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As cyber-physical systems (CPS) continue to play a pivotal role in modern
technological landscapes, the need for robust and transparent machine
learning (ML) models becomes imperative. This research paper explores the
integration of explainable artificial intelligence (XAI) principles into
unsupervised machine learning (UML) techniques for enhancing the
interpretability and understanding of complex relationships within CPS. The
key focus areas include the application of self-organizing maps (SOMs) as a
representative unsupervised learning algorithm and the incorporation of
interpretable ML methodologies. The study delves into the challenges posed
by the inherently intricate nature of CPS data, characterized by the fusion of
physical processes and digital components. Traditional black-box
approaches in unsupervised learning often hinder the comprehension of
model-generated insights, making them less suitable for critical CPS
applications. In response, this research introduces a novel framework that
leverages SOMs, a powerful unsupervised technique, while concurrently
ensuring interpretability through XAl techniques. The paper provides a
comprehensive overview of existing XAl methods and their adaptation to
unsupervised learning paradigms. Special emphasis is placed on developing
transparent representations of learned patterns within the CPS domain. The
proposed approach aims to enhance model interpretability through the
generation of human-understandable visualizations and explanations,
bridging the gap between advanced ML models and domain experts.
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1. INTRODUCTION

In the realm of cyber-physical systems (CPS), the integration of machine learning (ML) algorithms
is becoming increasingly prevalent. However, the black-box nature of many ML models poses challenges in
understanding their decisions, which is critical for the safety and reliability of CPS. This paper explores the
application of explainable unsupervised machine learning (EUML) techniques, focusing on explainable
artificial intelligence (XAI) principles, self-organizing maps (SOMs), interpretable ML, and unsupervised
machine learning (UML) [1]-[3]. The rapid integration of ML techniques into CPS has significantly
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advanced the capabilities of these complex systems. However, the opacity of many ML models poses
challenges in understanding and trusting their decisions, particularly in safety-critical domains [4], [5]. This
paper addresses the need for transparency and interpretability in CPS by focusing on EUML techniques. Key
components of this exploration include principles from XAl, SOMs, interpretable machine learning, and
UML [6], [7].

As we learn more about EUML, it's important to think about what unsupervised learning means in
CPS, where physical and cyber parts are linked and require a higher level of openness. This introduction lays
the groundwork for a more in-depth look at EUML. The goal is to close the gap between the fact that
uncontrolled learning models aren't always clear and the need for clear, understandable decision-making
processes in CPS [8]. The subsequent sections of this paper will unfold the layers of supervised and UML,
examine the principles of explainability, and ultimately focus on the intersection of unsupervised learning
and interpretability in CPS. The investigation will culminate in a detailed exploration of explainable SOMs as
a promising approach to address the challenges posed by traditional black-box models in CPS applications
[9], [10]. Through this exploration, we aim to contribute to the evolving landscape of interpretable and
trustworthy ML solutions for the intricate domain of CPS [11], [12].

Supervised machine learning (SML) stands as a cornerstone in the field of ML, involving the
training of models on labeled datasets to make predictions or classifications. The effectiveness of SML in
various domains has been well-established, leading to its widespread adoption. However, the interpretability
of these models often diminishes as they grow in complexity, making it challenging to comprehend the
decision-making processes. In safety-critical applications, understanding why a model makes a specific
prediction is paramount, prompting the exploration of alternative approaches [13], [14]. Unlike SML, UML
deals with unlabeled data, seeking to uncover underlying patterns and structures without explicit guidance.
Clustering and dimensionality reduction are common tasks in UML, where the absence of labeled examples
challenges the interpretability of learned representations. As CPS involves intricate interactions between
physical and cyber components, the ability to decipher the latent relationships within data becomes crucial
for effective decision-making [15]-[17].

Explainable machine learning (XML) has emerged as a critical field to address the black-box nature
of many ML models. While feature importance and model-agnostic methods have been successful in
enhancing interpretability, these techniques are primarily designed for supervised learning scenarios. As the
integration of ML in CPS intensifies, the need for explainability in unsupervised learning becomes apparent,
prompting the exploration of EUML techniques [18]-[20]. With this background, you can better understand
the problems that standard supervised and UML models cause, especially when it comes to CPS. In the parts
that follow, we'll get into the specifics of EUML by looking at its shortcomings, mapping existing XML
terms to unsupervised situations, reviewing recent research, and finally focusing on how it can be used to
solve the unique problems of CPS. The idea of adding XAl to the Al work flow is shown in illustration 1.
The goal is to use methods that can be explained in different stages of the life cycle of Al.

