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 The moth search algorithm (MSA) is a meta-heuristic optimization technique 

inspired by moth behavior, has shown remarkable efficacy in solving 

optimization challenges. However, its poor exploration capability results in an 

imbalance between exploitation and exploration. To address this issue, this 

research introduces a new mutation operator to enhance exploration by 

increasing population diversity. The proposed enhanced moth search algorithm 

(EMSA) aims to expedite convergence and improve overall robustness by 

exploring new solutions more effectively. Evaluation on ten benchmark 

functions demonstrates EMSA's superior exploration capabilities, efficiently 

tackling optimization problems and yielding more optimal solutions within the 

search space. Compared to conventional MSA and other established 

algorithms, EMSA delivers well-balanced results, showcasing its effectiveness 

in optimizing the search space. In the future, the EMSA could potentially find 

applications in addressing real-world engineering optimization challenges. 
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1. INTRODUCTION 

The field of optimization presents a significant challenge across various domains, where the task 

often involves finding the best solution among a multitude of possibilities while minimizing associated costs [1].  

In recent years, metaheuristic algorithms have emerged as powerful tools for addressing such optimization 

problems [2]. Among these algorithms is the moth search algorithm (MSA) [3], which draws inspiration from 

the natural behaviors of moths. However, despite its simplicity and effectiveness, MSA suffers from 

limitations, particularly in achieving a balance between exploitation and exploration during the optimization 

process [4]. Existing solutions to optimization problems include a plethora of metaheuristic algorithms such 

as ant lion optimization (ALO) [5], [6]; dragonfly algorithm (DA) [7], [8]; monarch butterfly optimization 

(MBO) [9], [10] among others [11], [12]. While these algorithms have shown efficacy in various scenarios, 

each comes with its own set of strengths and weaknesses.  

This study introduces a novel enhancement to the Moth Search Algorithm (MSA), a metaheuristic 

algorithm inspired by moth behavior, known for its efficient convergence towards optimal solutions but 

https://creativecommons.org/licenses/by-sa/4.0/
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limited in global exploration. The proposed enhancement incorporates a mutation operator to improve both 

exploration and exploitation in MSA. The MSA, while effective in local exploitation, can struggle with 

global exploration due to its reliance on strategies like decreasing values and random walks. To address this, 

we introduce a mutation operator into MSA to diversify the population and enhance exploration in the search 

space. This mutation operator combines local search techniques based on self-experience with global search 

techniques based on neighboring experience. The main goal is to expedite global convergence rates and avoid 

local optima traps. Simulation results demonstrate that integrating mutation operators into MSA significantly 

improves population diversity, enabling individuals (moths) to escape local optima more efficiently. The 

proposed Enhanced Moth Search Algorithm (EMSA) outperforms traditional MSA, especially with 

deterministic mutation operators, showcasing superior performance across various benchmark functions. 

While this study introduced the innovative approach of utilizing a random mutation operator to 

improve the MSA, prior research has delved into refining traditional MSAs using different methodologies. 

For instance [13] introduced the CMSA algorithm, which utilizes chaos theory to improve the global 

convergence of MSA optimization. By integrating various chaotic maps into the MSA Logistic map, an 

effective balance between exploration and exploitation was sought. While the inclusion of chaotic maps 

showed promise in enhancing MSA performance, the results fell short of expectations due to the unsuitability 

of chaotic factors in handling benchmark functions. However, a notable drawback of this study is its 

dependence solely on four benchmark functions to assess the effectiveness of the CMSA. Strumberger et al. [14], 

the scholars have proposed a modified MSA for portfolio optimization. They utilized two distinct models for 

the portfolio selection problem: a straightforward one and a cardinality-constrained model. One of the 

primary disadvantages is that they produce a discrete solution space. Also, this study relies solely on four 

benchmark functions to assess the effectiveness of the modified MSA algorithm. 

