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 Dialogue policy is responsible to select the next appropriate action from 

the current dialogue state to accomplish the user goal efficiently. Present 

commercial task-oriented dialogue systems are mostly rule-based; thus, 
they are not easily scalable to adapt multiple domains. To design an 

adaptive dialogue policy, user feedback is an essential parameter. 

Recently, deep reinforcement learning algorithms have been popularly 

applied to such problems. However, managing large state-action space is 
time consuming and computationally expensive. Additionally, it requires 

good quality and a reliable user simulator to train the dialogue policy 

which takes additional design efforts. In this paper, we propose a novel 

approach to improve the performance of dialogue policy by accelerating 
the training process by using imitation learning for deep reinforcement 

learning. We utilized proximal policy optimization (PPO) algorithm to 

model dialogue policy using a large-scale multi-domain tourist dataset 

MultiWOZ2.1. We observed a remarkable performance of dialogue policy 

with 91.8% task success rate, and an approximate 50% decrease in the 

average number of turns required to complete tasks without using user 

simulator in the early phase of training cycles. This approach is expected 

to help researchers to design computationally efficient and scalable 
dialogue agents by avoiding training from scratch. 
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1. INTRODUCTION 

Recently, dialogue systems have become an integral part of human life, and they are a vibrant field 

of ongoing research. These systems are broadly classified into chit-chat systems and task-oriented dialogue 

(TOD) systems. Chit-chat systems, also known as open-domain dialogue systems, typically do not have a 

specific goal to complete; these systems converse on any arbitrary topic with the user. On the other hand, 

TOD systems are grounded in an ontology and help users accomplish specific goals in minimal dialogue 

turns by proactively generating questions. For instance, finding a restaurant, reserving a taxi, booking a hotel 

room, and navigating to a certain destination. In our research, we explored TOD systems to enhance their 

capabilities. 

Users often find themselves unsure about their choices, requiring TOD systems to engage in 

multiple dialogue turns to understand and identify user intention from natural language input. Often, 

commercial TOD systems are designed in a pipeline approach due to the ease of implementation and higher 

reliability. In the traditional TOD pipeline, the first component is natural language understanding (NLU), 
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which is responsible for intent classification and slot identification. The meaningful information (domain, 

intent, slot, value) extracted by the NLU is represented as a semantic frame and subsequently transferred to 

the next component in the pipeline, known as the dialogue manager (DM). It has two subcomponents, 

namely, dialogue state tracking (DST) and dialogue policy (POL). The DST subcomponent updates the belief 

state of the dialogue in each turn and maintains the dialogue history. The other subcomponent, POL, is a 

decision-making component that decides suitable system actions to be taken based on the current dialogue 

state in that dialogue turn. For instance, system actions, such as requesting additional information from the 

user to complete the intended task or acknowledging the user about completion of the user goal successfully 

by providing the required details. The last component in the pipeline is natural language generation (NLG), 

which generates the natural language response according to the action selected by the dialogue system [1], [2]. 

The pipeline design of TOD systems in the restaurant domain for reservation tasks is depicted in Figure 1. 

Each of these components is implemented and enhanced using either rule-based or neural approaches. 

Recently, end-to-end (E2E) neural design approach is used by researchers in which TOD components are 

trained and optimized jointly by utilizing common model with shared parameters for multiple tasks. In this 

study, the focus is to optimize the performance of the dialogue policy component, which determines the next 

action when provided with the required dialogue context at each dialogue turn using pipeline approach. 

In complex practical scenarios, user queries may span multiple domains [1], [2], and users 

frequently change their goals. Consider the conversation between a user and a dialogue agent in a multi-

domain environment, as described in Figure 2. Here, the user wants to complete the tasks that are from 

different domains, such as ‘attraction’, ‘restaurant’, and ‘taxi’, which are included in the same dialogue 

session. During conversation with dialogue system, user expects seamless experience with adaptive dialogue 

flow that generalize well to multiple user intentions, such as ‘find attraction’, ‘find restaurant’, ‘request-

postcode’, ‘request-phone no’, and ‘book taxi’. Designing such a scalable dialogue policy to select 

appropriate system action in such dynamic environment is a challenging task. 

