
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 35, No. 2, August 2024, pp. 1022~1031

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v35.i2.pp1022-1031  1022

Journal homepage: http://ijeecs.iaescore.com

Improved moth search algorithm with mutation operator for

numerical optimization problems

Sanaa A. A. Ghaleb1,3,4,5, Mumtazimah Mohamad1, Waheed Ali Hussein Mohammed Ghanem2,3,4,5,

Arifah Che Alhadi2, Abdullah B. Nasser6, Hanan Aldowah7

1Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia
2Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu (UMT), Terengganu, Malaysia

3Faculty of Education, University of Lahej, Lahej, Yemen
4Faculty of Engineering, University of Aden, Aden, Yemen

5Faculty of Education, University of Aden, Aden, Yemen
6School of Technology and Innovation, University of Vaasa, Vaasa, Finland

7School of Management, Universiti Sains Malaysia (USM), Pulau Pinang, Malaysia

Article Info ABSTRACT

Article history:

Received Feb 24, 2024

Revised Mar 11, 2024

Accepted Mar 30, 2024

 The moth search algorithm (MSA) is a meta-heuristic optimization technique

inspired by moth behavior, has shown remarkable efficacy in solving

optimization challenges. However, its poor exploration capability results in an

imbalance between exploitation and exploration. To address this issue, this

research introduces a new mutation operator to enhance exploration by

increasing population diversity. The proposed enhanced moth search algorithm

(EMSA) aims to expedite convergence and improve overall robustness by

exploring new solutions more effectively. Evaluation on ten benchmark

functions demonstrates EMSA's superior exploration capabilities, efficiently

tackling optimization problems and yielding more optimal solutions within the

search space. Compared to conventional MSA and other established

algorithms, EMSA delivers well-balanced results, showcasing its effectiveness

in optimizing the search space. In the future, the EMSA could potentially find

applications in addressing real-world engineering optimization challenges.

Keywords:

Meta-heuristic

Optimization algorithm

Exploitation

Exploration

Moth search algorithm

Mutation operator
This is an open access article under the CC BY-SA license.

Corresponding Author:

Mumtazimah Mohamad

Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA)

Kuala Nerus, Terengganu, 21300, Malaysia

Email: mumtaz@unisza.edu.my

1. INTRODUCTION

The field of optimization presents a significant challenge across various domains, where the task

often involves finding the best solution among a multitude of possibilities while minimizing associated costs [1].

In recent years, metaheuristic algorithms have emerged as powerful tools for addressing such optimization

problems [2]. Among these algorithms is the moth search algorithm (MSA) [3], which draws inspiration from

the natural behaviors of moths. However, despite its simplicity and effectiveness, MSA suffers from

limitations, particularly in achieving a balance between exploitation and exploration during the optimization

process [4]. Existing solutions to optimization problems include a plethora of metaheuristic algorithms such

as ant lion optimization (ALO) [5], [6]; dragonfly algorithm (DA) [7], [8]; monarch butterfly optimization

(MBO) [9], [10] among others [11], [12]. While these algorithms have shown efficacy in various scenarios,

each comes with its own set of strengths and weaknesses.

This study introduces a novel enhancement to the Moth Search Algorithm (MSA), a metaheuristic

algorithm inspired by moth behavior, known for its efficient convergence towards optimal solutions but

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Improved moth search algorithm with mutation operator for numerical optimization …(Sanaa A. A. Ghaleb)

1023

limited in global exploration. The proposed enhancement incorporates a mutation operator to improve both

exploration and exploitation in MSA. The MSA, while effective in local exploitation, can struggle with

global exploration due to its reliance on strategies like decreasing values and random walks. To address this,

we introduce a mutation operator into MSA to diversify the population and enhance exploration in the search

space. This mutation operator combines local search techniques based on self-experience with global search

techniques based on neighboring experience. The main goal is to expedite global convergence rates and avoid

local optima traps. Simulation results demonstrate that integrating mutation operators into MSA significantly

improves population diversity, enabling individuals (moths) to escape local optima more efficiently. The

proposed Enhanced Moth Search Algorithm (EMSA) outperforms traditional MSA, especially with

deterministic mutation operators, showcasing superior performance across various benchmark functions.

While this study introduced the innovative approach of utilizing a random mutation operator to

improve the MSA, prior research has delved into refining traditional MSAs using different methodologies.

For instance [13] introduced the CMSA algorithm, which utilizes chaos theory to improve the global

convergence of MSA optimization. By integrating various chaotic maps into the MSA Logistic map, an

effective balance between exploration and exploitation was sought. While the inclusion of chaotic maps

showed promise in enhancing MSA performance, the results fell short of expectations due to the unsuitability

of chaotic factors in handling benchmark functions. However, a notable drawback of this study is its

dependence solely on four benchmark functions to assess the effectiveness of the CMSA. Strumberger et al. [14],

the scholars have proposed a modified MSA for portfolio optimization. They utilized two distinct models for

the portfolio selection problem: a straightforward one and a cardinality-constrained model. One of the

primary disadvantages is that they produce a discrete solution space. Also, this study relies solely on four

benchmark functions to assess the effectiveness of the modified MSA algorithm.

