned a number, along with the bandwidth 
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ratios for both the benchmarked and suggested PSO approaches, and the percentage improvement achieved 

by the proposed PSO compared to the benchmarked one. The "bandwidth ratio" columns show how effective 

each PSO approach is in optimizing bandwidth allocation, while the "improvement (%)" column measures 

the enhancement made by the proposed PSO compared to the benchmarked method. The findings 

demonstrate significant enhancements ranging from 3.76% to 87.22%, with the proposed PSO consistently 

surpassing the benchmarked technique in optimizing bandwidth allocation over several trials. The results 

highlight the effectiveness and possible superiority of the suggested PSO method in improving bandwidth use 

and efficiency within the study's framework. 

Further, the analysis of the obtained fitness function values is realized. During the process of 

analysis, the experimentation is conducted for 20 iterations and with 5 different inertia coefficients. The 

findings are furnished in Table 5. 

During the observation, for all iterations, the objective function has demonstrated significant decay 

over time and except few of the iterations, the behaviors are normal. The outcomes are also visualized 

graphically in Figure 3. The table shows the fitness function values from 20 trials for various values of the 

parameter w between 1.0 and 3.0. Each trial number corresponds to the fitness function values for the 

provided w values. Increasing the weight won a certain component of the fitness function typically leads to a 

drop in the fitness function values. There is a progressive decrease in fitness function values as the weight 

w increases, indicating that heavier weights lead to more rigorous fitness assessments. The results emphasize 

how the optimization process is affected by the parameter w, stressing the significance of parameter tweaking 

in maximizing fitness function outcomes for the specific issue area. 

 

 

 
 

Figure 2. Network bandwidth utilization ratio analysis 

 

 

Table 5. Objective function value 
Trail 

# 

Fitness function 

value (w=1.0) 

Fitness function 

value (w=1.5) 

Fitness function 

value (w=2.0) 

Fitness function 

value (w=2.5) 

Fitness function 

value (w=3.0) 

1 5401 5321 5287 5151 5107 

2 5374 5189 4908 4678 4881 

3 4994 4766 4905 4453 4848 

4 4985 4724 4704 4342 4426 
5 4960 4719 4583 4312 4159 

6 4934 4707 4502 4312 4114 

7 4931 4703 4502 4308 4113 
8 4900 4703 4502 4301 4102 

9 4900 4703 4501 4300 4101 

10 4900 4703 4501 4300 4100 
11 4900 4702 4500 4300 4100 

12 4900 4701 4500 4300 4100 

13 4900 4701 4500 4300 4100 
14 4900 4700 4500 4300 4100 

15 4900 4700 4500 4300 4100 

16 4900 4700 4500 4300 4100 
17 4900 4700 4500 4300 4100 

18 4900 4700 4500 4300 4100 

19 4900 4700 4500 4300 4100 

20 4900 4700 4500 4300 4100 
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Figure 3. Fitness function value analysis 

 

 

Finally, the time for completing the load balancing process using the proposed algorithm is 

analyzed. During the experiment, a total of 30 iterations are performed and the time or makespan analysis is 

furnished in Table 6. With the meantime of 166.20 sec to balance the load, the proposed algorithms have 

generated significantly high improvements over the parallel research outcomes. The obtained results are 

visualized graphically in Figure 4.  

 

 

Table 6. Load balancing time analysis 
Trail # Task ID VM ID Makespan (sec) 

1 5 6 175.00 

2 0 5 200.00 

3 1 1 40.00 
4 2 6 50.00 

5 3 1 100.00 

6 7 1 30.00 
7 4 3 399.95 

8 6 4 499.85 
9 9 3 129.95 

10 8 5 399.98 

11 4 0 50.00 
12 5 0 43.75 

13 6 0 31.25 

14 9 2 130.00 
15 0 6 150.00 

16 1 0 25.00 

17 2 2 100.00 
18 3 1 100.00 

19 7 0 18.75 

20 8 1 120.00 
21 0 0 37.50 

22 5 0 43.75 

23 6 0 31.25 
24 4 3 399.95 

25 9 3 130.00 

26 1 3 200.00 
27 2 3 99.95 

28 3 3 500.00 

29 7 3 150.00 
30 8 3 600.00 
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Figure 4. Load balancing time analysis 