 

 

 
 

Figure 1. Pipeline design of the TOD system 

 

 

 
 

Figure 2. Conversation in multi-domain environment 
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There are different approaches to designing dialogue policies, which include rule-based, machine 

learning and deep learning-based approaches. Currently, commercial TOD systems use handcrafted rules to 

select the next action in dialogue policy by designing a fixed dialogue flow [3]. Although rule-based dialogue 

policies perform well, they are not scalable enough to support new tasks or domains easily. The dialogue 

flow rules must be redesigned with the help of domain experts to meet the quality and correctness 

requirements, which is tedious and costly. Also, present TOD systems are mostly single domain with limited 

task coverage in the domain under consideration [4]. To design TOD system adaptive to multi-domain 

scenarios, several researchers have explored supervised machine learning to design dialogue policy by 

approaching it as a multi-class classification problem. This approach requires large amounts of annotated 

data for training which is not feasible for many practical scenarios. Additionally, creating such data is tedious 

and costly. Also, supervised approach is not suitable for dynamic environments where user feedback is an 

essential parameter for the dialogue agent to understand and improve upon experience. 

Reinforcement learning (RL) is the preferred choice for modeling dialogue policy in TOD systems 

to increase the generalization capability by taking the user conversation towards success [5]. In RL-based 

dialogue systems, user feedback is considered in terms of positive or negative rewards for the actions chosen 

by the dialogue agent, similar to the gaming environment. As depicted in Figure 3, the RL-based TOD 

systems are trained in a user-agent setting using a trial-and-error method, and the dialogue agent improves its 

performance from earlier experience and tries to maximize its rewards. 

It is challenging to use RL algorithms in practice because of the following reasons: i) the 

requirement of large computing power; ii) the complexity of handling continuous sample space; iii) the 

requirement of a good quality and reliable user simulator for training RL-based agent; and iv) the large 

unexplored territories and sparse rewards in the RL approach. With deep learning advancements, neural 

approaches have been combined with RL (DRL) to manage large sample spaces efficiently. DRL algorithms 

are categorized into model-free and model-based algorithms. In model-free RL algorithms, a dialogue agent 

employs a trial-and-error method to learn the optimal action selection by using either policy iteration methods or 

value-iteration methods. The value-iteration methods estimate the value, i.e., expected rewards of being in the 

given state, by constructing a Q-function and greedily searching for the best policy. On the other hand, policy-

iteration methods search for the optimal policy directly by adjusting the parameters of the policy using gradient 

updates to maximize rewards. In the hybrid approach, the actor-critic method combines both value and policy 

iteration methods, in which the actor (policy-function) learns from the feedback given by the critic (value-

function). Algorithms such as the temporal difference (TD), deep Q-network (DQN), Monte Carlo algorithm, 

and C51 utilize value-based approaches, and algorithms based on policy iteration approaches include policy 

gradient (PG) and actor-critic structure-based algorithms such as the phasic policy gradient (PPG), trust region 

policy optimization (TRPO), proximal policy optimization (PPO), asynchronous advantage actor-critics (A3C), 

and actor-critics with experience replay (ACER) [6]. 

Model-based algorithms create a simulated model for each condition to learn and predict compact 

policies without runtime optimization. The few model-based algorithms are imagination-augmented agents 

(I2A), model-based priors for model-free (MBMF), and model-based value expansion (MBVE) [7]. The 

integration of model-free and model-based methods is also emerging, the Dyna-Q algorithm has its place in 

this category. In this paper, we focused on model-free algorithms for the survey of dialogue policy. After the 

remarkable success of DRL in simulated gaming environments such as the Atari, chess game go and other 

robotic tasks [8], various DRL algorithms have been studied for modeling dialogue policy [6], [9]–[11]. Q-

learning-based algorithms are widely studied in single-domain dialogue scenarios [12], [13], and it is 

observed that tabular-based algorithms such as DQNs [14], double DQNs [15], and dueling DQNs [16], 

which utilize greedy exploration strategies, are not easily scalable for handling continuous action spaces of 

multiple domains; these algorithms are more suitable for limited action spaces [17].  

Training RL-based dialogue agent by awarding rewards or assigning penalty is often time-

consuming as rewards are often given manually, [18] studied dialogue policy learning using a hybrid 

approach, initially they used supervised learning to minimize the cross-entropy losses for system action 

prediction. In a later stage, the REINFORCE algorithm [19] was applied to optimize the RL agent to improve 

from the rewards received. A positive reward of 15 for successful completion, zero reward is assigned in case 

of failure, and a small penalty of -1 is assigned to motivate the dialogue agent to complete the task faster. 

