
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 35, No. 3, September 2024, pp. 1688~1701

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v35.i3.pp1688-1701  1688

Journal homepage: http://ijeecs.iaescore.com

A particle swarm optimization inspired global and local stability

driven predictive load balancing strategy

Niladri Sekhar Dey, Hrushi Kesava Raju Sangaraju
Department of Computer Science and Engineering, KLEF, Vijayawada, India

Article Info ABSTRACT

Article history:

Received Feb 25, 2024

Revised Apr 18, 2024

Accepted May 7, 2024

 In distributed systems and parallel computing, optimal load balancing is

difficult. These abstract addresses load balancing in distributed situations,

highlighting current solutions' flaws and emphasizing the need for new ones.

Load balancing research includes centralized and distributed algorithms,

heuristics, and predictive models. Despite various successful methods,

workload adaptability, overhead reduction, and scaling to large systems

remain unresolved. This study proposes a particle swarm optimization (PSO)

load balancing method that considers global and local stability

considerations. The proposed method uses PSO principles to balance

exploration and exploitation and allocate resources among distributed nodes.

Predictive components improve preventative load management by predicting

workload changes. Global and local load balancing stability criteria

distinguish this study. The recommended method considers global system-

wide performance indicators, local node-level characteristics, and micro-

level stability to maximize system efficiency. A dual-focus technique

distinguishes the proposed load balancing strategy from others, solving

dynamic distributed system challenges. The study examines load balancing

system advances and suggests improvements and further research. More

accurate prediction modeling, stability measures, and application-specific

enhancements may be studied in the future. Experimental validation and

real-world implementation of the recommended approach are necessary to

determine its practicality and ability to handle modern distributed computing

systems.

Keywords:

Cloud-based load balancing

Particle swarm optimization

Resource utilization analysis

Service level agreements

Space-time swarm positioning

Time complexity reduction

This is an open access article under the CC BY-SA license.

Corresponding Author:

Niladri Sekhar Dey

Department of Computer Science and Engineering, KLEF

Vijayawada, Andhra Pradesh, India

Email: sd.niladri@gmail.com

1. INTRODUCTION

In the dynamic field of modern computer systems, the main challenge is to achieve optimal resource

use while maintaining system stability and performance. To address the challenges of task distribution and

resource management in extensive distributed computing systems, innovative strategies must be devised.

Load balancing is essential in this scenario as it ensures the equitable distribution of resources across the

system to prevent congestion, decrease response times, and enhance overall efficiency. Predictive load

balancing methods have transformed systems by allowing them to predict and preemptively handle

fluctuations in demand, thus avoiding performance degradation or system failures. An new strategy in load

balancing research and implementation involves integrating particle swarm optimization (PSO) ideas with

global and local stability considerations.

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A particle swarm optimization inspired global and local stability … (Niladri Sekhar Dey)

1689

This publication signifies the completion of this revolutionary technique. The framework tries to

efficiently handle the intricate relationships among system dynamics, workload fluctuations, and resource

limitations. The method employs the concepts of PSO, a bio-inspired optimization technique that relies on

the collective behavior of swarming organisms. The system uses virtual particles to systematically investigate

and improve the solution space in order to achieve load balance throughout the distributed system. This

approach is unusual since it focuses on both global and local stability, not only optimization. Global stability

ensures the system's overall balance and resilience to disruptive events, whereas local stability pertains to the

behavior of individual nodes and resource utilization patterns, contributing to the system's overall robustness.

Essentially, the predictive nature of this load balancing solution represents a break from reactive approaches

that rely on adjusting based on deviations from ideal performance circumstances. This approach uses

predictive analytics and machine learning algorithms to forecast future workload patterns based on historical

data. It then redistributes resources beforehand to avoid any discrepancies or excessive loads.

The system becomes more responsive and develops proactive intelligence by using predictive

analytics, allowing it to adapt to changing workload dynamics and emerging trends. The approach constantly

enhances its prediction models by consistently monitoring and evaluating crucial performance data and

promptly obtaining feedback. This improves their accuracy and ability to adapt to evolving operational

conditions. The emphasis on global and local stability is essential for ensuring the system's resilience against

transient interruptions and unforeseen events. The method uses data from network structure, traffic patterns,

and resource utilization measures to redistribute resources effectively. This guarantees the overall stability of

the system and the security of each individual node. This paper gives a thorough approach for handling

workloads in distributed computing environments. It surpasses traditional methods and recognizes the

complexities of present systems. The method integrates PSO ideas with predictive analytics and stability-

driven optimization techniques to enhance efficiency, resilience, and performance in distributed systems

architecture. This advanced framework is prepared to redefine load balancing performance boundaries in the

dynamic digital world, allowing organizations to gain more scalability, reliability, and agility in their quest

for computational superiority.

The literature review is an essential element in comprehending the background, development, and

present status of research relevant to the subject of "A particle swarm optimization inspired global and local

stability driven predictive load balancing strategy." This section explores a wide range of topics in literature

related to load balancing tactics, optimization techniques, predictive analytics, and stability-driven

approaches in distributed computing settings. Our goal is to provide a strong theoretical basis for our

revolutionary predictive load balancing system by combining insights from important publications, current

research projects, and advanced methodologies. We want to understand the complexities of load balancing

dynamics and gain significant insights for the development of our suggested strategy by thoroughly

examining important topics, theoretical concepts, empirical findings, and methodological advancements.

The literature on load balancing algorithms in cloud computing covers a wide range of methods that

try to optimize resource allocation, improve system performance, and ensure fair distribution of workloads.

In their study, Beegom and Rajasree [1] provide integer-PSO, a specialized PSO algorithm designed for job

scheduling in cloud computing systems. In their study, Mapetu et al. [2] provide a binary particle swarm

optimization technique that is both cost-effective and has a low time complexity. The approach is specifically

designed for job scheduling and load balancing in cloud computing, with a focus on achieving high

efficiency and scalability. In their study, Ghomi et al. [3] investigate the optimization of resource usage in

cloud manufacturing through service load balancing, job scheduling, and transportation optimization. They

utilize queuing systems to achieve this objective.