2. EXPLAINABLE UNSUPERVISED MACHINE LEARNING

EUML encompasses a set of critical requirements that distinguish it from traditional unsupervised
learning approaches. The primary desiderata include transparency, interpretability, and the ability to provide
insights into the decision-making processes of unsupervised models. In the context of CPS, where the
consequences of erroneous decisions can be severe, these desiderata become essential for ensuring the
trustworthiness and reliability of the deployed ML models [21].

Developing effective EUML algorithms requires adapting and extending XML concepts to
unsupervised contexts. Interpretability, openness, and accountability must be rethought for unsupervised
learning. The mapping of XML terms to EUML provides a framework for evaluating and improving UML
model interpretability [22]. A comprehensive review of the current state-of-the-art in EUML techniques is
presented, highlighting advancements, challenges, and potential applications. This literature review provides
insights into the progress made in addressing the interpretability issues of unsupervised learning models,
laying the groundwork for the subsequent exploration of EUML in the specific context of CPS [23], [24].
This section focuses on the application of EUML within the realm of CPS. It addresses the unique challenges
posed by CPS, such as the dynamic interplay between physical and cyber components, the need for real-time
decision-making, and the requirement for transparency in complex, interconnected systems. The discussion
includes potential use cases, benefits, and considerations for deploying EUML in CPS applications [25].

The exploration of EUML in this section sets the stage for a more detailed examination of a
specific approach — SOMs in the subsequent sections. By laying out the desiderata, mapping existing
terms, reviewing literature, and contextualizing EUML within CPS, this paper aims to provide a
comprehensive understanding of the potential and challenges associated with interpretable UML in
complex, dynamic systems.
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2.1. Explainable self-organizing maps

SOMs have emerged as a powerful technique in unsupervised learning, particularly in clustering and
dimensionality reduction tasks. Introduced by Kohonen, SOMs map high-dimensional input data onto a
lower-dimensional grid of neurons, preserving the topological relationships of the input space. While SOMs
exhibit remarkable capabilities in capturing complex structures within data, their interpretability has been
limited due to the intrinsic complexity of the learned representations [26], [27].

Figure 1 illustrates the structure of a two-dimensional SOM in both the output space and the input
space. Figure 1(a) represents the SOM output space, where neurons are arranged on a fixed two-dimensional
grid with predefined topological connections that preserve neighborhood relationships. Figure 1(b) shows the
same SOM mapped into the input space after training, where the neurons adapt their positions to fit the
distribution and clusters of the input data. The learning behavior of the SOM is governed by key
hyperparameters, namely the learning rate and the neighborhood radius of the best matching unit (BMU),
both of which are gradually reduced at each epoch to ensure smooth convergence and accurate data
representation.

Neurons Topological
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Figure 1. SOMs shown in (a) the output space and (b) the input space changed to fit the 2D spread of the
points that were entered

To address the interpretability challenges of traditional SOMs, modifications and extensions have
been proposed, giving rise to explainable SOMs. This section delves into the enhancements made to SOMs,
focusing on how these modifications render the model more interpretable. Techniques such as neuron
importance scoring, feature attribution, and visualization of learned representations are explored to facilitate
a deeper understanding of the decision-making processes within the SOMs framework [28]. Explainability in
SOMs is important in CPS, where understanding complex dataset correlations is critical. Explainable SOMs
promise to provide a robust solution for unsupervised learning in CPS applications by combining SOMs'
topological structure capture with explainability's transparency.

The subsequent sections will further explore the experimental setup and results of explainable
SOMs, evaluating their model fidelity, local and global interpretability, and usability within CPS. This
empirical analysis aims to validate the effectiveness of explainable SOMs in addressing the specific
challenges posed by CPS and assess their potential for real-world applications in complex, dynamic
environments.