Zhao et al. [20] proposed a latent action framework in which action spaces are treated as latent variables, and 

they performed unsupervised learning to capture the action space. In their work, if the user target returned by 

the user simulator appears in the top 5 results (i.e., R=5), the dialogue is treated as successful, and the reward 

is calculated as actual rank of the target as, max (0, 2 (1−(r−1)/R)), where r is the actual rank of the target. In 

the case of failure, the agent receives a negative reward of -1. The maximum length of dialogue allowed is 10; if 

the result is more than the maximum length, it is treated as a failure. To motivate the agent to complete 

quickly, a negative reward of -0.1 is assigned at each turn. Peng et al. [21] studied the hierarchical RL 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Optimizing dialog policy with large action spaces using deep … (Manisha Thakkar) 

431 

algorithm, in which a top policy focuses on higher-level goals, while sub-policies focus on smaller goals 

responsible for fine control. They assigned a positive reward of 2×max turns for success, a negative reward 

of -max turns for failure and a small negative reward of -1 at the end of each turn to speedy completion. 

In their work, [13], [22] used the deep Dyna-Q (DDQ) algorithm by using DQN with a positive reward 

of 2×maximum turns for success, a negative reward of -maximum turns for failure, and a negative reward of -1 

at each turn for fast task convergence. In the work proposed by [23], variational auto-encoders are used to 

optimize dialogue policy and generate responses in an end-to-end setting. Several policy-iteration algorithms, 

such as the TRPO, PPO, and ACER algorithms, have been studied for continuous action spaces in TOD systems 

and are active areas of research. Weisz et al. [24] studied the ACER algorithm for optimizing dialogue policy in 

the restaurant domain and used rewards at the dialogue level as follows, 20-maxturns for a successful dialogue 

with maximum turns limited to 25. Ohashi and Higashinaka [25] utilized PPO policy to improve the 

performance of dialogue policy by performing post processing of the output of each module in the pipeline 

architecture. They assigned positive rewards of 2×maximum turns where maximum turns are allowed until 20, 

and a small negative reward of -1 is assigned to speed up the dialogue agent.  

It is observed that, in many research studies rewards are given manually only after successful 

completion of the entire dialogue, and no rewards are assigned for the completion of sub-tasks towards 

achieving final goal. To learn from scratch by observing the environment, user simulators are often used to 

train RL-based dialogue agents that interact on behalf of real user to achieve stable dialogue policy as real 

users may feel frustrating to train these agents [26]–[28]. Most of the time, user simulators are handcrafted; 

they use a stack-like data structure (agenda) for maintaining goals as slot-value pairs. The quality of the user 

simulator impacts the performance of the dialogue policy. It is time consuming to develop a user simulator 

for each domain. Many researchers have focused on developing dialogue systems and used existing user 

simulators. As a result of learning by the trial-and-error approach, the user simulator and the dialogue agent 

generate thousands of poor-performing interactions, specifically in the initial phase of training. This process 

of learning from scratch requires considerable time for a dialogue agent to establish a stable policy; 

additionally, it increases the computational load. 

To address these issues, inverse reinforcement learning (IRL) and imitation learning (IL) approaches 

have been studied. Li et al. [29] and Takanobu et al. [30] studied the IRL for precise reward signals; this 

approach infers from exerting behavior and generating rewards to optimize the reward function. However, IL 

directly facilitates the learning of complex tasks with minimal knowledge by mimicking expert 

demonstrations without any explicit reward generation [31]. In our work, two research objectives are as 

follows: i) to design an adaptive dialogue policy for a large continuous sample space in multi-domain 

environment using the DRL approach and ii) to speed up the learning of a dialogue agent without using user 

simulators in the initial phase of training by leveraging IL for the DRL-based dialogue agent. We used a two-

step approach. Initially, we applied IL to mimic expert behavior in supervised manners without learning from 

scratch or through sparse and manually given rewards. In the later step, we use the PPO (proximal policy 

optimization) algorithm, which is a type of model-free DRL algorithm, to select the optimal system action 

from the current dialogue state in a dynamic environment. Finally, we evaluate the performance of the 

dialogue policy in a multi-domain setting. The remainder of the paper is arranged as follows: the 

methodology section describes the formulation of dialogue policy as a Markov decision process using PPO 

objective function, proposed two-step algorithm to use IL with PPO, details of the large scale multi-domain 

dataset, toolkit and model parameters used for experiment setup; further, the result and discussion section 

describes the comparative analysis of results obtained; and finally, the conclusion section summarizes all the 

findings, discuss the limitations and future research directions. 

 

 

 
 

Figure 3. RL-based POL in a TOD system 
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2. METHOD 

RL algorithms have been successfully applied in deciding the next action in simulated gaming 

environments for playing Atari games [8], playing chess games [32], and various robotic tasks. Similarly, 

dialogue policy learning is treated as a sequence decision-making problem and formulated as an MDP 

(Markov decision process) [33], [34]. The RL methodology offers a robust framework for training dialogue 

agents within dynamic environments, utilizing feedback in the form of rewards to enhance learning. In the 

succeeding sub-section, we detail the formulation of a markov decision process (MDP) designed specifically 

for RL-based dialogue policy learning. 