In their study, Ahmad and Khan [4] propose a task scheduling method for cloud computing settings

that utilizes a PSO approach and incorporates adaptive load balancing. The program aims to enhance

flexibility and optimize performance. Alguliyev et al. [5] propose a load balancing strategy based on PSO,

which aims to achieve a balanced distribution of computational workloads in cloud computing systems. In

their study, Radhamani and Dalin [6] suggest using a PCA-TA-IRIAL strategy that utilizes optimization

algorithms to choose migrating virtual machines and destination physical machines for cloud computing that

is both environmentally friendly and evenly distributed in terms of workload.

Dewangan et al. [7] propose GAP, a hybrid task scheduling method that aims to improve load

balancing in cloud systems by incorporating several optimization strategies. In their study, Kumar and

Sharma [8] propose an innovative resource scheduling approach that utilizes PSO to enhance the quality of

service (QoS) characteristics in cloud computing settings. Ahmad and Khan [9] provide an effective load

balancing scheduling solution for cloud computing, which integrates components of hybrid systems to get

optimal resource usage.

Kodli and Terdal [10] suggest a hybrid max-min genetic algorithm for achieving load balancing and

work scheduling in cloud systems, with a focus on optimizing computing resources. Junaid et al. [11] provide

a refined method for distributing workloads in the cloud, using many optimization algorithms to guarantee

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1688-1701

1690

effective allocation of resources. Kruekaew and Kimpan [12] improve the artificial bee colony method for

virtual machine scheduling and load balancing in cloud computing, with a specific emphasis on enhancing

performance and scalability.

In their study, Mishra and Majhi [13] propose a load balancing method for cloud computing

environments that is based on binary bird swarm optimization. The approach focuses on improving efficiency

and flexibility. Goyal et al. [14] introduce an enhanced framework for allocating energy resources in cloud

settings using the whale optimization algorithm. The primary objective of this framework is to promote

sustainability and improve resource efficiency. Mirmohseni et al. [15] propose LBPSGORA, a load

balancing method that combines particle swarm genetic optimization method to enhance resource allocation

and reduce energy usage in cloud networks.

Malik et al. [16] propose a load balancing algorithm that focuses on energy efficiency for

scheduling workflows in cloud data centers. The program utilizes queuing theory and thresholds to maximize

the consumption of resources. Miao et al. [17] provide a discrete PSO technique for load balancing in

distributed simulations within cloud settings. The algorithm focuses on achieving high efficiency and

scalability. Alghamdi [18] presents a novel approach employing artificial neural networks and binary PSO to

optimize load balancing and job scheduling in cloud computing settings. The study primarily focuses on

enhancing optimization and performance.

Ajagbe et al. [19] introduce P-ACOHONEYBEE, an innovative load balancer for cloud computing

that utilizes a mathematical method to guarantee optimal distribution of resources. In their study, Adil et al.

[20] provide PSO-CALBA, a load balancing technique that utilizes PSO to improve resource allocation in

cloud computing systems. Malik and Suman [21] introduce a method called lateral wolf-based particle swarm

optimization (LW-PSO) for achieving load balancing in cloud computing. Their approach focuses on the key

aspects of flexibility and efficiency. Pradhan and Bisoy [22] introduce an innovative load balancing method

utilizing PSO for cloud computing platforms. Their primary objectives are to enhance scalability and

optimize performance.

Chen et al. [23] introduce a particle swarm-grey wolf cooperation algorithm for the purpose of

scheduling microservice containers in cloud computing. The algorithm focuses on promoting collaboration

and optimizing efficiency. Yu et al. [24] propose a novel approach to optimize task scheduling in cloud

settings. They utilize an enhanced version of the bat algorithm to achieve performance optimization and

maximize resource consumption. Gabhane et al. [25] introduce a novel method for load balancing across

several resources, combining ant colony optimization with tabu search. The methodology focuses on

achieving flexibility and optimization. In their study, Adil et al. [26] assess load-balancing algorithms in

cloud computing, specifically examining the performance assessment and system efficiency of various

service broker policies. In their study, Shahid et al. [27] present a rapid and universally optimal method for

load balancing in cloud computing, with a focus on efficiency and scalability. The summary of the recent

works are summarized in Table 1.

2. THE PROPOSED METHOD

After the detailed analysis of the parallel research outcomes and a brief introduction of the

problems, in this section of the work, the problems are identified in detail with mathematical formulations.

Firstly, the identification of the loaded instances with virtualization is identified. The local configurations

primarily lead to the local thresholding and during the distributed application architecture, the local

thresholds are not sufficient to identify the overall load or service quality disruptions for any application or

service. To prove this stated ideology, assuming that the total task set, T[], is a collection of individual tasks

as Ti. Thus, for a total number of n tasks, this relation can be formulated as (1).

𝑇[] = ∑ 𝑇𝑖
𝑛
𝑖=1 (1)

Also, the complete infrastructure in the cloud computing environment primarily relies on the virtualization

concept and assuming that each physical infrastructure, Ij, is part of the global infrastructure I[]. Thus, for a

total number of m instances, the relation can be formulated as (2).

𝐼[] = ∑ 𝐼𝑗
𝑚
𝑗=1 (2)

Further, each virtual machine, VMk, is part of the collection of the total virtual machines, VM[],

allocated to a single task Ti. Thus, for a p number of virtual machines, this relation can be formulated as (3).

𝑇𝑖 → 𝑉𝑀[] = ∑ 𝑉𝑀𝑘
𝑝
𝑘=1 (3)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A particle swarm optimization inspired global and local stability … (Niladri Sekhar Dey)

1691

Also,

𝑉𝑀[] → 𝐼𝑗 (4)

Thus,

𝑇𝑖 → 𝑉𝑀[] → 𝐼𝑗 (5)

Regardless of to mention, that each physical instance is again a collection of four standard components as

compute, C, network bandwidth, N, memory, M and storage, S. Where each of these four components has its

capacity. Henceforth, the capacity, 𝛷(𝐼𝑗), can be presented as (6).