3. EXPERIMENT SETUP AND RESULTS
3.1. Model fidelity

In the experimental setup, the fidelity of explainable SOMs is rigorously assessed. Comparative
analyses are conducted against traditional SOMs, evaluating the ability of explainable SOMs to accurately
represent the intricate relationships within the given CPS dataset. Metrics such as clustering accuracy,
preservation of topological structures, and reconstruction errors are employed to quantify the fidelity of the
models.
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3.2. Local interpretability

The local interpretability of explainable SOMs is examined to understand how well the model
provides insights into individual data points. Neuron importance scoring and feature attribution techniques
are applied to identify the key factors influencing the decisions made by the model on a per-instance basis.
This analysis aims to highlight the granularity of interpretability achieved by explainable SOMs in the
context of CPS.

3.3. Global interpretability

A broader perspective is taken to evaluate the global interpretability of explainable SOMs. By
examining the learned representations at a system-wide level, the model's ability to uncover overarching
patterns, anomalies, and relationships within the CPS dataset is assessed. Visualization techniques, such as
heatmaps and cluster summaries, are employed to facilitate a comprehensive understanding of the global
interpretability achieved by explainable SOMs.

3.4. Usability within cyber-physical systems

Real-world experiments are conducted to evaluate the usability of explainable SOMs within CPS.
The models are deployed in CPS environments, and their performance is assessed in scenarios that mimic the
dynamic, interconnected nature of these systems. This analysis includes considerations for real-time decision-
making, adaptability to changing conditions, and the overall impact on system reliability and safety.

The variation in cluster quality matrices utilized in this investigation for the bank marketing data set
is illustrated in Figure 2. It illustrates how the number of clusters and SOM dimensions influence the
evolution of these matrices. Cluster quality metrics are computed for both the SOM neuron weights (blue)
and the training dataset (orange) for a given SOM size. The objective of this analysis is to determine the ideal
SOM dimension and cluster count. When the trained SOM neurons accurately represent the entire dataset, it
can be expected that cluster analysis of the SOM weights would reveal comparable patterns to that of the
entire dataset. Figure 2 illustrates that as the number of clusters increases, they adhere to the same patterns.
The Davies-boulding index value and the Silhouette coefficient indicate that three to five clusters are optimal
for the examined SOM dimensions (8,16,2,40).

Dataset: bank_marketing no. of features: 16 feature encoding: frequency SOM dimension: 8 std
threshold: 0.01

Silhouette Coefficient score = SOM neuron weights Davies-Bouldin Index
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Figure 2. A way to judge the quality of K clusters using the Silhouette coefficient and the Davies-bouldin
index for various SOM map sizes
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We sorted features by standard deviation and adjusted random or inconsequential features to test our
hypothesis. That is, we modified p% for the most important features (those with the lowest standard deviation
values), randomly selected features, and least important features, all given p% cardinality. We checked each
data record in the test set to see if modifying the feature value changed its cluster label in each of the three
situations above. Two possibilities were studied for each scenario: i) the proportion of test data records where
another cluster may replace the cluster label, and ii) the proportion where all other clusters can be substituted.
For some data points, perturbing feature values with close cluster criteria may not be enough to remove them
from the initial cluster. We made sure feature values from at least one extra cluster might affect a data point's
cluster categorization. Consider a four-cluster scenario with data point j in cluster 2. We attempt changing its
cluster designation from 2 to another and replacing its feature values with the averages of clusters 1, 2, and 4.
Reducing cardinality n% and growing swapped percentages are expected. The swap % for all datasets is
shown in Figure 3. Except for the second KDD dataset scenario (which asks, "What is the percentage of test
data records where all other clusters can swap the cluster label?"), blue bars represent relevant features and
brown bars random features. This applies to all datasets. The KDD dataset's extremely unbalanced classes
and significant training-testing gap may explain this poor performance. However, KDD works as expected in
the first scenario (how many test data records contain a cluster label that might be changed?). These practical
results validated our prediction by showing that the suggested SOM technique selected data record cluster
labels based on critical criteria.