 

2.1.  Learning dialogue policies as markov decision processes 

A multi-domain dialogue (MDD) corpus with a collection of human dialogues that may be single or 

multiple turns spanning across domains is represented as MDD={T1, T2, T3, T4, ⋯ }, where Ti represents a 

trajectory of state and action pairs {𝑠𝑢𝑠𝑟
0 , 𝑎𝑢𝑠𝑟

0 , 𝑠𝑠𝑦𝑠
0 , 𝑎𝑠𝑦𝑠

0 , 𝑠𝑢𝑠𝑟
1 , 𝑎𝑢𝑠𝑟

1 , 𝑠𝑠𝑦𝑠,   
1 𝑎𝑠𝑦𝑠,⋯ 

1 },  where (𝑠𝑢𝑠𝑟
 , 𝑎𝑢𝑠𝑟

 ) 

represents the user’s state-action and (𝑠𝑠𝑦𝑠
 , 𝑎𝑠𝑦𝑠

 ) denotes the system’s state-action. A trajectory is generated 

by sampling actions according to the dialogue policy formulated as a partially observable Markov decision 

process (POMDP) with tuples (𝒮, 𝒜, 𝒫, ℛ, 𝛾, 𝜌0 ), where 𝒮 denotes the set of states, 𝒜 denotes the set of 

system actions, and 𝒫: 𝒮 ×  𝒜  is the transition probability function given as(𝑠𝑡+1| 𝑠𝑡, 𝑎𝑡), where state 𝑠𝑡∈𝒮 

and action 𝑎𝑡∈𝒜 at time step t . The expected immediate reward function is represented as ℛ(𝑠𝑡, 𝑎𝑡), and the 

discount factor is denoted as γ ∈ (0, 1), which is used to represent the effect of future rewards. The initial 

state distribution is denoted as 𝜌0 in the tuple. 

An optimal policy implies that the dialogue agent will take the most accurate action to maximize the 

cumulative reward ℛ𝑡 when the context, i.e., the current dialogue state along with the dialogue history, is 

given to it [33]. The policy gradient algorithm stochastically samples appropriate action and adjust the policy 

parameters 𝜃 (weights and biases of the neural network) through the gradient ascent method to obtain the 

maximum cumulative reward [35]. For instance, consider a gradient stochastic policy, as shown in (1), and 

the cumulative reward ℛ𝑡  at time step t, as shown in (2). 

 

𝑎 =  𝜋 (𝑎|𝑠; 𝜃) (1) 

 

ℛ𝑡 =  ∑ 𝛾𝑡  𝑟𝑡+𝑖 
∞
𝑡=0  , 𝑟𝑡 =   ℛ(𝑠𝑡, 𝑎𝑡)  (2) 

 

The objective is to learn an optimal dialogue policy π* to adapt in multi-domain setting using the 

DRL algorithm to maximize cumulative rewards. The loss function is defined as shown in (3). 

 

ℒ(𝜋) =  𝔼𝑟~𝜋[𝑅𝑡 | 𝜋 (.  ; 𝜃)] (3) 

 

The state-value function of π is defined as: 

 

𝒱𝜋 (𝑠) = 𝔼𝑟~𝜋[𝑅𝑡 | 𝑠0 = 𝑠] (4) 

 

The state-action value function of π is given as: 

 

𝒬𝜋 (𝑠, 𝑎) = 𝔼𝑟~𝜋[𝑅𝑡 | 𝑠0 = 𝑠, 𝑎0 = 𝑎] (5) 

 

Using (4) and (5), the advantage function of π is given as: 

 

𝒜𝜋 (𝑠, 𝑎) =  𝒬𝜋 (𝑠, 𝑎) −  𝒱𝜋 (𝑠) (6) 

 

Whether the action is better or bad than the policy’s default behavior is measured by the advantage 

function  𝒜𝜋 (𝑠, 𝑎), as shown in (6). Therefore, we need to choose the gradient term 𝜋𝑡 ∇𝜗 log 𝜋𝜃 (𝑎𝑡|𝑠𝑡) to 

point in the increased direction of𝜋𝜃(𝑎𝑡| 𝑠𝑡) which impies, 𝒜𝜋 (𝑠𝑡, 𝑎𝑡)  ≻ 0 

Designing a reliable user simulator is not trivial; it is as complex as building a good dialog agent. 