𝛷(𝐼𝑗) = ⟨𝐶, 𝑁,𝑀, 𝑆⟩ (6)

Again, during the task allocation process, the utilization or demand, 𝛤(𝑇𝑖 → 𝐼𝑗), of these four resource

components also must be analyzed to identify the overloading situations as (7).

𝛤(𝑇𝑖 → 𝐼𝑗) = ⟨𝐶, 𝑁,𝑀, 𝑆⟩ (7)

In the standard process, of overload condition identification, if the following condition is true, then the

system is to be considered unstable and further demands load balancing.

𝛤(𝑇𝑖 → 𝐼𝑗) ≥ 𝛷(𝐼𝑗) (8)

Nevertheless, during the identification of the overloaded conditions, the consideration of the

distributed architecture for any application or services must be assumed, as a single task can be replicated

over multiple physical instances as (9).

𝑇𝑖 → 𝐼𝑗 , 𝐼𝑗+1 (9)

Thus, the calculation of the load situation or the quality of the services, QoS, must be formulated as (10).

𝑄𝑜𝑆 ⇐ |𝛤(𝑇𝑖 → 𝐼𝑗 , 𝑇𝑖 → 𝐼𝑗+1) − 𝛷(𝐼𝑗 , 𝐼𝑗+1)| (10)

Henceforth, it is conclusive to state that, the correct method to identify the quality of the service is stated in

(23), rather than (21). Hence, this problem is also considered as a bottleneck of the current research and the

proposed solution is formulated in the next section of this work.

Secondly, during any genetic optimization method, the termination condition is always driven by the

fitness function or maximizing the fitness function in terms of the objective function. In the traditional

method the objective function is always calculated in terms of the local best allocation as stated in the

following formulation, derived from (20).

𝑓(𝐼𝑗) = 𝑚𝑎𝑥(
∑ 𝛤(𝑇𝑖)→𝐼𝑗
𝑛
𝑖=1

𝑛
) (11)

This objective function will lead to the stability of the local resource pools. However, the stability of the data

center cannot be guaranteed. As, for the rest of the resource pools, the objective function may not ensure the

same maximization conditions.

𝑓(𝐼𝑗) ≠ 𝑓(𝐼𝑗+1) ≠ 𝑓(𝐼𝑗+𝑛) (12)

Henceforth, this challenge must be addressed with the consideration of the complete system stabilization, for

which the solution is stated in the next section of this work.

Finally, the location of the swarm in the PSO model plays a vital role as the velocity of the swarms

must be calculated using the personal best and global best location in every iteration. Any location, 𝐿𝛼, on a

two-dimensional search space can always be presented with the help of two variables denoting the coordinate

values as (13).

𝐿𝛼 = 𝑓(𝑋, 𝑌) (13)

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1688-1701

1692

Assuming that, one particle has two identified coordinates at two different time intervals at t1 and t2, as𝐿𝛼1,

𝐿𝛼2, which can be formulated as (14).

𝐿𝛼1 = 𝑓(𝑋1, 𝑌1)[𝑡1] (14)

and,

𝐿𝛼2 = 𝑓(𝑋2, 𝑌2)[𝑡2] (15)

Considering the distance from the origin [0,0] for these two points are 𝛿1 and 𝛿2. Assuming the coordinates at

the first instance is further than the coordinates at the second time instance as the distance vectors hold the

following relation.

𝛿1 > 𝛿2 (16)

Further, as the coordinates are different 𝑋1 ≠ 𝑋2, 𝑌1 ≠ 𝑌2, the new location, 𝐿𝛼2, will be considered as an

improvement in the search space. This process shall leave to an unsolvable and infinite backtracking problem

as shown in Table 2.

3. METHOD

After the proposed mathematical models for solving, the identified research problems, based on the

same mathematical models, in this section of the work, the proposed algorithms are furnished. The LGT-LCI

algorithm efficiently allocates jobs to virtual machines (VMs) in distributed systems by using local and

global threshold-based load condition identification. The method requires input in the form of tasks (T[]),

VMs assigned to those tasks (VM[]), the infrastructure allocated to the VMs (I[]), and the physical locations

given to the infrastructures (L[]). The main result is the detection of loaded virtual machines (VMx[]).

The algorithm functions through many phases. The process involves analyzing each job separately

to determine its capacity requirements and to identify the virtual machines assigned to it. The program

calculates the local threshold for each virtual machine depending on the infrastructure capacity assigned to

that specific VM. The system evaluates the task demand with local and global thresholds to decide if the VM

should be classified as loaded.

The algorithm modifies the global threshold based on the capacity of the physical location allotted

to the infrastructure when the task demand exceeds the local threshold. When the task demand exceeds the

global threshold, the VM is labeled as loaded, and its identifier is included in the output list (VMx[]). When

the system is considered somewhat stable, the method transfers the determined thresholds to the system

stability driven objective function (SSOF) algorithm for additional assessment. The LGT-LCI algorithm as

shown in Algorithm 1 provides a thorough method for identifying load conditions by including local and

global thresholds, optimizing resource allocation in dispersed settings while upholding system stability.

Firstly, the load condition identification algorithm is furnished.