An additional experiment was conducted to verify the proportion of the chosen K characteristics that
were included in the most crucial feature list of a BMU (Algorithm 1V). The feature-wise |1 distance between
each data record and its BMU was computed for every data record in the test set. This was followed by an
arrangement of the features according to the increasing I1 distances. We postulated that the most prominent
features of a data point would be those that are geographically nearest to it, and that these features would be
part of the BMU's prioritised feature lists. After the feature distances are sorted in increasing order, one of
three strategies—i) closest, ii) random, or iii) furthest—is used to choose K features. Furthermore, we
determined what proportion of K characteristics make it onto the BMU's key feature list. Figure 4 shows the
results, with the X-axis showing the total number of features (K) and the Y-axis showing the proportion of
those characteristics (%) that were considered relevant (feature list). The colour blue denotes characteristics
that are close by, whereas yellow denotes features that are random and green denotes features that are far
away. While the yellow bar displays the second-highest percentage, the blue bar shows the highest
percentage for all K characteristics. This suggests that each BMU's determined essential feature lists contain
the nearby features.

Figure 5 shows the global interpretability of the 'flag’ feature in the KDD dataset as it varies between
clusters. The SOM neurons were grouped into three groups, and the U-matrix showed the distances and
separation between the clusters. Critical feature value ranges were shown against cluster assignments.
Additionally, u-maps were employed to verify the dispersion of clusters. The 'flag' characteristic of the KDD
dataset is illustrated in Figure 5. The first picture is the raw data, and it depicts the SOM neurons' cluster
separation. Across three clusters (component plans), the ‘flag' feature's value is depicted in the second image
of the first row. The feature value of "flag" varies between the three groups. The three clusters are clearly
delineated in the third image of the initial raw data set, where a region of lighter colour signifies the distance
between neurons. The greater the area, the more distinct the clusters are. A fine-grained representation of the
scale of feature values across clusters is shown in the second row of Figure 5. One thing to keep in mind is
that even within the same cluster, there can be neurons with varying feature values for the same feature. If a
domain expert wants to know how a specific feature acts inside a cluster, they need this data. Cluster 0 has a
larger feature value for the 'flag' feature (0.7-1.0), cluster 1 displays an intermediate range (0.45-0.52), and
cluster 3 displays a very low range (0.15). In addition, it displays the likelihood of a particular feature value
being present within a cluster. Take cluster 0 as an example; the 90ature value varies from cluster to cluster.

Initial experiment integrity test (Figure 4). We tried several values for p, active features, randomly
picked features, and least important features. We calculated the percentage of data points where the cluster
label changed after changing p out of all features. We examined two scenarios: the proportion of test data
records where another cluster's label could replace the cluster label (left) and the proportion where no
cluster's label could replace it (right).

The results obtained from the experimental setup are critically discussed, emphasizing the strengths
and potential limitations of explainable SOMs in the context of CPS. Considerations for scalability,
computational efficiency, and generalizability are addressed. Additionally, insights into the practical
implications of deploying explainable SOMs in real-world CPS applications are discussed, providing a
comprehensive understanding of their effectiveness in enhancing model transparency and interpretability.
This section shows how explainable SOMs can solve UML problems in CPS. The next section will draw
inferences from the data and suggest further study and development in this fast expanding sector.
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4. CONCLUSION

The exploration of EUML, delved into its desiderata, the adaptation of existing XML terms to
unsupervised scenarios, a review of current literature, and the application of EUML principles within the
complex landscape of CPS. The introduction of explainable SOMs as a promising EUML technique
addressed the need for interpretability in unsupervised learning models. The subsequent section detailed the
experiment setup and results, critically examining the model fidelity, local and global interpretability, and the
usability of explainable SOMs within CPS environments. By conducting real-world experiments and
analyzing performance metrics, this section provided empirical evidence supporting the effectiveness of
explainable SOMs in enhancing transparency and interpretability in CPS applications. The discussion
brought together theoretical insights and empirical findings, highlighting the strengths, limitations, and
practical implications of explainable SOMs in CPS. Considerations for scalability, computational efficiency,
and real-time decision-making were addressed, providing a holistic view of the potential impact of EUML on
the field. As we look to the future, continued research in EUML, especially within the context of CPS, holds
great promise. Advancements in interpretable unsupervised learning techniques can contribute significantly
to the ongoing development of safe, reliable, and transparent ML solutions for complex, dynamic systems.
This paper serves as a stepping stone, encouraging further exploration and innovation in the intersection of
EUML and CPS.
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