We propose an efficient two-step approach for modeling adaptive dialogue policy in a multi-domain 

environment. To reduce the RL training duration and computational overhead, we use imitation learning (IL) 

using behavior cloning (BC) to learn the optimal policy by mimicking expert demonstrations directly in a 

supervised manner, and no explicit rewards are generated in this step. Given the database of expert 

trajectories as,  DExpert trajectories
  ={ staten

 , actionn
 
,  rewardn

 
, next_state

n
   }

n=1

N
 , the dialogue agent acquires the 

state-action pairs from  𝒟; then, a regressor or classifier is estimated to mimic the expert behavior as 
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described in (7). The policy network 𝜋𝜃_𝑜𝑙𝑑(·) is trained by minimizing the mean squared error or cross 

entropy error and calculates advantage estimates 𝒜𝜋 by calculating rewards. 

 

𝜃∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃

∑ 𝐿𝐵𝐶  (𝜋𝜃 (𝑠𝑡𝑎𝑡𝑒𝑖
 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑖

  ))𝑁
𝑖=1  (7) 

 

This no-scratch learning approach does not learn from sparse rewards or manually assigned rewards, 

but it observes and mimics experts’ demonstrations. This approach mitigates the need for large amounts of 

data for adapting to new tasks or domains. The IL approach accelerates the RL training process by serving as 

a warm-up. In the second step, the best performing policy weights from BC are used as pretrained weights. In 

this step, we utilized the policy gradient algorithm PPO using a constant clipping mechanism as the soft 

constraint for optimization [36]. PPO is an on-policy reinforcement learning algorithm based on the trust 

region policy optimization (TRPO) [36] algorithm with strong performance and simple implementation 

compared to TRPO. This process requires user feedback and ensures that the policy update at each epoch is 

not too large, increasing the training stability. To achieve the same, the ratio of the current and next policy is 

represented as 𝑟𝑡(𝜃), as defined in (8). 

 

𝑟𝑡(𝜃) =  (
𝜋𝑛𝑒𝑥𝑡 (𝑎 | 𝑠)

𝜋𝑐 (𝑎 | 𝑠)
) (8) 

 

Then, clipping is applied to this ratio to alter the range [1 − 𝜖, 1 + 𝜖] to ensure that policy updates occur 

within this range only. Thus, the goal of the PPO algorithm is to maximize the surrogate objective while 

placing the constraint that the next policy is close to the current policy. This is accomplished by using the 

following clipped surrogate objective function objective at every policy update, as shown in (9). 

 

ℒ𝑐
𝑃𝑃𝑂(𝜋) = 𝔼𝑟~𝜋𝑐  [min  (𝑟𝑡(𝜃)) 𝒜𝜋𝑐 ( 𝑠, 𝑎 ), clip  (𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) 𝒜𝜋𝑐 ( 𝑠, 𝑎 ))]

 
 (9) 

 

In the second term of the objective function in (9), PPO is designed to limit the discrepancy between 

successive policies by negating the potential for the probability ratio (
𝜋𝑛𝑒𝑥𝑡 (𝑎 | 𝑠)

𝜋𝑐 (𝑎 | 𝑠)
) to surpass the boundaries 

of the clipping range [1-ϵ,1 +ϵ]. Here, ϵ is a hyper-parameter that helps us to define this clip range. The 

following subsection describes the algorithm for modeling DRL-based dialogue policy by utilizing IL with 

the BC approach. 

 

2.2.  Algorithm 

In this sub-section, we explore a detailed algorithm designed to enhance dialogue policy, leveraging 

PPO as the core reinforcement learning method for stable and efficient policy updates within predefined 

constraints as shown in Algorithm 1. Additionally, the integration of Imitation Learning with PPO aims to 

empower the agent with enhanced dialogue management capabilities in dynamic environments, combining 

the robustness of reinforcement learning with valuable insights from human expertise. 

 

2.3.  Dataset 

A large scale MultiWOZ2.1 dataset, which contains the human-to-human conversational dialogues 

of a tourist company with its customers is utilized in this study. The dataset is annotated for different TOD 

tasks, such as dialogue states, system dialogue acts, and user goals, in different domains of trip information 

settings (hotel, train, hospital, taxi, police, postcode, restaurant) [37], [38]. MultiWOZ2.1 is a comprehensive 

dataset encompassing more than 3K single-domain dialogues and 7K multi-domain dialogues, with each 

multi-domain dialogue spanning at least two to five domains. Approximately 70% of the dialogues consist of 

more than ten turns, introducing complexity and replicating real-time scenarios [39]. 