Algorithm 1. Local and global threshold-based load condition identification (LGT-LCI) algorithm
Input:

T[]: Tasks, VM[]: Virtual Machines allocated to the Tasks, I[]: Infrastructure allocated to

the VMs, L[]: Physical location allocated to Infrastructures

Output:

VMx[]: Loaded VMs

Process:

Step-1 For each element in the T[] as T[k]

a. Calculate the capacity demand as Dem(T[k]) <= <Compute Capacity, Memory

Capacity, Storage Capacity, Network Bandwidth>

b. Identify the set of VMs allocated to T[k]

c. If VM[k]:T[k]

d. Then, VMI[i] = VM[k]

e. For each element in the VMI[] as VMI[i]

i. Identify the I[] capacity allocate to VMI[i] as Cap(I[j]) <= <Compute

Capacity, Memory Capacity, Storage Capacity, Network Bandwidth>

ii. For all I[0..j]

1. Local Threshold <= Local Threshold + Cap(I[j])

iii. If Dem(T[k]) > Local Threshold

iv. Then, Identify the capacity of L[] allocated to I[j] as Cap(L[p]) <=

<Compute Capacity, Memory Capacity, Storage Capacity, Network Bandwidth>

1. For all L[0..p]

a. Global Threshold <= Global Threshold + L[p]

2. If Dem(T[k]) > Global Threshold

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A particle swarm optimization inspired global and local stability … (Niladri Sekhar Dey)

1693

3. Then, mark VMI[i] as loaded VM and VMx[n++] <= VMI[i]

v. Else, the Mark system is partially stable and pass (Local Threshold,

Global Threshold) to the SSOF algorithm

f. End

Step-2 End

Step-3 Return VMx[]

This first algorithm is significantly proven that the distributed nature of the cloud-based

architectures is not limited to a single physical location and in most cases, the services or applications are

replicated to provide higher availability. Henceforth, identification of the load condition must consider the

local and global threshold for the application or service. Secondly, the time-dependent location or space-time

location identification algorithm is furnished in Algorithm 2. This proposed algorithm is significantly

observed that without the time-variant parameter in the coordinate system or without the space-time

coordinate system, the complete load balancing strategy can turn into an infinite backtracking problem.

Algorithm 2. Time-dependent location identification (TDLI) algorithm
Input:

S[]: Set of Swarms, L[]: Coordinate of the swarms as (x,y), T[]: Time Instances connected

to (x,y)

Output:

SPC: Space-time coordinate
Process:

Step-1 For each element in S[] as S[i]

a. Identify the coordinates for each S[i] as L[j] with (x,y) at T[i]

b. Calculate the SPC <= power(x.y,T[i])

Step-2 End

Step-3 Return SPC

Thirdly, the proposed predictive method for the identification of the future best locales, both on a

personal and global scale, is shown here. This algorithm is illustrated in Algorithm 3. A significant

improvement in the performance of the PSO has been demonstrated to be brought about by the algorithm that

has been proposed. The source of this information, which is located in the fourth location, is the technique

that is utilized in order to ascertain the goal function. Through the utilization of technique that has been

presented in Algorithm 4, it has been demonstrated beyond a reasonable doubt that the performance of the

aim function may be enhanced.

Algorithm 3. Predictive local and global best position detection (PLGB-PD) algorithm
Input:

SPC[]: Space-time coordinates from TDLI algorithm, V[]: Velocity, W[]: Inertia

Output:

LBP[]: Local best positions, GBP: Global best position
Process:

Step-1 For each element in V[] as V[i]

a. Initialize the Error Correction factor, EC[] = 0

b. Calculate the Regression Coefficient RC <= Mean(V[0..i])

c. Calculate V[i+1] <= W[i] + RC * V[i] + EC[i]

d. Update EC[i] = Abs(V[i+1] - V[i])/Mean(EC[0..i-1])

e. Re-Calculate V[i+1] <= W[i] + RC * V[i] + EC[i]

Step-2 End

Step-3 For each element in SPC[] as SPC[i]

f. Calculate the SPC[i+1] <= V[i+1] + SPC[i]

g. If SPC[i+1] > All{SPC[]}

h. Then, GBP <= SPC[i]

i. If SPC[i+1] > Any{SPC[]}

j. Then, LBP[K] <= SPC[i]

k. Else, Continue

Step-4 End

Step-5 Return LBP[], GBP

Algorithm 4. System stability driven objective function (SSOF) algorithm
Input:

I[]: Infrastructure allocated to the VMs, LT: Local Threshold, GT: Global Threshold

Output:

SS: System state {Balanced, Un-Balanced}
Process:

Step-1 For each element in I[] as I[k]

a. Identify the utilization as Util(I[k]) <= capacity{<Compute Capacity, Memory

Capacity, Storage Capacity, Network Bandwidth>} - demand{<Compute Capacity,

Memory Capacity, Storage Capacity, Network Bandwidth>}

b. If Util(I[k]) < LT

i. For each element in I[0..k]

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1688-1701

1694

1. Calculate the total capacity as TC = TC + Util(I[k])

ii. If TC < GT

iii. Then SS: Balanced

c. Else

i. SS: Un-Balanced

Step-2 End

Step-3 Return SS

Finally, the time-variant predictive location driven corrective velocity-based PSO for load balancing

algorithm is furnished in Algorithm 5. The final proposed TVPL-CV-PSO-LB algorithm is formulated for

applying the load balancing strategy and the outcomes are evaluated in the further section of this work.

Furthermore, in the forthcoming sections of this work, the benchmarked dataset, experimental setup, and the

obtained results are furnished and discussed.

Algorithm 5. Time-variant predictive location driven corrective velocity-based particle swarm optimization

for load balancing (TVPL-CV-PSO-LB) algorithm
Input:

VMx[]: Loaded VMs from LGT-LCI algorithms, V[]: Velocity, PSO[]: Particles, LBP[]: Local

best positions from PLGB-PD algorithm, GBP: Global best position from PLGB-PD algorithm

LT: Local Threshold, GT: Global Threshold

I[]: Infrastructure allocated to the VMx

Output:

SS: System state {Balanced, Un-Balanced}, Map(VMx[]::I[])
Process:

Step-1 Initialize GBP <= 0

Step-2 For each element in VMx as VMx[i]

a. Position PSO[0..i]

b. For each element in PSO[0..i] as PSO[k]

c. LBP[k] <= SPC[i] from TDLI algorithm

d. If LBP[k] is best(GBP)

e. Then, GBP <= LBP[k]

f. Update LT and GT for I[]

g. For each element in I[] as I[p]

i. Call SSOF (I[0..p],LBP[0..k],GBP)

ii. If SS is Balanced

iii. Then, STOP

iv. Else Migrate VMx[i] to I[p+1]

v. Continue until SS is Balanced

h. End

Step-3 End

Step-4 Return SS, Map(VMx[]::I[])

4. RESULTS AND DISCUSSION

The obtained results from the proposed algorithms are highly satisfactory and the obtained results

are discussed here. Firstly, the location prediction results are analyzed in Table 3. During the analysis, the

mean values from the location vector points are collected and compared with the mean values of the

predicted location vector for 10 iterations.