In their study referenced as [15], the authors introduced nine innovative algorithms under the

umbrella of MSA, denoted as MSA 1 – MSA 9. To evaluate the influence of the "fly straight" and Lévy flight

operators in the MSA, the Lévy flight operator was replaced with 9 alternative mutation operators, drawing

inspiration from the global harmony search. The experimental findings indicated that these newly proposed

MSA-based methods demonstrated enhanced overall performance. Nevertheless, the outcomes did not reach

their optimum, primarily due to the discrepancy between the non-linear comfort zone parameter and the Levy

flight factors in handling multiple optimization functions. In their study [16], researchers introduced a binary

MSA algorithm. They integrated a self-learning flight strategy into the enhanced MSA to facilitate individual

learning. Evaluation across 89 diverse benchmark instances revealed that while the proposed method

improved global search capability and population diversity, its efficacy was constrained due to a deficiency

in randomness. Finally, in their research [17], researchers introduced a novel approach called game model

integrated enhanced MSA optimization (GMMSAO) to delve into design possibilities and streamline system

optimization. GMMSAO incorporates a game model concept in its input phase, facilitating effective

exploration of the system's design space across various configurations. This approach aims to identify the

optimal solution within a reasonable timeframe by leveraging diverse search iterations. However, the absence

of robust randomness could limit diversity during search iterations, restricting each search agent to

predetermined positions. Moreover, numerous other application-specific modifications to the MSA can be

found in the literature [18]-[20].

Previous research has primarily focused on refining traditional MSAs using different methodologies,

introducing innovative algorithms under the umbrella of MSA, and proposing application-specific

modifications. However, gaps remain in understanding how to enhance the MSA's efficacy in terms of

convergence rate, solution quality, and exploration capabilities, especially when compared to other

metaheuristic algorithms. Following the previous studies, we propose an enhanced version of the MSA

(enhanced moth search algorithm) named EMSA. EMSA integrates a novel mutation operator into the

conventional MSA algorithm to tackle issues such as local optima entrapment and slow convergence. Our

approach aims to strike a balance between exploration and exploitation by employing a specialized mutation

operator that enriches the diversity of the standard MSA, thereby facilitating the discovery of optimal

solutions for global optimization problems. To assess the enhancement in solution accuracy, we conduct

experiments using ten established test functions commonly utilized in swarm intelligence research for

evaluating algorithm accuracy and performance, some of which were employed in the aforementioned

studies. This study encompasses all of these functions. Our experimental results demonstrate that our

suggested EMSA outperforms all other algorithms documented in the literature.

2. METHODS

2.1. Numerical optimization

Global optimization issues have been successfully solved in practice using metaheuristics. Global

optimization seeks the most favorable solution from a set of viable options, aiming to maximize or minimize

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 1022-1031

1024

a desired parameter within a specified range [21]-[23]. Identifying a vector inside a given domain that, out of

a large number of conceivable solutions, delivers the optimal answer is, in other words, the process of

optimization. In a variety of disciplines, including control theory, mathematics, management science, and

computer science, optimization problems are sometimes known as mathematical programming or

mathematical optimization. The fundamental idea behind optimization involves systematically evaluating a

set of specified values, adhering to predefined forms and domains. For each input within this set, the

corresponding output of a function is computed, aiming to identify the optimal values. The primary objective

is to either maximize or minimize an objective function, subject to constraints within a designated domain.

The formulation of an optimization problem typically follows the process outlined below.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥): 𝑋 𝑅; 𝑥 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 (1)

Subject to: f(x0) ≤ f(x) for all x in X (“minimize”) / f(x0) ≥ f(x) for all x in X (“maximize”)

Where: f(x): Rn R (is the goal to minimize or increase the objective function over x)

The optimization approach outlined above is specifically designed to address numerical problems, and

many practical engineering and scientific issues can be formulated within this framework. In the previously

mentioned (1), the function f serves as the objective function used to evaluate all feasible solutions within the

search space, which is defined by the domain x. The choice of the objective function, denoted as f, depends on

the specific application requiring optimization, whether it is geared towards minimizing or maximizing. The

conventional method for articulating an optimization problem typically emphasizes minimization. It is essential

to note that within a search space, multiple local minima may exist alongside the true extreme value, be it a

minimum or maximum. The following statement holds for a point to be a local minimum at x*.

𝑓(𝑥 ∗) ≤ 𝑓(𝑥) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑠𝑜𝑚𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (2)

Generally, there are two main groups of optimization techniques: deterministic and stochastic. The

primary distinction between them is that the deterministic method performs well and is effective when seeking a

local optimum. Additionally, it yields the same final answer provided that one commences from an identical set

of initial solutions. In contrast, a stochastic algorithm is more useful in optimization techniques where the solution

space is frequently unreasonably large. The process commences with an initial set of solutions, employing random

operators to navigate the solution space until identifying a global optimum. Notably, the outcome of a subsequent

run of the same method, despite having the same initiation, may vary from the initial result.

2.2. Moth search algorithm

2.2.1. Levy flights

The moth will execute lévy flights to encircle the best butterfly because they are closer to it. In other

words, as illustrated in (3), their positions are updated by completing lévy flights. The update for moth i can

be expressed as follows: A power-law formula, as described in [3] can be employed to mathematically

represent the lévy distribution, as demonstrated in (4).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼L(s) (3)

L (s) ~ |s|-B where 1 < 𝛽 ≤ 3 is an index (4)

The given text discusses a mathematical or computational model that involves a parameterized

update rule for positions in a generation-based process. The notation used includes variables such as t for the

current generation, 𝑥𝑖
𝑡+1 and 𝑥𝑖

𝑡 for the updated and typical positions at generation t respectively, and L(s)

representing the step from Lévy flights. The scale factor for the problem is denoted as the parameter α, and

its specification is provided in the context of the work.