 

2.4.  Toolkit 

Numerous tools have been incorporated and merged into an integrated development environment 

(IDE). These tools include rule-based dialogue management (DM) and built-in natural language 

understanding (NLU) capabilities, but do not provide user simulators for training and evaluation. Among 

various open-source frameworks, ConvLab [20] is a popular open-source framework in the research 

community that facilitates various state-of-the-art models for each component of TOD systems, it also 

supports the end-to-end design. Various datasets and user simulators are available for experimental setup and 

evaluation of dialogue systems [21]. Recently released ConvLab-3 provides sophisticated RL features within 

this toolkit, which enables seamless incorporation of RL-based algorithms via the ‘vectorizer’ class, as 
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depicted in Figure 4. We used an agenda-based user simulator (ABUS) for automatic evaluation of the 

dialogue policy provided in the toolkit for training in the second step. 

 

 

 
 

Algorithm 1. Enhancing dialogue policies with PPO and imitation learning 

 

 

 
 

Figure 4. ConvLab-3 framework [40] 
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2.5.  Model parameters 

In the first step, we utilized supervised learning to train a multilayer perceptron (MLP) for 

implementing IL with BC using the maximum likelihood estimator (MLE) policy. The parameter 

configuration and hyper-parameter settings are passed through a JSON file (config.json) to train the MLE 

policy, are shown in Table 1. In this step, a classifier is utilized to replicate expert behavior as depicted in 

Figure 5. The parameter configuration file, database name and seed value are specified as argument for 

training MLE policy. At this step, no explicit rewards are generated for the dialogue agent. 

 

 

Table 1. Imitation learning model parameters 
Parameter Value 

Batch size 32 

Epochs 24 

Learning rate 0.0001 

Hidden layer size (h_dim) 256 

No of hidden layers of size h_dim 100 

Path to save Policy best/MLE 

 

 

 
 

Figure 5. Evaluation of MLE policy 

 

 

The ‘vectorizer’ class interprets the semantic actions that are received by DST and converts them 

into vectorized representations based on the domain ontology. This class serves as a flexible method for 

experimenting with various RL strategies for dialogue policy. In the next step, the best performing MLE 

policy is used as a pretrained model for the PPO algorithm. The PPO policy is trained for 10 epochs to 

evaluate its adaptability by evaluating the policy after 500 and 1,000 dialogues. The batch size is configured 

as 32 and hidden layers as 100 with the dimensions of 50. The hyper-parameter settings used for training the 

PPO dialogue policy using IL and the model configuration parameters are contained in the JSON file as 

described in Table 2. 

 

 

Table 2. PPO Dialogue policy model configuration and hyper-parameters 
Parameter name Value 

Batch size 32 

Gamma 0.99 

Epsilon (clipping) 0.2 

Learning rate (policy) 0.0001 

Learning rate (value) 0.00005 

Hidden layer size (h_dim) 50 

No. of hidden layers of size h_dim 100 

Load path Path to pretrained model (best/MLE) 
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We configure the dialogue agent and user simulator, as shown in Figure 6, and pass the 

configuration file (RuleUser-Semantic-RuleDST.json) as an argument while training PPO policy along with 

database name and seed value. The path for best performing MLE policy which is found in earlier step is 

specified using ‘load_path’ parameter and used as a starting point to train PPO policy instead of training it 

from scratch. The evaluation takes place after every 500 dialogues, and the evaluation frequency is set to 5.  

Inside the ‘vectorizer_sys’ section within the same configuration file, rule-based DST is specified 

using the ‘dst_sys’ parameter, which implies that the POL component receives a dialogue state from DST 

which is modeled using a rule-based approach. The current dialogue state that also incorporates dialogue 

history serves as a context for selecting appropriate action in a particular dialogue turn. We utilize an existing 

user simulator configured using the ‘policy_usr’ parameter, which employs rule-based policy, i.e., an agenda-

based user simulator (ABUS) for automatic evaluation of proposed hybrid dialogue policy. As we are 

interested in POL performance, other components, such as the NLU and NLG for the dialogue agent and the 

NLU, DST and NLG for user simulators, are not configured for this specific experiment. However, these 

parameters can be configured to design and evaluate the overall performance of the dialogue system in a 

pipeline architecture. The efficacy of IL for modeling scalable multi-domain dialogue policy using PPO 

algorithm is evaluated using agenda-based user simulator and results are discussed in next section. 