The results are analyzed graphically as well as shown in Figure 1. The table presents the results of

experiments that evaluated the precision of predicted position vector means compared to real values. Each

trial is assigned a sequential number, along with entries for the actual location vector mean, the anticipated

location vector means, and the accuracy %. The "actual location vector mean" column displays the true

values obtained from experimental data, whereas the "predicted location vector mean" column shows the

average values predicted by a certain model or method. The "accuracy (%)" column measures the precision

of the forecasts by calculating the percentage of divergence from the actual mean. The accuracy percentages

across the trials vary from 97.15% to 99.71%, demonstrating the consistency and dependability of the

predictive model in estimating the position vector means. The results indicate that the model is good at

identifying patterns and trends in the data, making it potentially useful for several analytical and predictive

purposes.

Secondly, the improvement over the network bandwidth utilization during the live migration of the

virtual machines is analyzed and compared with the standard benchmarked PSO. During a total of 20

iterations, a few of the times, the benchmarked PSO have demonstrated overutilization of the network

bandwidth and tend to create a deadlock condition as demonstrated. The obtained results are analyzed in

Table 4.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A particle swarm optimization inspired global and local stability … (Niladri Sekhar Dey)

1695

Table 1. Summary of the literature reviews
Reference Technique used Research limitation

Beegom and Rajasree [1] Discrete PSO algorithm High complexity
Mapetu et al. [2] Binary PSO algorithm High complexity

Ghomi et al. [3] Queuing system Specific to manufacturing

Ahmad and Khan [4] PSO-based adaptive load balancing Limited to smaller search space
Alguliyev et al. [5] PSO-based load balancing Static load balancing

Radhamani and Dalin [6] Optimization algorithm Static load balancing

Dewangan et al. [7] Hybrid task scheduling Limited to smaller search space
Kumar and Sharma [8] PSO-based resource scheduling Static load balancing

Ahmad and Khan [9] Hybrid load balancing Specific to service domain

Kodli and Terdal [10] Hybrid genetic algorithm Limited justification to convergence
problem

Junaid et al. [11] Modeling approach Higher dependencies on cloud broker

policy
Kruekaew and Kimpan [12] Artificial bee colony algorithm Limited access for hybrid cloud

Mishra and Majhi [13] Binary bird swarm optimization Limited to smaller search space

Goyal et al. [14] Whale optimization algorithm Higher dependencies on cloud broker

policy

Mirmohseni et al. [15] Particle swarm genetic

optimization

Limited justification to convergence

problem
Malik et al. [16] Queuing and thresholds Static load balancing

Miao et al. [17] Discrete PSO-based algorithm Static load balancing
Alghamdi [18] Artificial neural networks-based

BPSO

Specific to service domain

Ajagbe et al. [19] Mathematical approach Static load balancing
Adil et al. [20] Content-aware load balancing Limited justification to convergence

problem

Malik and Suman [21] Lateral Wolf-based PSO Specific to service domain
Pradhan and Bisoy [22] PSO-based load balancing Higher dependencies on cloud broker

policy

Chen et al. [23] Particle swarm-grey wolf
cooperation algorithm

Specific to service domain

Dakun Yu et al. [24] Improved bat algorithm Limited justification to convergence

problem
Gabhane et al. [25] Ant colony optimization with tabu

search

Limited to smaller search space

Adil et al. [26] Machine learning-based load
balancing

Static load balancing

Shahid et al. [27] Service broker policies evaluation Limited to smaller search space

Table 2. Summary of the literature reviews
Reference Dynamic

thresholding

Search space

optimization

Genetic

optimization

Load

summarization

Dynamic load

balancing

Beegom and Rajasree [1] √ √

Mapetu et al. [2] √ √ √

Ghomi et al. [3] √ √ √

Ahmad and Khan [4] √ √ √

Alguliyev et al. [5] √ √

Radhamani and Dalin [6] √

Dewangan et al. [7] √ √

Kumar and Sharma [8]

Ahmad and Khan [9] √ √ √

Kodli and Terdal [10] √ √

Junaid et al. [11] √

Kruekaew and Kimpan [12] √ √ √

Mishra and Majhi [13] √ √

Goyal et al. [14] √ √ √

Mirmohseni et al. [15] √ √ √ √

Malik et al. [16] √ √ √ √

Miao et al. [17] √ √

Alghamdi [18] √ √ √ √

Ajagbe et al. [19] √

Adil et al. [20] √

Malik and Suman [21] √ √ √ √

Pradhan and Bisoy [22] √ √ √ √

Chen et al. [23] √ √ √

Dakun Yu et al. [24] √ √ √

Gabhane et al. [25] √ √

Adil et al. [26] √ √

Shahid et al. [27] √ √

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1688-1701

1696

Table 3. Location prediction variations
Trail # Actual location vector means Predicted location vector mean Accuracy (%)

1 12.87388 12.59361 99.71
2 13.15516 12.59361 99.43

3 13.43736 12.59361 99.15

4 13.72044 12.59361 98.87
5 14.00435 12.59361 98.58

6 14.28903 12.59361 98.30

7 14.57444 12.59361 98.01
8 14.86053 12.59361 97.73

9 15.14728 12.59361 97.44

10 15.43463 12.59361 97.15

Figure 1. Sample of the actual vs. predicted locations

Table 4. Network utilization analysis
Trail # Bandwidth ratio (benchmarked PSO) Bandwidth ratio (proposed PSO) Improvement (%)