𝛼 = 𝑆max/t2 (5)

Where Smax represents the maximum step size for walking, and its value is determined in accordance

with the specific problem. The lévy distribution, denoted as L(s) in (3), can be expressed as follows:

L(s)=
(𝛽−1)Γ(𝛽−1)𝑠𝑖𝑛(

𝜋(𝛽−1)

2
)

𝜋 𝑆𝛽 (6)

When the gamma function, 𝛤(x), is greater than s.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Improved moth search algorithm with mutation operator for numerical optimization …(Sanaa A. A. Ghaleb)

1025

The utilization of the lévy distribution with a parameter value of β = 1.5 provides a means to deduce the lévy

flights undertaken by moths, as elucidated earlier.

2.2.2. Fly straightly

Some moths may fly in a line toward a light source when they are far away from it. Below is a

description of this procedure. The flights of moths can be described as:

𝑥𝑖
𝑡+1 = ⋋ × (𝑥𝑖

𝑡 + ϕ × (𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡)) (7)

Where, in this approach, ϕ is a scaling factor with the golden ratio as its base, and 𝑥𝑏𝑒𝑠𝑡
𝑡 is the top

moth at generation t. A scale factor is λ. For simplicity, (7) or (8) will be used to update the position of moth i

with a probability of 50%. The moth, conversely, could move towards its previous location, which is more

distant from the light source. The final location of moth i in this scenario can be denoted as:

𝑥𝑖
𝑡+1 = ⋋ × (𝑥𝑖

𝑡 +
1

∅
× (𝑥𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡)) (8)

The diagram in Figure 1 represents three key positions: xbest, xi, and xi,new, symbolizing the optimal,

initial, and modified locations of a moth acting as a light source. xbest marks the most effective position, while

xi denotes the starting point, and xi,new signifies a modified location after optimization. As can be seen in

Figure 1(a) presented the movement from xi (initial position) to xi,new involves some form of optimization or

improvement. This could be related to maximizing light intensity, minimizing energy expenditure, or

achieving a better overall performance metric. The moth constantly adjusts its position in an iterative process

aimed at reaching the optimal position (xbest). In Figure 1(b) the positions xbest, xi, and xi,new create a feedback

loop. The moth starts at xi, evaluates its current state, makes adjustments to move towards xbest, and then

repeats this cycle as needed. This feedback loop is crucial for continuous improvement and adaptation.

Ideally, through these iterative adjustments, the moth converges towards xbest, indicating successful

optimization or achievement of the desired goal.

(a)

(b)

Figure 1. Removing of unwanted outer area from the image (a) original image and (b) cropped image

The parameter λ plays a crucial role as a scaling factor, influencing the convergence rate of the

algorithm and augmenting the diversity within the population. Notably, the scaling factor is determined by a

randomly generated value derived from the standard uniform distribution. Additionally, the Algorithm 1

encompasses pseudocode for MSA.

Algorithm 1: MSA algorithm [3]
Step 1: // Initialize parameters such as: Set t = 1; // Generation number

Generate MaxGen, max walk step Smax, the index β, and acceleration factor ϕ;

Step 2 Evaluate the fitness of each moth; // Evaluate fitness

Step 3 While (t < MaxGen) do

Sort all the moth individuals as per their fitness; // Sort moths based on fitness

 For i=1 to NP/2 do // Update positions for moths in Subpopulation 1

 Generate xi
t+1; Eq. (3)

 Adjust the boundaries for the current moth in population;

 End for i

For i= NP/2+1 to NP do // Update positions for moths in Subpopulation 2

 If rand > 0.5 then

 Generate xi
t+1 by Eq. (7);

 Else

 Generate xi
t+1 by Eq. (8);

 End if

End for i

Update T; // Update global information if a better solution is found

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 1022-1031

1026

t = t + 1; // Increment generation counter

Step 4 End while

Step 5 Output the best solution

End

2.3. The enhanced MSA (EMSA)

In this section, we present an enhanced version of EMSA, an algorithm built upon the typical MSA

discussed earlier. The conventional moth algorithm demonstrates an ability to navigate the search space

effectively. However, it occasionally becomes ensnared in local optima, impeding its ability to perform

efficient global searches. To mitigate the risk of getting stuck in local optima within the MSA, it is essential

to enhance the diversity of the search process. Numerous studies have proposed solutions to address this

issue [24], [25]. some of which will be discussed in section 1.

The fundamental concept underlying the algorithm presented in our paper involves enhancing the

MSA process with a highly effective operator. This operator comprises random-based modifications aimed

at enhancing the diversity of the MSA, thereby facilitating more mutations within the examined solutions

during the MSA search. Consequently, this allows the algorithm to escape potential local optima traps.

Essentially, while the MSA primarily leverages solutions within its local neighborhood, the addition of the

mutation operator enables exploration of new areas within the search space. The key distinction between

EMSA and traditional MSA lies in the utilization of the added mutation operator to refine the typical MSA,

generating a fresh solution for each iteration. Accordingly, the principles of exploitation and exploration

emerge as pivotal characteristics in crafting a proficient optimization algorithm. The newly proposed

algorithm, EMSA, and its detailed pseudocode are presented in Algorithm 2.