In their study referenced as [15], the authors introduced nine innovative algorithms under the 

umbrella of MSA, denoted as MSA 1 – MSA 9. To evaluate the influence of the "fly straight" and Lévy flight 

operators in the MSA, the Lévy flight operator was replaced with 9 alternative mutation operators, drawing 

inspiration from the global harmony search. The experimental findings indicated that these newly proposed 

MSA-based methods demonstrated enhanced overall performance. Nevertheless, the outcomes did not reach 

their optimum, primarily due to the discrepancy between the non-linear comfort zone parameter and the Levy 

flight factors in handling multiple optimization functions. In their study [16], researchers introduced a binary 

MSA algorithm. They integrated a self-learning flight strategy into the enhanced MSA to facilitate individual 

learning. Evaluation across 89 diverse benchmark instances revealed that while the proposed method 

improved global search capability and population diversity, its efficacy was constrained due to a deficiency 

in randomness. Finally, in their research [17], researchers introduced a novel approach called game model 

integrated enhanced MSA optimization (GMMSAO) to delve into design possibilities and streamline system 

optimization. GMMSAO incorporates a game model concept in its input phase, facilitating effective 

exploration of the system's design space across various configurations. This approach aims to identify the 

optimal solution within a reasonable timeframe by leveraging diverse search iterations. However, the absence 

of robust randomness could limit diversity during search iterations, restricting each search agent to 

predetermined positions. Moreover, numerous other application-specific modifications to the MSA can be 

found in the literature [18]-[20].  

Previous research has primarily focused on refining traditional MSAs using different methodologies, 

introducing innovative algorithms under the umbrella of MSA, and proposing application-specific 

modifications. However, gaps remain in understanding how to enhance the MSA's efficacy in terms of 

convergence rate, solution quality, and exploration capabilities, especially when compared to other 

metaheuristic algorithms. Following the previous studies, we propose an enhanced version of the MSA 

(enhanced moth search algorithm) named EMSA. EMSA integrates a novel mutation operator into the 

conventional MSA algorithm to tackle issues such as local optima entrapment and slow convergence. Our 

approach aims to strike a balance between exploration and exploitation by employing a specialized mutation 

operator that enriches the diversity of the standard MSA, thereby facilitating the discovery of optimal 

solutions for global optimization problems. To assess the enhancement in solution accuracy, we conduct 

experiments using ten established test functions commonly utilized in swarm intelligence research for 

evaluating algorithm accuracy and performance, some of which were employed in the aforementioned 

studies. This study encompasses all of these functions. Our experimental results demonstrate that our 

suggested EMSA outperforms all other algorithms documented in the literature. 

 

 

2. METHODS 

2.1.  Numerical optimization 

Global optimization issues have been successfully solved in practice using metaheuristics. Global 

optimization seeks the most favorable solution from a set of viable options, aiming to maximize or minimize 
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a desired parameter within a specified range [21]-[23]. Identifying a vector inside a given domain that, out of 

a large number of conceivable solutions, delivers the optimal answer is, in other words, the process of 

optimization. In a variety of disciplines, including control theory, mathematics, management science, and 

computer science, optimization problems are sometimes known as mathematical programming or 

mathematical optimization. The fundamental idea behind optimization involves systematically evaluating a 

set of specified values, adhering to predefined forms and domains. For each input within this set, the 

corresponding output of a function is computed, aiming to identify the optimal values. The primary objective 

is to either maximize or minimize an objective function, subject to constraints within a designated domain. 

The formulation of an optimization problem typically follows the process outlined below. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥): 𝑋         𝑅;  𝑥 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 (1) 

 

Subject to: f(x0) ≤ f(x) for all x in X (“minimize”) / f(x0) ≥ f(x) for all x in X (“maximize”) 

Where:  f(x): Rn         R (is the goal to minimize or increase the objective function over x) 

The optimization approach outlined above is specifically designed to address numerical problems, and 

many practical engineering and scientific issues can be formulated within this framework. In the previously 

mentioned (1), the function f serves as the objective function used to evaluate all feasible solutions within the 

search space, which is defined by the domain x. The choice of the objective function, denoted as f, depends on 

the specific application requiring optimization, whether it is geared towards minimizing or maximizing. The 

conventional method for articulating an optimization problem typically emphasizes minimization. It is essential 

to note that within a search space, multiple local minima may exist alongside the true extreme value, be it a 

minimum or maximum. The following statement holds for a point to be a local minimum at x*. 

 

𝑓(𝑥 ∗)  ≤  𝑓(𝑥) 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑠𝑜𝑚𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (2) 

 

Generally, there are two main groups of optimization techniques: deterministic and stochastic. The 

primary distinction between them is that the deterministic method performs well and is effective when seeking a 

local optimum. Additionally, it yields the same final answer provided that one commences from an identical set 

of initial solutions. In contrast, a stochastic algorithm is more useful in optimization techniques where the solution 

space is frequently unreasonably large. The process commences with an initial set of solutions, employing random 

operators to navigate the solution space until identifying a global optimum. Notably, the outcome of a subsequent 

run of the same method, despite having the same initiation, may vary from the initial result. 