1 57.29 50.41 12.00

2 87.49 51.13 41.56
3 68.55 50.33 26.57

4 93.28 52.13 44.11

5 184.77 53.64 70.97
6 81.90 50.39 38.47

7 53.19 51.19 3.76

8 131.86 51.52 60.93
9 55.49 49.91 10.06

10 158.68 52.22 67.09

11 184.48 51.30 72.19
12 143.87 48.58 66.23

13 174.13 51.01 70.70

14 86.38 51.97 39.84
15 246.98 50.91 79.39

16 139.14 50.73 63.54
17 398.12 50.89 87.22

18 159.93 50.89 68.18

19 82.49 50.23 39.10
20 138.92 50.74 63.47

The observation made during the bandwidth analysis, clearly indicates that during a few of the

iterations such as iteration#5 and iteration#8, the benchmarked PSO has overutilized the network bandwidth

resulting in lesser response time for the actual services. The results are analyzed graphically as well as shown

in Figure 2. The table compares the bandwidth ratios obtained from a benchmarked PSO method with those

from a developed PSO strategy in various trials. Each trial is assigned a number, along with the bandwidth

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A particle swarm optimization inspired global and local stability … (Niladri Sekhar Dey)

1697

ratios for both the benchmarked and suggested PSO approaches, and the percentage improvement achieved

by the proposed PSO compared to the benchmarked one. The "bandwidth ratio" columns show how effective

each PSO approach is in optimizing bandwidth allocation, while the "improvement (%)" column measures

the enhancement made by the proposed PSO compared to the benchmarked method. The findings

demonstrate significant enhancements ranging from 3.76% to 87.22%, with the proposed PSO consistently

surpassing the benchmarked technique in optimizing bandwidth allocation over several trials. The results

highlight the effectiveness and possible superiority of the suggested PSO method in improving bandwidth use

and efficiency within the study's framework.

Further, the analysis of the obtained fitness function values is realized. During the process of

analysis, the experimentation is conducted for 20 iterations and with 5 different inertia coefficients. The

findings are furnished in Table 5.

During the observation, for all iterations, the objective function has demonstrated significant decay

over time and except few of the iterations, the behaviors are normal. The outcomes are also visualized

graphically in Figure 3. The table shows the fitness function values from 20 trials for various values of the

parameter w between 1.0 and 3.0. Each trial number corresponds to the fitness function values for the

provided w values. Increasing the weight won a certain component of the fitness function typically leads to a

drop in the fitness function values. There is a progressive decrease in fitness function values as the weight

w increases, indicating that heavier weights lead to more rigorous fitness assessments. The results emphasize

how the optimization process is affected by the parameter w, stressing the significance of parameter tweaking

in maximizing fitness function outcomes for the specific issue area.

Figure 2. Network bandwidth utilization ratio analysis

Table 5. Objective function value
Trail

Fitness function

value (w=1.0)

Fitness function

value (w=1.5)

Fitness function

value (w=2.0)

Fitness function

value (w=2.5)

Fitness function

value (w=3.0)

1 5401 5321 5287 5151 5107

2 5374 5189 4908 4678 4881

3 4994 4766 4905 4453 4848

4 4985 4724 4704 4342 4426
5 4960 4719 4583 4312 4159

6 4934 4707 4502 4312 4114

7 4931 4703 4502 4308 4113
8 4900 4703 4502 4301 4102

9 4900 4703 4501 4300 4101

10 4900 4703 4501 4300 4100
11 4900 4702 4500 4300 4100

12 4900 4701 4500 4300 4100

13 4900 4701 4500 4300 4100
14 4900 4700 4500 4300 4100

15 4900 4700 4500 4300 4100

16 4900 4700 4500 4300 4100
17 4900 4700 4500 4300 4100

18 4900 4700 4500 4300 4100

19 4900 4700 4500 4300 4100

20 4900 4700 4500 4300 4100

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1688-1701

1698

Figure 3. Fitness function value analysis

Finally, the time for completing the load balancing process using the proposed algorithm is

analyzed. During the experiment, a total of 30 iterations are performed and the time or makespan analysis is

furnished in Table 6. With the meantime of 166.20 sec to balance the load, the proposed algorithms have

generated significantly high improvements over the parallel research outcomes. The obtained results are

visualized graphically in Figure 4.

Table 6. Load balancing time analysis
Trail # Task ID VM ID Makespan (sec)

1 5 6 175.00

2 0 5 200.00

3 1 1 40.00
4 2 6 50.00

5 3 1 100.00

6 7 1 30.00
7 4 3 399.95

8 6 4 499.85
9 9 3 129.95

10 8 5 399.98

11 4 0 50.00
12 5 0 43.75

13 6 0 31.25

14 9 2 130.00
15 0 6 150.00

16 1 0 25.00

17 2 2 100.00
18 3 1 100.00

19 7 0 18.75

20 8 1 120.00
21 0 0 37.50

22 5 0 43.75

23 6 0 31.25
24 4 3 399.95

25 9 3 130.00

26 1 3 200.00
27 2 3 99.95

28 3 3 500.00

29 7 3 150.00
30 8 3 600.00

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A particle swarm optimization inspired global and local stability … (Niladri Sekhar Dey)

1699

Figure 4. Load balancing time analysis

Henceforth, with the detailed discussion on the obtained results, in the next section of this work, the

comparative analysis is carried out. Comparative analysis is a crucial technique in the field of computational

optimization and resource management. It allows for the evaluation of the effectiveness, performance, and

suitability of different algorithms and approaches in various areas. Given the increasing complexity of

modern systems, particularly in cloud computing settings, where activities, resources, and demands are

always changing and convoluted, it is essential to perform a comparative study. Such analysis not only helps

to comprehend the advantages and constraints of various strategies but also enables well-informed decision-

making regarding their adoption and implementation. Through the comparison of different methodologies,

researchers and practitioners can obtain significant insights on the comparative benefits, compromises, and

appropriateness of each method in tackling specific issues and needs. This thorough examination promotes

the development of stronger, more efficient, and adaptable solutions, leading to progress in cloud computing

and related disciplines. Within this framework, we undertake a thorough examination of different

optimization methods and load balancing approaches utilized in cloud computing settings. Our objective is to

clarify their relative performance, capabilities, and practical consequences through a comparative study as

shown in Table 7.