Algorithm 2: EMSA algorithm
Step 1: // Initialize parameters

Set t = 1; // Generation number

Initialize NP moths' P population at random using a uniform distribution;

Generate MaxGen, max walk step Smax, the index β, and acceleration factor ϕ;

// Generate a random population (𝑋𝑖
𝑑)

For i = 1 to N do

 For d = 1 to dim do

 (𝑋𝑖
𝑑) = Random Value ();

 End for d

End for i

Step 2: // Calculate the fitness of each moth

Calculate Fitness ();

𝑇�̂� = the best moth; // Initialize the best solution

Step 3 // Main loop

While (𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛) do
 Update Solution (); // Update the solution using Eqs. (9),

(10)

 // Iterate through the population

 For i=1 to N (moth in population) Do

 if ε1 ≤ p Then // Check

probability condition

 MSA phase ();

 Else

 if ε2 ≤ limit Then // Check another

condition

 Randomly select a moth (r1); // Randomly select moths from the

population

 𝑥𝑖𝑟1

𝑡+1 = 𝑥𝑟1

𝑡 ;

 Randomly select a moth (r2);

 𝑥𝑖𝑟2

𝑡+1 = 𝑥𝑟2

𝑡 ;

 if (r1≠ r2) Then // Update the

positions based on conditions

 𝑥𝑖
𝑡+1 = w × (𝑥𝑖𝑟1

𝑡 - 𝑥𝑏𝑒𝑠𝑡
𝑡) × 2× (rand-1);

 Else

 𝑥𝑖
𝑡+1 = w × (𝑥𝑖𝑟2

𝑡 - 𝑥𝑏𝑒𝑠𝑡
𝑡) × 2× (rand-1);

 End if

 Else

 𝑥𝑖
𝑡+1 = 𝑥𝑚𝑖𝑛

𝑡 + rand × (𝑥𝑚𝑎𝑥
𝑡 - 𝑥𝑚𝑖𝑛

𝑡); // Update the position randomly

 End if

 End if

End for i

Update T (); // Update the best solution

𝑡 = 𝑡 + 1; // Increment generation counter

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Improved moth search algorithm with mutation operator for numerical optimization …(Sanaa A. A. Ghaleb)

1027

Step 4 End while //

Return the best solution of T; // Return the best solution of T

To enhance solution diversity, randomization is introduced into the MSA component. For

increased diversity of solutions, randomization is necessary. While x_i^(t+1) plays a comparative role in

MSA, it is only applicable to certain local jump adjustments, rendering it a local search equivalent. By

leveraging randomness, the algorithm can explore diverse regions with significant variability to find the

overall best solution. Additionally, considering the moth's prior likelihood of existence and evaluating the

best and worst moths, the mutation operator introduces random adjustments to the moth's movement within

the search space, fostering increased diversity within the population. In this study, the MSA's exploitation

step is utilized in tandem with the mutation operator to balance 50% of the MSA-calculated search space.

These combined techniques expedite convergence towards the optimal solution, enhancing solutions that

may initially fall outside the acceptable range. To summarize, the proposed method consists of two primary

components: the starting phase and the updating phase. Throughout the iterative process, the model assesses

the degree of aging probability values for individuals, aiding in the selection of the appropriate search space

(either the primary or updating phase) to refine the overall strategy.

The proposed algorithm, EMSA, extends the typical MSA introduced in the previous section,

aiming to enhance its performance by integrating a highly efficient operator. The core idea behind this

mutation operator involves a set of random-based adjustments designed to improve the diversity of the

MSA algorithm, facilitating an increase in mutations within the solutions explored during the search

process, helping to avoid traps of local optima. Importantly, the enhanced MSA algorithm demonstrates

proficiency in both exploiting solutions in the local neighborhood and exploring new areas in the search

space simultaneously, crucial features in developing an effective optimization algorithm [3]. The EMSA

algorithm distinguishes itself from the MSA by integrating a mutation operator designed to enhance the

typical MSA. This augmentation results in the creation of unique solutions for each iteration. The

algorithm's primary improvement lies in the introduction of the mutation operator, aiming to augment

population diversity, consequently refining search efficiency, and hastening convergence to the optimal

value.

Notably, EMSA retains all parameters of the MSA while incorporating 2 additional control

parameters, namely p and limit. These variables play a pivotal role in achieving balance, with p representing

a value within the [0, 1] range, and limit involving two random numbers drawn from a uniform distribution.

When 𝜀1 ≤ 𝑝,, the generation of a new solution is initiated through the utilization of the MSA phase. If 𝜀1 >
𝑝, the new solution will be generated using the mutation operator. Limit is the control parameter for the new

mutation operator, and if it is set to 𝜀2 ≤ 𝐿𝑖𝑚𝑖𝑡, it will randomly select two moths from the population,

𝑥𝑟1
𝑡 𝑎𝑛𝑑 𝑥𝑟2

𝑡 . The population size is denoted by N, and the integers in the range [1, N] represent the values of

(r₁) and (r₂). In (9) alters the value of 𝑥𝑖
𝑡+1 if (r₁) and (r₂) are distinct. Otherwise, 𝑥𝑖

𝑡+1 is not modified by

(10). However, 𝑥𝑖
𝑡+1 is arbitrarily changed from the set of workable solutions if 𝜀2 > 𝐿𝑖𝑚𝑖𝑡. In the

population under study, the best moth is represented by the string 𝑥𝑏𝑒𝑠𝑡
𝑡 , where t is the generation in

question. A variable called rand produces random numbers using the same distribution between 0 and 1.