 

2.2.  Moth search algorithm  

2.2.1. Levy flights 

The moth will execute lévy flights to encircle the best butterfly because they are closer to it. In other 

words, as illustrated in (3), their positions are updated by completing lévy flights. The update for moth i can 

be expressed as follows: A power-law formula, as described in [3] can be employed to mathematically 

represent the lévy distribution, as demonstrated in (4). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼L(s) (3) 

 

L (s) ~ |s|-B      where 1 < 𝛽 ≤ 3 is an index (4) 

 

The given text discusses a mathematical or computational model that involves a parameterized 

update rule for positions in a generation-based process. The notation used includes variables such as t for the 

current generation, 𝑥𝑖
𝑡+1 and 𝑥𝑖

𝑡  for the updated and typical positions at generation t respectively, and L(s) 

representing the step from Lévy flights. The scale factor for the problem is denoted as the parameter α, and 

its specification is provided in the context of the work. 

 

𝛼 = 𝑆max/t2 (5) 
 

Where Smax represents the maximum step size for walking, and its value is determined in accordance 

with the specific problem. The lévy distribution, denoted as L(s) in (3), can be expressed as follows: 

 

L(s)=
(𝛽−1)Γ(𝛽−1)𝑠𝑖𝑛(

𝜋(𝛽−1)

2
) 

𝜋 𝑆𝛽  (6) 

 

When the gamma function, 𝛤(x), is greater than s. 
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The utilization of the lévy distribution with a parameter value of β = 1.5 provides a means to deduce the lévy 

flights undertaken by moths, as elucidated earlier. 

 

2.2.2. Fly straightly 

Some moths may fly in a line toward a light source when they are far away from it. Below is a 

description of this procedure. The flights of moths can be described as: 

 

𝑥𝑖
𝑡+1 = ⋋ ×  (𝑥𝑖

𝑡 + ϕ × ( 𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡)) (7) 

 

Where, in this approach, ϕ is a scaling factor with the golden ratio as its base, and 𝑥𝑏𝑒𝑠𝑡
𝑡  is the top 

moth at generation t. A scale factor is λ. For simplicity, (7) or (8) will be used to update the position of moth i 

with a probability of 50%. The moth, conversely, could move towards its previous location, which is more 

distant from the light source. The final location of moth i in this scenario can be denoted as: 
 

𝑥𝑖
𝑡+1 = ⋋ ×  (𝑥𝑖

𝑡 +
1

∅
× ( 𝑥𝑏𝑒𝑠𝑡

𝑡 −  𝑥𝑖
𝑡)) (8) 

 

The diagram in Figure 1 represents three key positions: xbest, xi, and xi,new, symbolizing the optimal, 

initial, and modified locations of a moth acting as a light source. xbest marks the most effective position, while 

xi denotes the starting point, and xi,new signifies a modified location after optimization. As can be seen in 

Figure 1(a) presented the movement from xi (initial position) to xi,new involves some form of optimization or 

improvement. This could be related to maximizing light intensity, minimizing energy expenditure, or 

achieving a better overall performance metric. The moth constantly adjusts its position in an iterative process 

aimed at reaching the optimal position (xbest). In Figure 1(b) the positions xbest, xi, and xi,new create a feedback 

loop. The moth starts at xi, evaluates its current state, makes adjustments to move towards xbest, and then 

repeats this cycle as needed. This feedback loop is crucial for continuous improvement and adaptation. 

Ideally, through these iterative adjustments, the moth converges towards xbest, indicating successful 

optimization or achievement of the desired goal. 
 

 

 
(a) 

 

 
(b) 

 

Figure 1. Removing of unwanted outer area from the image (a) original image and (b) cropped image 
 

 

The parameter λ plays a crucial role as a scaling factor, influencing the convergence rate of the 

algorithm and augmenting the diversity within the population. Notably, the scaling factor is determined by a 

randomly generated value derived from the standard uniform distribution. Additionally, the Algorithm 1 

encompasses pseudocode for MSA. 