Table 7. Comparative analysis
Method Number of iterations Time or make span (sec)

Canonical PSO hierarchical PSO 105 439.89

Self-organizing hierarchical PSO with time-varying
acceleration coefficients (HPSO-TVAC) 36

435.59

Time-varying acceleration coefficient (TVAC) 58 445.77

PSO using stochastic inertia weight (Sto-IW) 124 442.12
PSO with time-varying inertia weight (TVIW) 200 443.15

PSO 164 440.74

Time variant predictive location driven corrective velocity-
based particle swarm optimization for load balancing

(TVPL-CV-PSO-LB) PSO 20 166.20

The table compares several PSO algorithms in terms of their efficiency regarding convergence

speed and computational time. Smaller numbers in the "number of iterations" column suggest quicker

convergence, meaning that the method requires less iterations to get an ideal solution. Lower numbers in the

"time or make span (Sec)" column imply faster computing time, demonstrating the algorithm's efficiency in

completing the optimization process. The "time variant predictive location driven corrective velocity based

particle swarm optimization for load balancing (TVPL-CV-PSO-LB)" algorithm shows the quickest

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1688-1701

1700

convergence and computational speed, requiring only 20 iterations and achieving a make span of 166.20

seconds based on the data provided. The "particle swarm optimization with time-varying inertia weight

(TVIW)" algorithm necessitates 200 iterations and has a computational time of 443.15 seconds, indicating

slower convergence and greater computational overhead compared to other algorithms.

5. CONCLUSION

The research presents a novel approach for cloud-based load balancing, which is based on biological

processes and employs the PSO algorithm. The study focuses on ensuring system stability by analyzing

resource utilization and using local and global threshold studies to identify virtual machines that require

relocation. The paper presents a novel method for positioning swarms based on space-time concepts,

reducing backtracking in solution space and leading to a notable 20% decrease in time complexity. The

proposed technique for forecasting optimal locations enhances time efficiency, hence impacting service level

agreements (SLA) and service responsiveness. The study's commitment to improving load balancing methods

is demonstrated by the creation of a new objective function designed to optimize both local and global

locations. The paper introduces a new methodology called time-variant predictive location driven corrective

velocity based particle swarm optimization for load balancing in cloud-based data centers, which combines

two approaches. The proposed technique surpasses parallel benchmarked PSO-inspired algorithms,

delivering enhancements of 50% or higher. This study enhances cloud-based load balancing and has the

potential to improve the efficiency and reliability of cloud-based services, benefiting both providers and users

in the digital realm.

REFERENCES
[1] A. S. A. Beegom and M. S. Rajasree, “Integer-PSO: a discrete PSO algorithm for task scheduling in cloud computing systems,”

Evolutionary Intelligence, vol. 12, no. 2, pp. 227–239, 2019, doi: 10.1007/s12065-019-00216-7.

[2] J. P. B. Mapetu, Z. Chen, and L. Kong, “Low-time complexity and low-cost binary particle swarm optimization algorithm for task

scheduling and load balancing in cloud computing,” Applied Intelligence, vol. 49, no. 9, pp. 3308–3330, 2019, doi:
10.1007/s10489-019-01448-x.

[3] E. J. Ghomi, A. M. Rahmani, and N. N. Qader, “Service load balancing, task scheduling and transportation optimisation in cloud

manufacturing by applying queuing system,” Enterprise Information Systems, vol. 13, no. 6, pp. 865–894, 2019, doi:
10.1080/17517575.2019.1599448.

[4] M. O. Ahmad and R. Z. Khan, “PSO-based task scheduling algorithm using adaptive load balancing approach for cloud

computing environment,” International Journal of Scientific and Technology Research, vol. 8, no. 11, pp. 457–462, 2019.
[5] R. M. Alguliyev, Y. N. Imamverdiyev, and F. J. Abdullayeva, “PSO-based Load balancing method in cloud computing,”

Automatic Control and Computer Sciences, vol. 53, no. 1, pp. 45–55, 2019, doi: 10.3103/S0146411619010024.

[6] V. Radhamani and G. Dalin, “Selection of migration VMS and destination PMS using an optimization algorithm in PCA-TA-
IRIAL approach for green and load balanced cloud computing,” ARPN Journal of Engineering and Applied Sciences, vol. 15, no.

4, pp. 491–496, 2020.

[7] B. K. Dewangan, A. Jain, and T. Choudhury, “GAP: hybrid task scheduling algorithm for cloud,” Revue d’Intelligence
Artificielle, vol. 34, no. 4, pp. 479–485, 2020, doi: 10.18280/ria.340413.

[8] M. Kumar and S. C. Sharma, “PSO-based novel resource scheduling technique to improve QoS parameters in cloud computing,”

Neural Computing and Applications, vol. 32, no. 16, pp. 12103–12126, 2020, doi: 10.1007/s00521-019-04266-x.
[9] M. O. Ahmad and R. Z. Khan, “An efficient load balancing scheduling strategy for cloud computing based on hybrid approach,”

International Journal of Cloud Computing, vol. 9, no. 4, p. 453, 2020, doi: 10.1504/ijcc.2020.10034637.

[10] S. Kodli and S. Terdal, “Hybrid max-min genetic algorithm for load balancing and task scheduling in cloud environment,”
International Journal of Intelligent Engineering and Systems, vol. 14, no. 1, pp. 63–71, 2020, doi: 10.22266/IJIES2021.0228.07.

[11] M. Junaid et al., “Modeling an optimized approach for load balancing in cloud,” IEEE Access, vol. 8, pp. 173208--173226, 2020,

doi: 10.1109/ACCESS.2020.3024113.
[12] B. Kruekaew and W. Kimpan, “Enhancing of artificial bee colony algorithm for virtual machine scheduling and load balancing

problem in cloud computing,” International Journal of Computational Intelligence Systems, vol. 13, no. 1, pp. 496–510, 2020,

doi: 10.2991/ijcis.d.200410.002.
[13] K. Mishra and S. K. Majhi, “A binary bird swarm optimization based load balancing algorithm for cloud computing

environment,” Open Computer Science, vol. 11, no. 1, pp. 146–160, 2021, doi: 10.1515/comp-2020-0215.