𝑥𝑖
𝑡+1 = 𝑤 × (𝑥𝑖𝑟1

𝑡 − 𝑥𝑏𝑒𝑠𝑡
𝑡) × 2 × (𝑟𝑎𝑛𝑑 − 1); (9)

 𝑥𝑖
𝑡+1 = 𝑤 × (𝑥𝑖𝑟2

𝑡 − 𝑥𝑏𝑒𝑠𝑡
𝑡) × 2 × (𝑟𝑎𝑛𝑑 − 1); (10)

The EMSA plays a pivotal role in advancing MSA capabilities by seamlessly incorporating a novel

mutation operator. This integration aims to augment population diversity, fostering a broader range of

genetic variations. The ultimate objective is to optimize MSA performance, expediting the convergence

process towards the optimal point.

3. EXPERIMENTAL EVALUATION

In this study, ten benchmark functions are utilized for assessment, comparing their efficacy with

both traditional MSA and various metaheuristic algorithms. Evaluation criteria focus on achieving optimal

solutions and identifying the best ones. A consistent population size of 50 is maintained, with the maximum

number of generations unchanged. To ensure reliability, each experiment is run 30 times, minimizing the

influence of chance.

The research is conducted on a laptop with an Intel Core i7 processor (2.4 GHz) and 8 GB of

RAM. The EMSA introduced in this study, is derived from the typical MSA implementation.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 1022-1031

1028

All algorithms, including ALO, DA, and MBO, are executed on MATLAB R2020b, using Windows 8. Ten

test optimization functions refer to Table 1 for details.

Table 1. Optimization functions
No Name Equation Range Opt

1 Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 -5.12 5.12 0

2
Schwefel

2.22
𝑓(𝑥) = ∑ |𝑥𝑖|

𝑛

𝑖=1
+ ∏ |𝑥𝑖|

𝑛

𝑖=1
 -10 10 0

3
Schwefel

2.21
𝑓(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} -100 100 0

4 Rosenbrock 𝑓(𝑥) = ∑ [100√|𝑥𝑖 − 𝑥𝑖
2| + (1 − 𝑥𝑖)2]

𝑛−1

𝑖=1
 -30 30 0

5 Step 𝑓(𝑥) = ∑ ⌊|𝑥𝑖|⌋
𝑛

𝑖=1
 -100 100 0

6 Quartic 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1
+ 𝑟𝑎𝑛𝑑[0,1) -1.28 1.28 0

7 Rastrigin 𝑓(𝑥) = ∑ [𝑥𝑖
2 − 10 cos 2𝜋𝑥𝑖 + 10]

𝑛

𝑖=1
 -5.12 5.12 0

8 Ackley
𝑓(𝑥) = −20𝑒

(−0.2×√1
𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1)
− 𝑒[

1
𝑛

∑ cos 2𝜋𝑥𝑖
𝑛
𝑖=1] + 20 + 𝑒1

-32.8 32.8 0

9 Griewank 𝑓(𝑥) =
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1
 -600 600 0

10
Penalized

No.2

𝑓(𝑥) = 0.1 × {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑(𝑥𝑖 − 1)2

𝑛−1

𝑖=1

[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)]

+(𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5,100,4)
𝑛

𝑖=1

-50 50 0

4. RESULTS AND DISCUSSION

In this part, we thoroughly evaluate the EMSA algorithm, comparing its effectiveness as a versatile

numerical optimizer with various metaheuristic algorithms. Our evaluation entails a meticulous comparison

between EMSA and selected benchmarks, with a focus on global optimization. We systematically test EMSA

across a range of optimization functions detailed in Table 1 (section 3), comparing its performance against

ALO, DA, MSA, and MBO. Each experiment includes testing across different parameters of benchmark

functions, with dimensions of 30 and 90, a population size of 50, and a consistent number of generations. To

ensure reliability, we conduct 30 runs for each experiment.

Initially, we validate EMSA using ten benchmark functional datasets, comparing its performance

with MSA. Contrasting EMSA with MSA, we find that essential parameters such as the maximum step Smax,

acceleration factor ϕ, and index β are required for EMSA, set to specific values. Parameters for ALO, DA,

and MBO are set based on typical works by Mirjalili. For MBO, specific parameter values including BAR,

migration Peri, maximum step Smax, keep, and migration ratio ρ are assigned. Our experiments cover

functional dimensions of 30 and 90, mirroring previous experiments, and evaluate EMSA against ALO,

DA, MSA, and MBO using ten functions. Table 2 presents a comparative analysis of the results, showing

that EMSA consistently outperforms other algorithms, achieving optimal solutions within the search space.

The table displays the minimum values achieved by EMSA after 50 generations, repeated 30 times, for each

benchmark function, emphasizing the best outcomes to underscore its outstanding performance.

The findings from Table 2 clearly indicate that the EMSA algorithm, as proposed, exhibits better

performance compared to the alternative algorithm. Across all tested functions (ƒ1 through ƒ10), the EMSA

algorithm consistently shows superior performance. Furthermore, the average convergence values achieved

by EMSA surpass those of MSA, highlighting EMSA's superior convergence stability. This stability is

consistently observed across various trials, including those with 30 and 90 dimensions.

Furthermore, as depicted in Figures 2 and 3, we present the results of EMSA in comparison to

established algorithms like ALO, DA, and MBO. Figure 2 shows the effectiveness of the Penalized (10)

function, conducted at dimensions of 90. This graphical representation highlights EMSA's superiority over

MSA in achieving optimal performance, characterized by faster convergence speed and superior results.

These conclusions align with prior studies [13], [6], emphasizing the importance of comprehensive

comparisons with existing methodologies to keep pace with the constant evolution of optimization

algorithms.