 

Algorithm 1: MSA algorithm [3] 
Step 1: // Initialize parameters such as: Set t = 1; // Generation number 

Generate MaxGen, max walk step Smax, the index β, and acceleration factor ϕ; 

Step 2 Evaluate the fitness of each moth; // Evaluate fitness 

Step 3 While (t < MaxGen) do  

Sort all the moth individuals as per their fitness;  // Sort moths based on fitness 

   For i=1 to NP/2 do // Update positions for moths in Subpopulation 1 

        Generate  xi
t+1;   Eq. (3) 

                Adjust the boundaries for the current moth in population; 

     End for i 

For i= NP/2+1 to NP do   // Update positions for moths in Subpopulation 2 

 If rand > 0.5 then 

 Generate  xi
t+1 by Eq. (7); 

 Else 

 Generate xi
t+1 by Eq. (8); 

 End if 

End for i 

Update T; // Update global information if a better solution is found 
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t = t + 1; // Increment generation counter 

 

Step 4 End while 

Step 5 Output the best solution 

End 

 

2.3.  The enhanced MSA (EMSA) 

In this section, we present an enhanced version of EMSA, an algorithm built upon the typical MSA 

discussed earlier. The conventional moth algorithm demonstrates an ability to navigate the search space 

effectively. However, it occasionally becomes ensnared in local optima, impeding its ability to perform 

efficient global searches. To mitigate the risk of getting stuck in local optima within the MSA, it is essential 

to enhance the diversity of the search process. Numerous studies have proposed solutions to address this 

issue [24], [25]. some of which will be discussed in section 1. 

The fundamental concept underlying the algorithm presented in our paper involves enhancing the 

MSA process with a highly effective operator. This operator comprises random-based modifications aimed 

at enhancing the diversity of the MSA, thereby facilitating more mutations within the examined solutions 

during the MSA search. Consequently, this allows the algorithm to escape potential local optima traps. 

Essentially, while the MSA primarily leverages solutions within its local neighborhood, the addition of the 

mutation operator enables exploration of new areas within the search space. The key distinction between 

EMSA and traditional MSA lies in the utilization of the added mutation operator to refine the typical MSA, 

generating a fresh solution for each iteration. Accordingly, the principles of exploitation and exploration 

emerge as pivotal characteristics in crafting a proficient optimization algorithm. The newly proposed 

algorithm, EMSA, and its detailed pseudocode are presented in Algorithm 2.  

 

Algorithm 2: EMSA algorithm 
Step 1: // Initialize parameters 

Set t = 1; // Generation number 

Initialize NP moths' P population at random using a uniform distribution;  

Generate MaxGen, max walk step Smax, the index β, and acceleration factor ϕ; 

// Generate a random population (𝑋𝑖
𝑑) 

For i = 1 to N do 

       For d = 1 to dim do 

              (𝑋𝑖
𝑑) = Random Value ();  

       End for d 

End for i 

Step 2:                  // Calculate the fitness of each moth 

Calculate Fitness (); 

𝑇�̂� = the best moth;           // Initialize the best solution 

Step 3 // Main loop 

While (𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛) do 
    Update Solution ();                            // Update the solution using Eqs. (9), 

(10) 

    // Iterate through the population 

     For i=1 to N (moth in population) Do 

        if ε1 ≤ p Then                                                    // Check 

probability condition 

           MSA phase (); 

        Else 

           if ε2 ≤ limit Then                                      // Check another 

condition 

           Randomly select a moth (r1);            // Randomly select moths from the 

population 

             𝑥𝑖𝑟1

𝑡+1 = 𝑥𝑟1

𝑡 ; 

              Randomly select a moth (r2); 

             𝑥𝑖𝑟2

𝑡+1 = 𝑥𝑟2

𝑡 ; 

              if (r1≠ r2) Then                                             // Update the 

positions based on conditions 

                          𝑥𝑖
𝑡+1 = w × (𝑥𝑖𝑟1

𝑡  - 𝑥𝑏𝑒𝑠𝑡
𝑡  ) × 2× (rand-1); 

              Else 

                             𝑥𝑖
𝑡+1 = w × (𝑥𝑖𝑟2

𝑡  - 𝑥𝑏𝑒𝑠𝑡
𝑡  ) × 2× (rand-1); 

               End if 

       Else 

               𝑥𝑖
𝑡+1 = 𝑥𝑚𝑖𝑛

𝑡  + rand × (  𝑥𝑚𝑎𝑥
𝑡   - 𝑥𝑚𝑖𝑛

𝑡 );     // Update the position randomly 

        End if 

    End if 

End for i 

Update T (); // Update the best solution 

𝑡 = 𝑡 + 1; // Increment generation counter 
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Step 4 End while //  