 

 

 
 

Figure 6. Configuration of agent and user simulator 

 

 

3. RESULTS AND DISCUSSION  

We assess the accuracy of identifying expert actions by utilizing the precision (P), recall (R), and 

F1-score (F1) at initial step. We recorded the best policy with approximate values as follows: P=42%, 

R=70%, and F1=52% after running 24 epochs with seed values of 0 and 20200202. Further, pretrained 

weights of MLE policy from its checkpoint are used to train PPO policy and evaluated the performance of 

dialogue policy with different seed values to validate the results for 5 runs. As demonstrated in Figure 7, we 

observed a remarkable boost in the success rate, strict success rate and complete rate of dialogue compared to 

learning the dialogue policy from scratch. As shown in the Figures 7(a) and 7(b), we observed 88% of 

success rate and strict success rate in first 500 dialogues and approximately 92% after 1,000 dialogues this 

indicates fast learning of dialogue agent for goal completion directly from expert demonstrations without 

using user simulator. The complete rate as demonstrated in Figure 7(c) is 88.6% after evaluating the first 500 

dialogues and 93.2% after 1,000 dialogues signifies that dialogue agent has improved adaptation to multi-

domain tasks by fulfilling more user’s requests. The Figure 7(d) indicates a greater than 50% reduction in the 

average number of turns needed to accomplish the task i.e., fast convergence, it is one of the essential 

measures as any TOD system is required to accomplish the task with minimum conversation steps for 

enhanced user experience or else user may quit feeling frustrated. The results indicate manually given 

rewards and training dialogue agent from scratch can be avoided by using the pretrained model by adopting 

computationally efficient approach thereby elevating the load during initial learning phase of the dialogue 

agent. Additionally, dependence on user simulators is reduced. This method may be helpful to train scalable 

conversational systems in computationally efficient manner. 
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(c) (d) 

 

Figure 7. Evaluation of the Dialogue policy: (a) success rate, (b) strict success rate, (c) complete rate, and  

(d) average number of successful turns 

 

 

As NLG is not configured, the simulation of user and system agent interaction is demonstrated by 

capturing changes in user and system actions which are recorded in generated log for each dialogue turn as 

follows. 

 
!python convlab/policy/ppo/train.py –config_name=RuleUser-Semantic-RuleDST –seed=20200202 

User:      [[‘inform’, ‘attraction’, ‘’, ‘’]] 

System:  [[‘inform’, ‘attraction’, ‘choice’, ‘10’], [‘request’, ‘attraction’, ‘area’, ‘?’], [‘request’, ‘attraction’, ‘type’, ‘?’]] 

User:      [[‘inform’, ‘attraction’, ‘type’, ‘museum’], [‘inform’, ‘attraction’, ‘area’, ‘west’], [‘inform’, ‘attraction’, ‘choice’,  ‘any’]] 

System:  [[‘inform’, ‘attraction’, ‘area’, ‘west’], [‘inform’, ‘attraction’, ‘choice’, ‘7’], [‘inform’, ‘attraction’, ‘entrance fee’, ‘free’], 

[‘inform’, ‘attraction’, ‘name’, ‘cafe jello gallery’], [‘inform’, ‘attraction’, ‘type’, ‘museum’], [‘recommend’, ‘attraction’, 

‘name’, ‘cafe jello gallery’]] 

User:      [[‘request’, ‘attraction’, ‘phone’, ‘’], [‘request’, ‘attraction’, ‘postcode’, ‘’], [‘request’, ‘attraction’, ‘address’, ‘’], [‘request’,   ‘     

attraction’, ‘entrance fee’, ‘’]] 

System:  [[‘inform’, ‘attraction’, ‘address’, ‘cafe jello gallery, 13 magdalene street’], [‘inform’, ‘attraction’, ‘entrance fee’, ‘free’], 

[‘inform’, ‘attraction’, ‘name’, ‘cafe jello gallery’], [‘inform’, ‘attraction’, ‘phone’, ‘01223312112’], [‘inform’, ‘attraction’, 

‘postcode’, ‘cb30af’], [‘reqmore’, ‘general’, ‘none’, ‘none’]] 

User:      [[‘inform’, ‘restaurant’, ‘’, ‘’], [‘inform’, ‘restaurant’, ‘food’, ‘indian’], [‘inform’, ‘restaurant’, ‘price range’, ‘moderate’], 

[‘inform’, ‘restaurant’, ‘area’, ‘west’]] 

System:  [[‘inform’, ‘restaurant’, ‘area’, ‘west’], [‘inform’, ‘restaurant’, ‘choice’, ‘1’], [‘inform’, ‘restaurant’, ‘food’, ‘indian’], 