To address this need, we evaluated a newly proposed algorithm against a subset of established

algorithms. Figure 3 presents outcomes for the Rosenbrock function (4) across 90 dimensions, revealing

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Improved moth search algorithm with mutation operator for numerical optimization …(Sanaa A. A. Ghaleb)

1029

EMSA's outperformance of conventional MSA and several other metaheuristic algorithms including DA,

MBO, and ALO, in terms of both convergence speed and overall optimization effectiveness. The results in

Figure 3 show EMSA's superior performance compared to the other methods, with MSA closely following as

the second-best performer. Performing EMSA with a random mutation operator during optimization yielded

better results compared to other general conventional algorithms.

Table 2. Comparative performance analysis of EMSA against established algorithms
F D ALO DA MBO MSA EMSA F ALO DA MBO MSA EMSA

1 3

0

7.130E+

01

1.300E+

02

2.210E+

01

2.230E+

01

1.020E+

01

6 6.730E+

01

1.230E+

02

3.970E+

01

5.480E+

01

1.230E+

01
9

0

1.720E+

02

3.090E+

02

4.810E+

01

4.840E+

01

1.700E+

01

1.740E+

02

3.070E+

02

5.100E+

01

4.970E+

01

1.760E+

01

2 3
0

6.730E+
01

1.250E+
02

2.150E+
01

2.240E+
01

9.440E+
00

7 5.000E+
01

8.830E+
01

2.470E+
01

2.520E+
01

9.700E+
00

9

0

1.750E+

02

3.030E+

02

4.830E+

01

4.850E+

01

1.740E+

01

8.850E+

01

1.870E+

02

3.910E+

01

3.540E+

01

1.240E+

01
3 3

0

6.450E+

01

1.330E+

02

2.170E+

01

2.140E+

01

9.430E+

00

8 6.580E+

01

1.270E+

02

2.210E+

01

2.190E+

01

1.010E+

01

9
0

1.750E+
02

3.150E+
02

4.990E+
01

4.790E+
01

1.690E+
01

1.770E+
02

3.050E+
02

5.010E+
01

4.880E+
01

1.780E+
01

4 3

0

6.690E+

01

1.290E+

02

2.230E+

01

2.180E+

01

9.480E+

00

9 6.580E+

01

1.200E+

02

2.180E+

01

2.140E+

01

9.360E+

00
9

0

1.750E+

02

3.040E+

02

4.880E+

01

4.830E+

01

1.700E+

01

1.710E+

02

2.950E+

02

4.830E+

01

4.820E+

01

1.690E+

01

5 3
0

6.500E+
01

1.310E+
02

2.120E+
01

2.120E+
01

9.190E+
00

1
0

6.810E+
01

1.270E+
02

2.180E+
01

2.210E+
01

9.410E+
00

9

0

1.720E+

02

3.120E+

02

4.630E+

01

4.930E+

01

1.650E+

01

1.730E+

02

3.040E+

02

4.900E+

01

4.830E+

01

1.760E+

01

Figure 2. Convergence curves of the best

objective function of EMSA and MSA algorithms

for Function 10 Dimension 90

Figure 3. Convergence curves of the best objective

function of EMSA and established algorithms for

Function 4, Dimension 90

5. CONCLUSION

This article has introduced a random mutation operator mechanism aimed at improving MSA. This

mechanism has been integrated into the original MSA to boost population diversity and increase the

randomness of the search agent's (moth's) movement. This integration is intended to facilitate a more

effective exploration of the solution space. The effectiveness of this mutation operator is assessed across ten

benchmark test functions, revealing significant performance enhancements in EMSA. In general, the

outcomes of all conducted experiments demonstrated that the mutation operator has the capability to greatly

enhance the performance of MSA. Comparative analysis against established algorithms like ALO, DA, and

MBO consistently demonstrates EMSA's competitive advantages across most benchmark functions. The

primary factor behind the enhanced performance is EMSA's ability to strike a more optimal balance between

exploration and exploitation, thereby preventing the algorithm from becoming trapped in local optima during

the optimization process. The study also highlights potential applications of EMSA in training artificial

neural networks for tasks like medical diagnosis, face recognition, and botnet detection, presenting exciting

opportunities for further research.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 1022-1031

1030

ACKNOWLEDGEMENTS

This research was supported by the Center of Research Excellence and Incubation Management

(CRIEM) of Universiti Sultan Zainal Abidin, Also partially supported by the Universiti Malaysia Terengganu

(UMT/TAPE RG 2020/55225), Terengganu, Malaysia.

REFERENCES
[1] M. Baghel, Shikha Agrawal, and S. Silakari, “Survey of metaheuristic algorithms for combinatorial optimization,” International

Journal of Computer Applications, vol. 58, no. 19, pp. 21–31, 2012, doi: 10.5120/9391-3813.

[2] Z. Zhang, C. Huang, K. Dong, and H. Huang, “Birds foraging search: a novel population-based algorithm for global

optimization,” Memetic Computing, vol. 11, no. 3, pp. 221–250, 2019, doi: 10.1007/s12293-019-00286-1.
[3] G. G. Wang, “Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems,” Memetic

Computing, vol. 10, no. 2, pp. 151–164, 2018, doi: 10.1007/s12293-016-0212-3.