Return the best solution of T; // Return the best solution of T 

 

To enhance solution diversity, randomization is introduced into the MSA component. For 

increased diversity of solutions, randomization is necessary. While x_i^(t+1) plays a comparative role in 

MSA, it is only applicable to certain local jump adjustments, rendering it a local search equivalent. By 

leveraging randomness, the algorithm can explore diverse regions with significant variability to find the 

overall best solution. Additionally, considering the moth's prior likelihood of existence and evaluating the 

best and worst moths, the mutation operator introduces random adjustments to the moth's movement within 

the search space, fostering increased diversity within the population. In this study, the MSA's exploitation 

step is utilized in tandem with the mutation operator to balance 50% of the MSA-calculated search space. 

These combined techniques expedite convergence towards the optimal solution, enhancing solutions that 

may initially fall outside the acceptable range. To summarize, the proposed method consists of two primary 

components: the starting phase and the updating phase. Throughout the iterative process, the model assesses 

the degree of aging probability values for individuals, aiding in the selection of the appropriate search space 

(either the primary or updating phase) to refine the overall strategy. 

The proposed algorithm, EMSA, extends the typical MSA introduced in the previous section, 

aiming to enhance its performance by integrating a highly efficient operator. The core idea behind this 

mutation operator involves a set of random-based adjustments designed to improve the diversity of the 

MSA algorithm, facilitating an increase in mutations within the solutions explored during the search 

process, helping to avoid traps of local optima. Importantly, the enhanced MSA algorithm demonstrates 

proficiency in both exploiting solutions in the local neighborhood and exploring new areas in the search 

space simultaneously, crucial features in developing an effective optimization algorithm [3]. The EMSA 

algorithm distinguishes itself from the MSA by integrating a mutation operator designed to enhance the 

typical MSA. This augmentation results in the creation of unique solutions for each iteration. The 

algorithm's primary improvement lies in the introduction of the mutation operator, aiming to augment 

population diversity, consequently refining search efficiency, and hastening convergence to the optimal 

value.  

Notably, EMSA retains all parameters of the MSA while incorporating 2 additional control 

parameters, namely p and limit. These variables play a pivotal role in achieving balance, with p representing 

a value within the [0, 1] range, and limit involving two random numbers drawn from a uniform distribution. 

When 𝜀1 ≤ 𝑝,, the generation of a new solution is initiated through the utilization of the MSA phase. If 𝜀1 >
𝑝, the new solution will be generated using the mutation operator. Limit is the control parameter for the new 

mutation operator, and if it is set to 𝜀2 ≤ 𝐿𝑖𝑚𝑖𝑡, it will randomly select two moths from the population, 

𝑥𝑟1
𝑡  𝑎𝑛𝑑 𝑥𝑟2

𝑡 . The population size is denoted by N, and the integers in the range [1, N] represent the values of 

(r₁) and (r₂). In (9) alters the value of 𝑥𝑖
𝑡+1 if (r₁) and (r₂) are distinct. Otherwise, 𝑥𝑖

𝑡+1 is not modified by 

(10). However, 𝑥𝑖
𝑡+1 is arbitrarily changed from the set of workable solutions if 𝜀2 > 𝐿𝑖𝑚𝑖𝑡. In the 

population under study, the best moth is represented by the string 𝑥𝑏𝑒𝑠𝑡
𝑡 , where t is the generation in 

question. A variable called rand produces random numbers using the same distribution between 0 and 1. 

 

𝑥𝑖
𝑡+1 = 𝑤 × (𝑥𝑖𝑟1

𝑡 − 𝑥𝑏𝑒𝑠𝑡
𝑡 ) × 2 × (𝑟𝑎𝑛𝑑 − 1); (9) 

 

 𝑥𝑖
𝑡+1 = 𝑤 × (𝑥𝑖𝑟2

𝑡 −  𝑥𝑏𝑒𝑠𝑡
𝑡 ) × 2 × (𝑟𝑎𝑛𝑑 − 1);  (10) 

 

The EMSA plays a pivotal role in advancing MSA capabilities by seamlessly incorporating a novel 

mutation operator. This integration aims to augment population diversity, fostering a broader range of 

genetic variations. The ultimate objective is to optimize MSA performance, expediting the convergence 

process towards the optimal point. 