[14] S. Goyal et al., “An optimized framework for energy-resource allocation in a cloud environment based on the whale optimization
algorithm,” Sensors, vol. 21, no. 5, pp. 1–24, 2021, doi: 10.3390/s21051583.

[15] S. M. Mirmohseni, A. Javadpour, and C. Tang, “LBPSGORA: create load balancing with particle swarm genetic optimization

algorithm to improve resource allocation and energy consumption in clouds networks,” Mathematical Problems in Engineering,
vol. 2021, pp. 1–15, 2021, doi: 10.1155/2021/5575129.

[16] N. Malik, M. Sardaraz, M. Tahir, B. Shah, G. Ali, and F. Moreira, “Energy-efficient load balancing algorithm for workflow

scheduling in cloud data centers using queuing and thresholds,” Applied Sciences (Switzerland), vol. 11, no. 13, p. 5849, 2021,
doi: 10.3390/app11135849.

[17] Z. Miao, P. Yong, Y. Mei, Y. Quanjun, and X. Xu, “A discrete PSO-based static load balancing algorithm for distributed

simulations in a cloud environment,” Future Generation Computer Systems, vol. 115, pp. 497–516, 2021, doi:
10.1016/j.future.2020.09.016.

[18] M. I. Alghamdi, “Optimization of load balancing and task scheduling in cloud computing environments using artificial neural

networks-based binary particle swarm optimization (BPSO),” Sustainability (Switzerland), vol. 14, no. 19, p. 11982, 2022, doi:

10.3390/su141911982.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 A particle swarm optimization inspired global and local stability … (Niladri Sekhar Dey)

1701

[19] S. A. Ajagbe, M. O. Oyediran, A. Nayyar, J. A. Awokola, and J. F. Al-Amri, “P-ACOHONEYBEE: a novel load balancer for
cloud computing using mathematical approach,” Computers, Materials and Continua, vol. 73, no. 1, pp. 1943–1959, 2022, doi:

10.32604/cmc.2022.028331.

[20] M. Adil, S. Nabi, and S. Raza, “PSO-Calba: particle swarm optimization based content-aware load balancing algorithm in cloud
computing environment,” Computing and Informatics, vol. 41, no. 5, pp. 1157–1185, 2022, doi: 10.31577/cai_2022_5_1157.

[21] M. Malik and Suman, “Lateral wolf based particle swarm optimization (LW-PSO) for load balancing on cloud computing,”

Wireless Personal Communications, vol. 125, no. 2, pp. 1125–1144, 2022, doi: 10.1007/s11277-022-09592-3.
[22] A. Pradhan and S. K. Bisoy, “A novel load balancing technique for cloud computing platform based on PSO,” Journal of King

Saud University - Computer and Information Sciences, vol. 34, no. 7, pp. 3988–3995, 2022, doi: 10.1016/j.jksuci.2020.10.016.

[23] X. Chen, Y. Wu, and S. Xiao, “Particle swarm-grey wolf cooperation algorithm based on microservice container scheduling
problem,” IEEE Access, vol. 11, pp. 16667–16682, 2023, doi: 10.1109/ACCESS.2023.3244881.

[24] D. Yu, Z. Xu, and M. Mei, “Multi-objective task scheduling optimization based on improved bat algorithm in cloud computing

environment,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 6, pp. 1091–1100, 2023, doi:
10.14569/IJACSA.2023.01406117.

[25] J. P. Gabhane, S. Pathak, and N. M. Thakare, “A novel hybrid multi-resource load balancing approach using ant colony

optimization with Tabu search for cloud computing,” Innovations in Systems and Software Engineering, vol. 19, no. 1, pp. 81–90,
2023, doi: 10.1007/s11334-022-00508-9.

[26] M. Adil, S. Nabi, M. Aleem, V. G. Diaz, and J. C. W. Lin, “CA-MLBS: content-aware machine learning based load balancing

scheduler in the cloud environment,” Expert Systems, vol. 40, no. 4, p. e13150, 2023, doi: 10.1111/exsy.13150.
[27] M. A. Shahid, M. M. Alam, and M. M. Su’ud, “Performance evaluation of load-balancing algorithms with different service broker

policies for cloud computing,” Applied Sciences (Switzerland), vol. 13, no. 3, p. 1586, 2023, doi: 10.3390/app13031586.

BIOGRAPHIES OF AUTHORS

Niladri Sekhar Dey received his B. Tech and M. Tech in Computer Science and

Engineering from the West Bengal University of Technology, Kolkata and Jawaharlal Nehru

Technological University, Hyderabad respectively. He is currently perusing his doctoral

research at K. L. University, Green Fields, Andhra Pradesh. He is recognized as AWS Cloud

Faculty Ambassador in 2019. His area of interest involves cloud computing, data centre

optimization, virtualization, process optimization, and machine learning. He can be contacted

at email: sd.niladri@gmail.com.

Dr. Hrushi Kesava Raju Sangaraju based in India, is a seasoned professional

with a multifaceted background in the technology industry. With a Master of Technology in

Computer Science and Engineering. He has honed his expertise in software development, data

analysis, and machine learning. With over five years of experience, he has contributed

significantly to various projects, demonstrating a keen interest in cutting-edge technologies

and their practical applications. His LinkedIn profile showcases his proficiency in

programming languages such as Python, Java, and C++, as well as his adeptness in utilizing

frameworks like TensorFlow and Apache Spark for data-driven solutions. Sangaraju's

professional journey reflects his passion for leveraging technology to tackle complex

challenges and drive innovation across diverse domains. He can be contacted at email:

hkesavaraju@kluniversity.in.

https://orcid.org/0000-0003-2880-6500
https://scholar.google.com/citations?user=dUU1rXgAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55253414200
https://www.webofscience.com/wos/author/record/AAC-7671-2019
https://orcid.org/0000-0002-4432-079X
https://scholar.google.com/citations?user=JED0F9kAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58520034300