[4] S. A. A. Ghaleb, M. Mohamad, E. F. H. Syed Abdullah, and W. A. H. M. Ghanem, “Integrating mutation operator into grasshopper
optimization algorithm for global optimization,” Soft Computing, vol. 25, no. 13, pp. 8281–8324, 2021, doi: 10.1007/s00500-021-05752-y.

[5] A. A. A. Asmael and B. Al-Nedawe, “Energy efficient WSN using hybrid modification PEGASIS with ant lion optimization,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 23, no. 1, pp. 273–284, 2021, doi:
10.11591/ijeecs.v23.i1.pp273-284.

[6] H. Kilic, U. Yuzgec, and C. Karakuzu, “A novel improved antlion optimizer algorithm and its comparative performance,” Neural

Computing and Applications, vol. 32, no. 8, pp. 3803–3824, 2020, doi: 10.1007/s00521-018-3871-9.
[7] S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-

objective problems,” Neural Computing and Applications, vol. 27, no. 4, pp. 1053–1073, 2016, doi: 10.1007/s00521-015-1920-1.

[8] S. M. C. Sapul, R. Setthawong, and P. Setthawong, “New hybrid flower pollination algorithm with dragonfly algorithm and
jaccard index to enhance solving university course timetable problem,” Indonesian Journal of Electrical Engineering and

Computer Science (IJEECS), vol. 20, no. 3, pp. 1556–1568, 2020, doi: 10.11591/ijeecs.v20.i3.pp1556-1568.

[9] P. Soltani and E. Hadavandi, “A monarch butterfly optimization-based neural network simulator for prediction of siro-spun yarn
tenacity,” Soft Computing, vol. 23, no. 20, pp. 10521–10535, 2019, doi: 10.1007/s00500-018-3624-9.

[10] H. Faris, I. Aljarah, and S. Mirjalili, “Improved monarch butterfly optimization for unconstrained global search and neural

network training,” Applied Intelligence, vol. 48, no. 2, pp. 445–464, 2018, doi: 10.1007/s10489-017-0967-3.
[11] Y. Wang, Q. Luo, and Y. Zhou, “Improved grey wolf optimizer for multiple unmanned aerial vehicles task allocation,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 30, no. 1, pp. 577–585, 2023, doi:

10.11591/ijeecs.v30.i1.pp577-585.
[12] Y. Y. Koay, J. D. Tan, C. W. Lim, S. P. Koh, S. K. Tiong, and K. Ali, “An adaptive gravitational search algorithm for global

optimization,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 16, no. 2, pp. 724–729, 2019,

doi: 10.11591/ijeecs.v16.i2.pp724-729.
[13] G. Huang, B. He, F. Meng, and D. Rodriguez, “Evaluation of a multi-objective model in energy generation under the influence of

different hydrological conditions based on Moth Search Algorithm,” International Journal of Ambient Energy, vol. 43, no. 1, pp.

3888–3899, 2022, doi: 10.1080/01430750.2020.1861091.
[14] I. Strumberger, E. Tuba, N. Bacanin, and M. Tuba, “Modified moth search algorithm for portfolio optimization,” Smart

Innovation, Systems and Technologies, vol. 165, no. July, pp. 445–453, 2020, doi: 10.1007/978-981-15-0077-0_45.

[15] Y. Feng and G. G. Wang, “A binary moth search algorithm based on self-learning for multidimensional knapsack problems,”
Future Generation Computer Systems, vol. 126, pp. 48–64, 2022, doi: 10.1016/j.future.2021.07.033.

[16] Y. H. Feng and G. G. Wang, “Binary moth search algorithm for discounted 0-1 knapsack problem,” IEEE Access, vol. 6,

pp. 10708–10719, 2018, doi: 10.1109/ACCESS.2018.2809445.
[17] M. Mariyappan and I. Veluchamy, “Game model-combined improved moth search approach for reconfigurable asymmetric multi-

processor system-on-chip architecture,” Engineering Optimization, vol. 55, no. 4, pp. 685–702, 2023.

[18] J. Li, Y. H. Yang, Q. An, H. Lei, Q. Deng, and G. G. Wang, “Moth search: variants, hybrids, and applications,” Mathematics,
vol. 10, no. 21, pp. 1–19, 2022, doi: 10.3390/math10214162.

[19] Y. Feng, H. An, and X. Gao, “The importance of transfer function in solving set-union knapsack problem based on discrete moth
search algorithm,” Mathematics, vol. 7, no. 1, p. 17, 2018, doi: 10.3390/math7010017.

[20] H. Chaudhary and R. Banati, “Improving convergence in swarm algorithms by controlling range of random movement,” Natural

Computing, vol. 20, no. 3, pp. 513–560, 2021, doi: 10.11591/ijeecs.v99.i1.pp1-1x.
[21] B. Hartke, “Global optimization,” Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 1, no. 6, pp. 879–887,

2011, doi: 10.1002/wcms.70.

[22] W. A. H. M. Ghanem and A. Jantan, “An enhanced Bat algorithm with mutation operator for numerical optimization problems,”
Neural Computing and Applications, vol. 31, pp. 617–651, 2019, doi: 10.1007/s00521-017-3021-9.

[23] W. A. H. M. Ghanem and A. Jantan, “Hybridizing bat algorithm with modified pitch adjustment operator for numerical

optimization problems,” EAI/Springer Innovations in Communication and Computing, vol. 10, no. 46, pp. 1–39, 2018, doi:
10.1007/978-3-319-70542-2_5.