 

 

3. EXPERIMENTAL EVALUATION 

In this study, ten benchmark functions are utilized for assessment, comparing their efficacy with 

both traditional MSA and various metaheuristic algorithms. Evaluation criteria focus on achieving optimal 

solutions and identifying the best ones. A consistent population size of 50 is maintained, with the maximum 

number of generations unchanged. To ensure reliability, each experiment is run 30 times, minimizing the 

influence of chance.  

The research is conducted on a laptop with an Intel Core i7 processor (2.4 GHz) and 8 GB of 

RAM. The EMSA introduced in this study, is derived from the typical MSA implementation.  
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All algorithms, including ALO, DA, and MBO, are executed on MATLAB R2020b, using Windows 8. Ten 

test optimization functions refer to Table 1 for details. 

 

 

Table 1. Optimization functions 
No Name Equation Range Opt 

1 Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 -5.12 5.12 0 

2 
Schwefel 

2.22 
𝑓(𝑥) = ∑ |𝑥𝑖|

𝑛

𝑖=1
+ ∏ |𝑥𝑖|

𝑛

𝑖=1
 -10 10 0 

3 
Schwefel 

2.21 
𝑓(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} -100 100 0 

4 Rosenbrock 𝑓(𝑥) = ∑ [100√|𝑥𝑖 − 𝑥𝑖
2| + (1 − 𝑥𝑖)2]

𝑛−1

𝑖=1
 -30 30 0 

5 Step 𝑓(𝑥) =  ∑ ⌊|𝑥𝑖|⌋
𝑛

𝑖=1
 -100 100 0 

6 Quartic 𝑓(𝑥) =  ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1
+ 𝑟𝑎𝑛𝑑[0,1) -1.28 1.28 0 

7 Rastrigin 𝑓(𝑥) = ∑ [𝑥𝑖
2 − 10 cos 2𝜋𝑥𝑖 + 10]

𝑛

𝑖=1
 -5.12 5.12 0 

8 Ackley 
𝑓(𝑥) = −20𝑒

(−0.2×√1
𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1 )
− 𝑒[

1
𝑛

∑ cos 2𝜋𝑥𝑖
𝑛
𝑖=1 ] + 20 + 𝑒1 

-32.8 32.8 0 
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4. RESULTS AND DISCUSSION 

In this part, we thoroughly evaluate the EMSA algorithm, comparing its effectiveness as a versatile 

numerical optimizer with various metaheuristic algorithms. Our evaluation entails a meticulous comparison 

between EMSA and selected benchmarks, with a focus on global optimization. We systematically test EMSA 

across a range of optimization functions detailed in Table 1 (section 3), comparing its performance against 

ALO, DA, MSA, and MBO. Each experiment includes testing across different parameters of benchmark 

functions, with dimensions of 30 and 90, a population size of 50, and a consistent number of generations. To 

ensure reliability, we conduct 30 runs for each experiment.  

Initially, we validate EMSA using ten benchmark functional datasets, comparing its performance 

with MSA. Contrasting EMSA with MSA, we find that essential parameters such as the maximum step Smax, 

acceleration factor ϕ, and index β are required for EMSA, set to specific values. Parameters for ALO, DA, 

and MBO are set based on typical works by Mirjalili. For MBO, specific parameter values including BAR, 

migration Peri, maximum step Smax, keep, and migration ratio ρ are assigned. Our experiments cover 

functional dimensions of 30 and 90, mirroring previous experiments, and evaluate EMSA against ALO, 

DA, MSA, and MBO using ten functions. Table 2 presents a comparative analysis of the results, showing 

that EMSA consistently outperforms other algorithms, achieving optimal solutions within the search space. 

The table displays the minimum values achieved by EMSA after 50 generations, repeated 30 times, for each 

benchmark function, emphasizing the best outcomes to underscore its outstanding performance. 

The findings from Table 2 clearly indicate that the EMSA algorithm, as proposed, exhibits better 

performance compared to the alternative algorithm. Across all tested functions (ƒ1 through ƒ10), the EMSA 

algorithm consistently shows superior performance. Furthermore, the average convergence values achieved 

by EMSA surpass those of MSA, highlighting EMSA's superior convergence stability. This stability is 

consistently observed across various trials, including those with 30 and 90 dimensions. 