[‘inform’, ‘restaurant’, ‘name’, ‘meghna’], [‘inform’, ‘restaurant’, ‘price range’, ‘moderate’]] 

User:      [[‘bye’, ‘general’, ‘’, ‘’]]   

System:  [[‘bye’, ‘general’, ‘none’, ‘none’], [‘welcome’, ‘general’, ‘none’, ‘none’]] 
 

We compared performance of POL component using different policy optimization algorithms for the same 

NLU, DST and NLG in the pipeline. This study utilized MLE, PG, GDPL and PPO which employed behavior 

cloning (BC). After evaluating 1,000 dialogues, Table 3, demonstrates PPO algorithm is more robust with 

significant improvement in complete rate and success rate compared to other approaches MLE, PG and GDPL. 

GDPL algorithm depicted improved convergence speed when compared with PPO, but the observed success 

rate is not even 50%. MLE and PG algorithms demonstrated poor performances in dialogue completion.  

Recently, neural based E2E design of dialogue systems are preferred which jointly optimize more 

than two or all the components of dialogue system using a shared model. When compared with E2E system 

performances, significant improvement in complete rate is observed with lesser dialogue turns to accomplish 

the goal. Though the better success rate is observed in E2E neural approaches using GPT-based models for 

all TOD tasks, large number of parameters are required, indicating the increased computational overload for 
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maintaining the common model with shared parameters across all tasks. Therefore, pipeline approach using 

PPO algorithm can be investigated further for designing scalable systems in scarce resource environment 

using imitation learning and inverse reinforcement learning approaches. 

 

 

Table 3. Comparison of proposed approach with other configurations in pipeline and E2E design for 

multi-domain dialogue system [41], [42] 
Configuration Complete 

rate (%) 

Success 

rate (%) 

Average no. of 

success turns 

No of parameters 

in POL model 

(approx.) 

NLU DST POL NLG 

With only dialogue policy component optimized using BC in pipeline architecture  

BERT Rule Supervised learning 

(MLE) 

Template 52.6 48.4 12.45 

65K for all 

configurations in 

pipeline design  

BERT Rule Policy gradient (PG) Template 47.9 44.3 14.69 

BERT Rule Guided dialogue policy 

learning using 

adversarial inverse RL 

(GDPL) 

Template 57.9 48.5 11.47 

BERT Rule Proximal policy 

optimization (PPO) 

Template 81.7 76.4 14.1 

All components NLU, DST, NLG optimized jointly using off-policy model free algorithms POL in E2E architecture 

UBAR-distilGPT-2 based model, utilize belief states, 

database results and generated act and responses as context 

74.3 79.8 14.2 82 M 

Critic-regularized regression (CRR) - GPT-2 based model, 

performs weighted behavior cloning of offline dataset 

72.6 78.2 13.6 ≥124 M 

Decision transformer - GPT-2 based model 75.30 81.3 14.81 ≥124 M 

GPT-critic - GPT-2 based model 77.7 84.3 16.3 ≥124 M 

 

 

4. CONCLUSION 

Dialogue policy is an essential component of a dialogue system that determines the flow of a 

conversation to achieve user goals efficiently. In line with objectives raised, model-free deep reinforcement 

learning algorithm using PPO demonstrated a promising approach for handling large number of state-action 

spaces in multi-domain conversation environments. Often dialogue agents are assigned sparse rewards at 

dialogue level which result in huge number of poor performing interactions between user simulator and 

dialogue agent during initial learning phase. To establish a robust dialogue policy in a computationally 

efficient manner, the proposed approach leverages imitation learning using behavior cloning in the initial 

stage. In the consequent step, DRL-based dialogue agent utilizes these pretrained weights to establish 

scalable dialogue policy in multi-domain environment. The proposed approach demonstrated significant 

improvement in the performance of dialogue policy and overall performance of dialogue system when 

compared with other systems. It may be helpful for designing scalable dialogue systems to support new tasks 

without using user simulators by cutting down the training time significantly. However, the following 

limitations of the behavior cloning approach need to be considered; mistakes in expert trajectories will be 

replicated by the dialogue agent as well therefore error free expert dataset is required. Also, expert biases 

may lead to suboptimal dialogue policies or sometimes better generalization may not be achieved because the 

user behavior is not taught in the in the given expert trajectories, causing overfitting. Recent advancements 

using large language models (LLMs) utilize task-specific prompts to adapt new tasks or domains. By default, 

LLMs are not multi-turn, moreover, they are trained on a large general-purpose corpus, exploring the efficacy 

of LLMs for modeling prompt-based adaptation of new tasks in TOD systems is left for future work. 
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