[24] W. A. H. M. Ghanem and A. Jantan, “A novel hybrid artificial bee colony with monarch butterfly optimization for global optimization

problems,” EAI/Springer Innovations in Communication and Computing, pp. 27–38, 2018, doi: 10.1007/978-3-319-70542-2_3.
[25] M. A. Elaziz, S. Xiong, K. P. N. Jayasena, and L. Li, “Task scheduling in cloud computing based on hybrid moth search

algorithm and differential evolution,” Knowledge-Based Systems, vol. 169, pp. 39–52, 2019, doi: 10.1016/j.knosys.2019.01.023.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Improved moth search algorithm with mutation operator for numerical optimization …(Sanaa A. A. Ghaleb)

1031

BIOGRAPHIES OF AUTHORS

Sanaa A. A. Ghaleb received the bachelor’s degree from the University of Aden,

Yemen, in 2011, and the M. Sc degree from Universiti Sains Malaysia, Malaysia, in 2017. She

received the Ph.D. degree from the Faculty of Informatics and Computing, Universiti Sultan

Zainal Abidin, Malaysia. Her research interests include technology-enhanced learning,

instructional design and technology, computer networks and information security,

cybersecurity, machine learning, artificial intelligence, swarm intelligence, and metaheuristic.

She can be contacted at email: sanaaghaleb.sg@gmail.com.

Mumtazimah Mohamad was born in Terengganu, Malaysia. She received the

bachelor’s degree in information technology from Universiti Kebangsaan Malaysia, in 2000,

the M.Sc. degree in computer science from Universiti Putra Malaysia, and the Ph.D. degree in

computer science from Universiti Malaysia Terengganu, in 2014. She was a Junior Lecturer,

in 2000. Currently, she is an Associate Professor with the Department of Computer Science,

Faculty of Informatics and Computing (FIK), Universiti Sultan Zainal Abidin, Terengganu,

Malaysia. She has published over 50 research articles in peer-reviewed journals,

book chapters, and proceeding. She has appointed a reviewer and technical committee for

many conferences and journals and worked as a researcher in several national funded research

and development projects. Her research interests include pattern recognition, machine

learning, artificial intelligence, and parallel processing. She can be contacted at email:

mumtaz@unisza.edu.my.

Waheed Ali Hussein Mohammed Ghanem received the B.Sc. degree in

computer sciences and engineering from Aden University, Yemen, in 2003, and the M.Sc.

degree in computer science and the Ph.D. degree in network and communication protocols

from Universiti Sains Malaysia, in 2013 and 2019, respectively. His research interests include

computer and network security, cybersecurity, machine learning, artificial intelligence,

swarm intelligence, optimization algorithms, and information technology. He can be contacted

at email: waheedghanem@umt.edu.my.

Arifah Che Alhadi received her BSc with honors in Information Science from

Universiti Kebangsaan Malaysia in 2001. She obtained her MSc in Information Technology

from the same university in 2005. Additionally, she earned her Ph.D. in Computer Science

from Universiti Malaysia Terengganu in 2019. She currently holds a position as a senior

lecturer in the Faculty of Computer Science and Mathematics at Universiti Malaysia

Terengganu, Malaysia. Her research interests encompass information retrieval and

information systems. She can be contacted at email: arifah_hadi@umt.edu.my.

Abdullah B. Nasser received the B.Sc. degree from Hodeidah University,

Yemen, in 2006, the M.Sc. degree from Universiti Sains Malaysia, Malaysia, in 2014, and the

Ph.D. degree in computer science (software engineering) from Universiti Malaysia Pahang, in

2018. He is currently a University Lecturer in programming and software engineering with

the, Finland. He is the author of many scientific papers published in renowned journals and

conferences. His research interests include optimization algorithms, software testing, and AI,

including software defect prediction and feature selection. He can be contacted at email:

nasser.abdullah@uwasa.fi.

Hanan Aldowah is currently a senior lecturer at Universiti Sains Malaysia

(USM), where she has earned both a Ph.D. and a Master's degree. Her extensive expertise

spans diverse domains, including data analytics, data mining, machine learning, artificial

intelligence, internet of things, engineering pedagogical research, cognitive maps, information

science, E-learning, VR and augmented reality, and instructional technology. Aldowah's

impactful research operates at the intersection of computer science and educational

technology. She can be contacted at email: hanan@usm.my.

https://orcid.org/0000-0003-4506-5214
https://scholar.google.com/citations?hl=en&user=38w6N1EAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57224486604
https://www.webofscience.com/wos/author/record/GQA-4309-2022
https://orcid.org/0000-0001-8151-6022
https://scholar.google.com/citations?user=xn3INhsAAAAJ&hl
https://www.scopus.com/authid/detail.uri?authorId=57189051981
https://www.webofscience.com/wos/author/record/ABF-4147-2020
https://orcid.org/0000-0002-3764-4788
https://scholar.google.com/citations?hl=en&user=ZugoflkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56038604800
https://www.webofscience.com/wos/author/record/32268642
https://orcid.org/0000-0002-5797-4784
https://scholar.google.com/citations?hl=en&user=k0xUETUAAAAJ&view_op=list_works&sortby=pubdate
https://www.scopus.com/authid/detail.uri?authorId=8248079600
https://orcid.org/0000-0002-5377-999X
https://scholar.google.com/citations?hl=en&user=1_1VAhAAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56946469500
https://www.webofscience.com/wos/author/record/2067328
https://orcid.org/0000-0003-1020-2389
https://scholar.google.com/citations?user=4lLuDBMAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57195927085
https://www.webofscience.com/wos/author/record/O-5435-2018