Furthermore, as depicted in Figures 2 and 3, we present the results of EMSA in comparison to 

established algorithms like ALO, DA, and MBO. Figure 2 shows the effectiveness of the Penalized (10) 

function, conducted at dimensions of 90. This graphical representation highlights EMSA's superiority over 

MSA in achieving optimal performance, characterized by faster convergence speed and superior results. 

These conclusions align with prior studies [13], [6],  emphasizing the importance of comprehensive 

comparisons with existing methodologies to keep pace with the constant evolution of optimization 

algorithms.  

To address this need, we evaluated a newly proposed algorithm against a subset of established 

algorithms. Figure 3 presents outcomes for the Rosenbrock function (4) across 90 dimensions, revealing 
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EMSA's outperformance of conventional MSA and several other metaheuristic algorithms including DA, 

MBO, and ALO, in terms of both convergence speed and overall optimization effectiveness. The results in 

Figure 3 show EMSA's superior performance compared to the other methods, with MSA closely following as 

the second-best performer. Performing EMSA with a random mutation operator during optimization yielded 

better results compared to other general conventional algorithms. 
 

 

Table 2. Comparative performance analysis of EMSA against established algorithms 
F D ALO DA MBO MSA EMSA F ALO DA MBO MSA EMSA 

1 3

0 

7.130E+

01 

1.300E+

02 

2.210E+

01 

2.230E+

01 

1.020E+

01 

6 6.730E+

01 

1.230E+

02 

3.970E+

01 

5.480E+

01 

1.230E+

01 
9

0 

1.720E+

02 

3.090E+

02 

4.810E+

01 

4.840E+

01 

1.700E+

01 

1.740E+

02 

3.070E+

02 

5.100E+

01 

4.970E+

01 

1.760E+

01 

2 3
0 

6.730E+
01 

1.250E+
02 

2.150E+
01 

2.240E+
01 

9.440E+
00 

7 5.000E+
01 

8.830E+
01 

2.470E+
01 

2.520E+
01 

9.700E+
00 

9

0 

1.750E+

02 

3.030E+

02 

4.830E+

01 

4.850E+

01 

1.740E+

01 

8.850E+

01 

1.870E+

02 

3.910E+

01 

3.540E+

01 

1.240E+

01 
3 3

0 
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01 

1.330E+

02 

2.170E+

01 

2.140E+

01 

9.430E+

00 

8 6.580E+

01 

1.270E+

02 

2.210E+

01 

2.190E+

01 

1.010E+

01 

9
0 
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02 

3.150E+
02 

4.990E+
01 

4.790E+
01 
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01 

1.770E+
02 
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02 

5.010E+
01 

4.880E+
01 

1.780E+
01 
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01 
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02 
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02 
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01 

4.820E+

01 

1.690E+

01 
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01 
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02 

2.120E+
01 

2.120E+
01 

9.190E+
00 

1
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6.810E+
01 

1.270E+
02 

2.180E+
01 

2.210E+
01 

9.410E+
00 

9

0 

1.720E+

02 

3.120E+

02 

4.630E+

01 

4.930E+

01 

1.650E+

01 

1.730E+

02 

3.040E+

02 

4.900E+

01 
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01 
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Figure 2. Convergence curves of the best 

objective function of EMSA and MSA algorithms 

for Function 10 Dimension 90 

Figure 3. Convergence curves of the best objective 

function of EMSA and established algorithms for 

Function 4, Dimension 90 

 

 

5. CONCLUSION 

This article has introduced a random mutation operator mechanism aimed at improving MSA. This 

mechanism has been integrated into the original MSA to boost population diversity and increase the 

randomness of the search agent's (moth's) movement. This integration is intended to facilitate a more 

effective exploration of the solution space. The effectiveness of this mutation operator is assessed across ten 

benchmark test functions, revealing significant performance enhancements in EMSA. In general, the 

outcomes of all conducted experiments demonstrated that the mutation operator has the capability to greatly 

enhance the performance of MSA. Comparative analysis against established algorithms like ALO, DA, and 

MBO consistently demonstrates EMSA's competitive advantages across most benchmark functions. The 

primary factor behind the enhanced performance is EMSA's ability to strike a more optimal balance between 

exploration and exploitation, thereby preventing the algorithm from becoming trapped in local optima during 

the optimization process. The study also highlights potential applications of EMSA in training artificial 

neural networks for tasks like medical diagnosis, face recognition, and botnet detection, presenting exciting 

opportunities for further research. 
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