 

 

Henceforth, with the detailed discussion on the obtained results, in the next section of this work, the 

comparative analysis is carried out. Comparative analysis is a crucial technique in the field of computational 

optimization and resource management. It allows for the evaluation of the effectiveness, performance, and 

suitability of different algorithms and approaches in various areas. Given the increasing complexity of 

modern systems, particularly in cloud computing settings, where activities, resources, and demands are 

always changing and convoluted, it is essential to perform a comparative study. Such analysis not only helps 

to comprehend the advantages and constraints of various strategies but also enables well-informed decision-

making regarding their adoption and implementation. Through the comparison of different methodologies, 

researchers and practitioners can obtain significant insights on the comparative benefits, compromises, and 

appropriateness of each method in tackling specific issues and needs. This thorough examination promotes 

the development of stronger, more efficient, and adaptable solutions, leading to progress in cloud computing 

and related disciplines. Within this framework, we undertake a thorough examination of different 

optimization methods and load balancing approaches utilized in cloud computing settings. Our objective is to 

clarify their relative performance, capabilities, and practical consequences through a comparative study as 

shown in Table 7. 

 

 

Table 7. Comparative analysis 
Method  Number of iterations Time or make span (sec) 

Canonical PSO hierarchical PSO 105 439.89 

Self-organizing hierarchical PSO with time-varying 
acceleration coefficients (HPSO-TVAC) 36 

435.59 

Time-varying acceleration coefficient (TVAC) 58 445.77 

PSO using stochastic inertia weight (Sto-IW) 124 442.12 
PSO with time-varying inertia weight (TVIW) 200 443.15 

PSO 164 440.74 

Time variant predictive location driven corrective velocity-
based particle swarm optimization for load balancing 

(TVPL-CV-PSO-LB) PSO 20 166.20 

 

 

The table compares several PSO algorithms in terms of their efficiency regarding convergence 

speed and computational time. Smaller numbers in the "number of iterations" column suggest quicker 

convergence, meaning that the method requires less iterations to get an ideal solution. Lower numbers in the 

"time or make span (Sec)" column imply faster computing time, demonstrating the algorithm's efficiency in 

completing the optimization process. The "time variant predictive location driven corrective velocity based 

particle swarm optimization for load balancing (TVPL-CV-PSO-LB)" algorithm shows the quickest 
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convergence and computational speed, requiring only 20 iterations and achieving a make span of 166.20 

seconds based on the data provided. The "particle swarm optimization with time-varying inertia weight 

(TVIW)" algorithm necessitates 200 iterations and has a computational time of 443.15 seconds, indicating 

slower convergence and greater computational overhead compared to other algorithms. 

 

 

5. CONCLUSION 

The research presents a novel approach for cloud-based load balancing, which is based on biological 

processes and employs the PSO algorithm. The study focuses on ensuring system stability by analyzing 

resource utilization and using local and global threshold studies to identify virtual machines that require 

relocation. The paper presents a novel method for positioning swarms based on space-time concepts, 

reducing backtracking in solution space and leading to a notable 20% decrease in time complexity. The 

proposed technique for forecasting optimal locations enhances time efficiency, hence impacting service level 

agreements (SLA) and service responsiveness. The study's commitment to improving load balancing methods 

is demonstrated by the creation of a new objective function designed to optimize both local and global 

locations. The paper introduces a new methodology called time-variant predictive location driven corrective 

velocity based particle swarm optimization for load balancing in cloud-based data centers, which combines 

two approaches. The proposed technique surpasses parallel benchmarked PSO-inspired algorithms, 

delivering enhancements of 50% or higher. This study enhances cloud-based load balancing and has the 

potential to improve the efficiency and reliability of cloud-based services, benefiting both providers and users 

in the digital realm. 
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